ACKNOWLEDGMENTS

The Editorial Board of *Clinical Science* gratefully acknowledges the assistance given by the following referees during the year 1995.

Abernathy, D.
Agardh, E.
Agrotis, A.
Aitkenhead, A.R.
Ali, N.
Andersen, D.
Anderson, S.
Andrews, F.
Angelin, B.
Araki, S.
Archer, L.
Aronberg, S.
Andrews, F.
Angelin, B.
Ardawi, M.S.M.
Arieff, A.I.
Armstrong, V.W.
Arnold, J.M.O.
Amqvist, H.
Arslanian, S.
Arthur, J.
Astarie Dequecker, C.
Bailey, R.R.
Baines, A.
Bankir, L.
Banks, R.
Barclay, R.
Baron, A.D.
Barradas, M.A.
Barrett, E.J.
Barton, H.
Bassey, J.E.
Batchelard, H.
Beaudouin-Legros, M.
Beavan, L.
Beckett, G.
Bell, J.
Belpaire, F.
Benjamin, N.
Bennett, A.
Berl, T.
Berne, C.
Besley, G.
Best, J.
Beynon, H.
Bharaj, H.S.
Bhatnagar, D.
Bie, P.
Bishop, J.
Bistrian, B.R.
Black, C.
Blomberg, P.
Bobik, A.
Boer, W.H.
Bolter, C.P.
Bonham, J.
Bolton, C.
Boot-Handford, R.
Boughton-Smith, N.K.
Boulanger, C.
Bowyer, D.E.
Bould, K.
Brands, M.
Brasseur, D.
Breyer, M.D.
Bringhurst, F.R.
Brown, KE.
Brown, M.A.
Bryer-Ash, M.
Bund, S.
Burkett, K.
Burdon, R.H.
Burgess, A.W.
Burrell, L.M.
Calder, P.C.
Calver, A.
Campbell, N.E.
Caprio, S.
Carlson, M.G.
Caro, C.G.
Casadei, B.
Casolaro, A.
Charles, C.
Chau, N.P.
Cheek, N.
Cherrington, A.
Ch'ng, J.L.C.
Chow, P.J.
Chung, K.F.
Clapp, J.
Clarke, C.
Clavey, V.
Clayton, P.
Cleland, J.
Clement, D.L.
Cline, G.
Cockcroft, J.R.
Cole, A.T.
Collins, A.
Collins, P.
Cooke, J.P.
Ctalk, B.
Crouch, M.
Cruickshank, J.K.
Cuspidi, C.
Dantzer, D.
Dart, T.
Davidson, N.
Davies, D.
Davies, M.
Dausse, J.P.
Day, C.P.
De Backer, G.
Deegan, P.C.
de Jong, N.
de Leeuw, P.W.
de Rijke, Y.B.
de Vernejoul, M.C.
Deutz, N.
Dimsdale, J.E.
Dockray, G.J.
Donker, A.J.M.
Donnelly, S.
Doorly, D.
Dornhurst, A.
Dowling, D.
Dransfield, I.
Drejer, K.A.
Dryden, S.
Dullaert, R.P.F.
Duprez, D.
During, M.
Duthie, G.
Edelman, A.
Edelson, G.
Ec, H.
Elahi, D.
Elia, M.
Emery, P.W.
Emmerich, J.
Enholm, C.
Erikson, E.F.
Eriksson, U.
Escourrou, P.
Esler, M.D.
Espiner, E.A.
Evans, B.
Fallen, E.
Fearon, K.
Feizi, T.
Feldman, R.
Feray, J.C.
Ferguson, A.
Fernig, D.
Ferrari, A.U.
Ferrari, M.D.
Feuvray, D.
Fitchett, D.
Ford, G.A.
Forster, C.
Forsling, M.
Forte, L.R.
Fosang, A.
Franceschini, G.
Frayn, K.N.
Freeman, D.
Freestone, S.
Frelin, C.
Friedman, P.
Fryburg, D.
Fuller, B.J.
Furst, P.
Garlick, P.
Gaultier, C.
Gefland, R.A.
Gellai, M.
Gibson, P.
Gilchrist, N.L.
Goode, G.K.
Goodlad, R.
Gore, M.
Gosden, C.M.
Goto, K.
Grassi, G.
Green, A.
Green, C.J.
Griffiths, R.
Griffiths, T.M.
Grime, G.
Grinn, M.
Groop, L.
Grubeck-Loebenstein, B.
Haddad, F.
Hales, C.
Hales, J.
Hall, M.J.
Halliday, D.
Hans, G.
Hansen, P.R.
Hanson, U.
Harding, J.J.
Harris, K.
Head, G.A.
Heagerty, A.M.
Helft, G.
Henderson, I.S.
Hill, J.
Hjermindahl, P.
Holder, D.S.
Horne, P.D.
Hothrer Nielsen, O.
Hughes, A.
Hughes, P.
Hughson, R.
Huisman, R.M.
Hulcanchtz, R.
Hunter, J.
Ikeda, U.
Iramo, H.
Imaiizumi, T.
Ind, P.
Iouzalen, L.
Iredale, J.P.
Jack, C.I.A.
Jackson, M.J.
Jain, B.
Jaken, P.M.
Janssen, W.M.T.
Jenkinson, S.
Jennings, G.L.
Jensen, M.
Johnson, M.R.
Johnston, P.W.
Johnstone, F.
Jones, D.
Jones, M.
Jover, B.
Julius, S.
Kamen, P.
Kaplan, A.
Khan, F.
Kingsnorth, A.N.
Kingswell, B.
Kinnear, W.
Klein, G.
Knox, A.
Kostad, F.
Koomans, H.A.
Kopp, U.
Korner, P.
Kostuk, W.
Krediel, R.Th.
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdel-Meguid, E.</td>
<td>187–191</td>
</tr>
<tr>
<td>Abdel-Tawab, S.</td>
<td>187–191</td>
</tr>
<tr>
<td>Abu-Amsha, R.</td>
<td>449–458</td>
</tr>
<tr>
<td>Aguilerá, M.T.</td>
<td>155–161</td>
</tr>
<tr>
<td>Ainley, C.</td>
<td>219–223</td>
</tr>
<tr>
<td>Albert, J.</td>
<td>225–231</td>
</tr>
<tr>
<td>Allan, P.L.</td>
<td>17–21</td>
</tr>
<tr>
<td>Almada, A.L.</td>
<td>113–118</td>
</tr>
<tr>
<td>Amadi, A.A.</td>
<td>391–398</td>
</tr>
<tr>
<td>Andersen, S.E.</td>
<td>99–106</td>
</tr>
<tr>
<td>Armstrong, A.L.</td>
<td>685–690</td>
</tr>
<tr>
<td>Arthur, J.R.</td>
<td>107–111</td>
</tr>
<tr>
<td>Atucha, N.M.</td>
<td>733–738</td>
</tr>
<tr>
<td>Baker, G.</td>
<td>51–58</td>
</tr>
<tr>
<td>Barbara, L.</td>
<td>219–223</td>
</tr>
<tr>
<td>Barden, A.</td>
<td>711–718</td>
</tr>
<tr>
<td>Bassey, E.J.</td>
<td>685–690</td>
</tr>
<tr>
<td>Belch, J.F.F.</td>
<td>17–21</td>
</tr>
<tr>
<td>Bell, S.C.</td>
<td>169–175</td>
</tr>
<tr>
<td>Benn, J.</td>
<td>575–582</td>
</tr>
<tr>
<td>Bernard, C.</td>
<td>29–33</td>
</tr>
<tr>
<td>Bernardi, L.</td>
<td>35–43</td>
</tr>
<tr>
<td>Bianchetti, M.G.</td>
<td>347–351</td>
</tr>
<tr>
<td>Binah, O.</td>
<td>233–239</td>
</tr>
<tr>
<td>Blakemore, S.J.</td>
<td>591–599</td>
</tr>
<tr>
<td>Bongso, A.</td>
<td>248–249</td>
</tr>
<tr>
<td>Bourgin, P.</td>
<td>45–50</td>
</tr>
<tr>
<td>Bradford, A.</td>
<td>337–345</td>
</tr>
<tr>
<td>Bragado, M.J.</td>
<td>365–369, 771</td>
</tr>
<tr>
<td>Bragulat, E.</td>
<td>155–161</td>
</tr>
<tr>
<td>Bränström, R.</td>
<td>431–439</td>
</tr>
<tr>
<td>Bröijersén, A.</td>
<td>225–231</td>
</tr>
<tr>
<td>Brown, K.M.</td>
<td>107–111</td>
</tr>
<tr>
<td>Browne, G.</td>
<td>79–86</td>
</tr>
<tr>
<td>Brundin, T.</td>
<td>431–439</td>
</tr>
<tr>
<td>Bund, S.J.</td>
<td>739–743</td>
</tr>
<tr>
<td>Buvry, A.</td>
<td>319–327</td>
</tr>
<tr>
<td>Cacchifesta, A.M.</td>
<td>385–389</td>
</tr>
<tr>
<td>Cailmail, S.</td>
<td>29–33</td>
</tr>
<tr>
<td>Calverley, P.M.A.</td>
<td>513–518</td>
</tr>
<tr>
<td>Calvo, J.J.</td>
<td>365–369, 771</td>
</tr>
<tr>
<td>Campbell, B.J.</td>
<td>359–364</td>
</tr>
<tr>
<td>Canali, C.</td>
<td>275–281</td>
</tr>
<tr>
<td>Carter, J.</td>
<td>513–518</td>
</tr>
<tr>
<td>Cartouzou, G.</td>
<td>209–212</td>
</tr>
<tr>
<td>Carver, J.G.</td>
<td>725–731</td>
</tr>
<tr>
<td>Caso, G.</td>
<td>99–106</td>
</tr>
<tr>
<td>Cassell, T.B.</td>
<td>509–512</td>
</tr>
<tr>
<td>Castleden, C.M.</td>
<td>467–474</td>
</tr>
<tr>
<td>Cattell, V.</td>
<td>375–384</td>
</tr>
<tr>
<td>Celli, V.</td>
<td>385–389</td>
</tr>
<tr>
<td>Cester, N.</td>
<td>719–723</td>
</tr>
<tr>
<td>Chadwick, I.G.</td>
<td>617–620</td>
</tr>
<tr>
<td>Chan, S.H.</td>
<td>256–258</td>
</tr>
<tr>
<td>Chan, S.Y.</td>
<td>250–252</td>
</tr>
<tr>
<td>Charles, C.J.</td>
<td>283–291</td>
</tr>
<tr>
<td>Chin-Dusting, J.</td>
<td>23–28</td>
</tr>
<tr>
<td>Christensen, N.J.</td>
<td>621–626</td>
</tr>
<tr>
<td>Chu, T.P.</td>
<td>391–398</td>
</tr>
<tr>
<td>Cipollina, M.R.</td>
<td>703–710</td>
</tr>
<tr>
<td>Claassen, J.A.H.R.</td>
<td>483–488</td>
</tr>
<tr>
<td>Clague, J.E.</td>
<td>513–518</td>
</tr>
<tr>
<td>Clark, M.L.</td>
<td>425–430</td>
</tr>
<tr>
<td>Coats, A.J.S.</td>
<td>391–398</td>
</tr>
<tr>
<td>Coca, A.</td>
<td>155–161</td>
</tr>
<tr>
<td>Colombani, V.</td>
<td>209–212</td>
</tr>
<tr>
<td>Colombo, R.</td>
<td>391–398</td>
</tr>
<tr>
<td>Compton, J.E.</td>
<td>307–312</td>
</tr>
<tr>
<td>Connell, J.M.C.</td>
<td>65–71</td>
</tr>
<tr>
<td>Cook, H.T.</td>
<td>375–384</td>
</tr>
<tr>
<td>Coupland, C.A.C.</td>
<td>685–690</td>
</tr>
<tr>
<td>Cowley, A.J.</td>
<td>415–423</td>
</tr>
<tr>
<td>Crawley, J.</td>
<td>51–58</td>
</tr>
<tr>
<td>Crijns, F.R.L.</td>
<td>131–139</td>
</tr>
<tr>
<td>Critchley, J.A.H.</td>
<td>35–43</td>
</tr>
<tr>
<td>Croft, K.D.</td>
<td>449–458, 711–718</td>
</tr>
<tr>
<td>Curran, A.K.</td>
<td>337–345</td>
</tr>
<tr>
<td>D'Almeida, M.</td>
<td>29–33</td>
</tr>
<tr>
<td>Davies, P.S.W.</td>
<td>763–769</td>
</tr>
<tr>
<td>Day, J.M.E.</td>
<td>763–769</td>
</tr>
<tr>
<td>de Silva, H.A.</td>
<td>725–731</td>
</tr>
<tr>
<td>de Chazal, R.</td>
<td>169–175</td>
</tr>
<tr>
<td>De La Sierra, A.</td>
<td>155–161</td>
</tr>
<tr>
<td>De Leeuw, P.W.</td>
<td>163–168</td>
</tr>
<tr>
<td>De Propris, A.M.</td>
<td>385–389</td>
</tr>
<tr>
<td>De Rooij, M.J.M.</td>
<td>483–488</td>
</tr>
<tr>
<td>Del Mar Lluch, M.</td>
<td>155–161</td>
</tr>
<tr>
<td>Dessauer, C.W.</td>
<td>527–537</td>
</tr>
<tr>
<td>Di Bernardo, M.G.</td>
<td>385–389</td>
</tr>
<tr>
<td>Di Virgilio, F.</td>
<td>703–710</td>
</tr>
<tr>
<td>Dickinson, C.J.</td>
<td>539–550</td>
</tr>
<tr>
<td>Dimitriadou, V.</td>
<td>319–327</td>
</tr>
<tr>
<td>Ding, X.-J.</td>
<td>93–98</td>
</tr>
<tr>
<td>Dowling, R.H.</td>
<td>509–512</td>
</tr>
<tr>
<td>Drummond, P.D.</td>
<td>73–77</td>
</tr>
<tr>
<td>Dudley, F.</td>
<td>23–28</td>
</tr>
<tr>
<td>Duner, E.</td>
<td>703–710</td>
</tr>
<tr>
<td>Duthie, G.G.</td>
<td>107–111</td>
</tr>
<tr>
<td>Dutto, F.</td>
<td>313–318</td>
</tr>
<tr>
<td>Earnest, C.P.</td>
<td>113–118</td>
</tr>
<tr>
<td>El-Gamal, N.</td>
<td>627–631</td>
</tr>
<tr>
<td>Elliott, H.L.</td>
<td>65–71</td>
</tr>
<tr>
<td>Elliott, R.A.</td>
<td>467–474</td>
</tr>
<tr>
<td>Ellory, J.C.</td>
<td>353–358</td>
</tr>
<tr>
<td>Engelman, J.L.</td>
<td>509–512</td>
</tr>
<tr>
<td>Escourrou, P.</td>
<td>45–50</td>
</tr>
<tr>
<td>Espiner, E.A.</td>
<td>283–291</td>
</tr>
<tr>
<td>Essén, P.</td>
<td>99–106</td>
</tr>
<tr>
<td>Eto, T.</td>
<td>293–298</td>
</tr>
<tr>
<td>Fagbemi, O.S.</td>
<td>745–754</td>
</tr>
<tr>
<td>Farag, M.M.</td>
<td>187–191</td>
</tr>
<tr>
<td>Farmer, R.D.T.</td>
<td>87–92</td>
</tr>
<tr>
<td>Farzanef, F.</td>
<td>213–218</td>
</tr>
<tr>
<td>Feigel, P.</td>
<td>45–50</td>
</tr>
<tr>
<td>Felzen, B.</td>
<td>233–239</td>
</tr>
<tr>
<td>Feng, Y.-H.</td>
<td>459–466</td>
</tr>
<tr>
<td>Finch, P.M.</td>
<td>73–77</td>
</tr>
<tr>
<td>Finnie, I.A.</td>
<td>359–364</td>
</tr>
<tr>
<td>Flanagan, G.J.</td>
<td>353–358</td>
</tr>
<tr>
<td>Forster, C.D.</td>
<td>425–430</td>
</tr>
<tr>
<td>Fortepiani, L.A.</td>
<td>733–738</td>
</tr>
<tr>
<td>Fowler, B.</td>
<td>79–86</td>
</tr>
<tr>
<td>Franks, S.M.</td>
<td>627–631</td>
</tr>
<tr>
<td>Frayn, K.N.</td>
<td>425–430, 679–683</td>
</tr>
<tr>
<td>Freestone, S.</td>
<td>177–185</td>
</tr>
<tr>
<td>Frick, G.</td>
<td>79–86</td>
</tr>
<tr>
<td>Frossard, N.</td>
<td>319–327</td>
</tr>
<tr>
<td>Frostell, C.</td>
<td>225–231</td>
</tr>
<tr>
<td>Gafer, U.</td>
<td>519–523</td>
</tr>
<tr>
<td>Garbarg, M.</td>
<td>319–327</td>
</tr>
<tr>
<td>Garcia, L.J.</td>
<td>365–369, 771</td>
</tr>
<tr>
<td>Garcia-Estanj, J.</td>
<td>733–738</td>
</tr>
<tr>
<td>Garlick, P.J.</td>
<td>99–106</td>
</tr>
<tr>
<td>Gaskin, G.</td>
<td>329–335</td>
</tr>
<tr>
<td>Gerolami, A.</td>
<td>209–212</td>
</tr>
<tr>
<td>Ghosh, S.</td>
<td>213–218</td>
</tr>
<tr>
<td>Gibson, A.</td>
<td>633–638</td>
</tr>
<tr>
<td>Gilman, A.G.</td>
<td>527–537</td>
</tr>
<tr>
<td>Giner, V.</td>
<td>155–161</td>
</tr>
<tr>
<td>Giordano, A.</td>
<td>391–398</td>
</tr>
<tr>
<td>Glenville, B.</td>
<td>51–58</td>
</tr>
<tr>
<td>Goldman, J.M.</td>
<td>329–335</td>
</tr>
</tbody>
</table>
Goldstein, D. 233–239
González, A. 365–369, 771
Goodlad, R.A. 503–507
Granger, J.P. 497–502
Green, C. 307–312
Griffin, G.E. 241–245
Grimble, R.F. 121–130
Gusmaroli, R. 219–223
Gustafsson, F. 621–626
Haefeli, W.E. 79–86
Hafen, G. 347–351
Hansen, J.M. 489–496
Harrington, D. 391–398
Hart, G. 459–466
Heagerty, A.M. 739–743
Heude, E. 45–50
Hider, R. 633–638
Higgins, K.S. 617–620
Hillis, G.S. 639–650
Hjemdahl, P. 225–231
Hodgson, H.J. 329–335
Holton, J. 219–223
Hong, C.Y. 601–606
Hoskins, P.R. 17–21
Houben, A.J.H.M. 163–168
Huang, Y.-T. 601–606
Huang, Y.W. 93–98
Hughes, J.M.B. 329–335
Humphreys, S.M. 425–430, 679–683
Hundal, H.S. 591–599
Hutton, I. 739–743
Idone, G. 385–389
Imholz, B.P.M. 193–200
Ishikawa, T. 755–761
Ishimitsu, T. 293–298
Jackson, A.A. 607–615
Jackson, P.R. 399–413, 617–620, 773–774
James, M.A. 59–64
Janssen, M.C.H. 483–488
Jebb, S.A. 241–245
Jellema, W.T. 193–200
Jennings, G. 23–28, 241–245
Ji, M.R. 93–98
Johnston, N.R. 177–185
Jones, D.E.J. 551–558
Jones, P.H. 141–146
Kakkar, R. 441–448
Kalechman, Y. 519–523
Kalra, J. 441–448
Kamen, P.W. 201–208
Kang, J.Y. 252–254
Kangawa, K. 293–298
Karet, F.E. 267–273
Kay, R.L.C. 35–43
Kearney, M.T. 415–423
Kemp, G.J. 691–702
Kersten, A.H. 475–481
Kime, R. 633–638
Kirchner, K.A. 497–502
Kirstetter, P. 29–33
Kitamura, K. 293–298
Knudsen, J.H. 621–626
Konje, J.C. 169–175
Kosoglou, T. 283–291
Krasikiewicz, M. 617–620
Krum, H. 201–208
Kurashina, T. 497–502
Kabiri, A. 51–58
Lainchbury, J.G. 3–16, 525
Langley-Evans, S.C. 607–615
Laux-End, R. 347–351
Lawson, K. 651–663
Lee, K.O. 254–256
Lee, M.R. 177–185
Lerique, B. 209–212
Leyssac, P.P. 489–496
Li, X.C. 147–154
Li Kam Wa, T.C. 177–185
Ligtenberg, J.J.M. 583–589
Lin, H.-C. 601–606
Liu, T.-B. 601–606
Liu, T.-B. 601–606
Lo, T.W.C. 575–582
López, M.A. 356–369, 771
Lotan, R. 233–239
Lucarelli, G. 719–723
Lutterman, J.A. 539–546
Lwakire, P.M. 559–565
L'Her, J.M. 415–423, 425–430
Macarthur, R.F. 219–223
MacLeod, A.M. 639–650
Macpherson, M.B. 685–690
Mantha, S.V. 599–606
Marangella, M. 313–318
Marinello, G. 385–389
Martínez, C. 733–738
Matsuo, H. 293–298
Matsuoka, H. 293–298
May, H. 307–312
Mazzanti, L. 719–723
Mazzuero, G. 391–398
McGuigan, J.A.S. 347–351
McKie, A.T. 213–218
McLellan, A.C. 575–582
McNally, P.G. 59–64
McNurlan, M.A. 99–106
Menegatti, M. 219–223
Menys, V.C. 87–92
Michael, C.A. 711–718
Miglioli, M. 219–223
Mikhail, M. 187–191
Millar, J.A. 567–573
Milton, J.D. 359–364
Minami, J.-I. 293–298
Mione, V. 275–281
Miranda, F. 219–223
Mitchell, T.L. 113–118
Moreau, R. 29–33
Mormino, P. 275–281
Morrice, P.C. 107–111
Morris, A.D. 65–71
Morris, R.J. 679–683
Morton, J.J. 169–175
Murphy, G.M. 509–512
Murphy, S. 307–312
Netten, P.M. 559–565
Newlands, G.F.J. 319–327
Ng, S.C. 254–256
Nicholls, M.G. 3–16, 283–291, 525
Nicolosi, G. 275–281
Nishikimi, T. 293–298
Nishino, T. 755–761
Noble, M.I.M. 87–92
Nocco, M.L. 385–389
Norman, R.I. 467–474
Northover, B.J. 745–754
Nosophin, R. 703–710
O'Brien, S.F. 567–573
Oh, Y.M.S. 247, 261–264
Oldroyd, B. 763–769
Olsen, N.V. 489–496
Ortiz, M.C. 733–738
Palatini, P. 275–281
Panerai, R. 59–64
Parker, S.G. 467–474
Patek, G. 497–502
Payne, J.N. 399–413, 773–774
Author Index

Pearson, M.G. 513-518
Peeters, L.L.H. 163-168
Peheim, E. 347-351
Pereira, S.P. 509-512
Peters, A.M. 275-281
Peters, T.J. 213-218
Petrarulo, M. 313-318
Petrie, J.R. 739-743
Pickin, D.M. 399-413, 773-774
Piepoli, M. 391-398
Piao, K. 359-364
Powers, H. 633-638
Prasad, K. 441-448
Primrose, J.N. 371-374
Proudfoot, J.M. 449-458
Qureshi, I.A. 93-98
Rabini, R.A. 719-723
Radda, G.K. 691-702
Rae, C. 353-358
Raja, S.N. 627-631
Ramsay, L.E. 399-413, 617-620, 773-774
Ravel, U. 51-58
Recchi, D. 385-389
Reitsma, W.D. 583-589
Ren, E.C. 256-258
Rennie, M.J. 591-599
Rhodes, J.M. 359-364
Ricci, C. 219-223
Richards, A.M. 3-16, 283-291, 525
Ricks, D.K. 591-599
Ritchie, J. 711-718
Rooyackers, O.E. 475-481
Rouleau, A. 319-327
Rovera, L. 313-318
Ryan, J. 23-28
Sadik, S.K. 359-364
Savill, J. 329-335
Schibler, A. 347-351
Schwartz, J.-C. 319-327
Scully, A. 385-389
Selldén, E. 431-439
Shan, Y.-F. 93-98
Shehata, R. 187-191
Sherman, R.C. 607-615
Shirley, D.G. 299-305
Shore, C. 51-58
Silvester, W. 567-573
Silvanà, V. 209-212
Simpson, E.J. 425-430
Simpson, R.J. 213-218
Skipworth, S. 73-77
Sladen, G.E. 509-512
Slutier, W.J. 583-589
Smith, A.J. 583-589
Smith, C.C.T. 87-92
Smith, M.A. 763-769
Sönksen, P.H. 575-582
Soupison, T. 29-33
Sredni, B. 519-523
Staffolani, R. 719-723
Stolte, J. 131-139
Stonebridge, P.A. 17-21
Stritoni, P. 275-281
Struijker-Boudier, H.A.J. 131-139
Stubbs, T.A. 415-423
Sugimori, K. 755-761
Summers, L.K.M. 679-683
Swales, A.D. 59-64
Tan, C.-C. 258-260
Tavakoli, R. 319-327
Tay, A. 264-266
Taylor, B.A. 359-364
Taylor, D.J. 169-175
Taylor, E.A. 261-264
Teds, A. 29-33
Thien, Th. 483-488, 559-565
Thompson, C.H. 691-702
Thorell, A. 99-106
Thorvald, P.J. 575-582
Thorniley, M.S. 51-58
Thurston, H. 59-64
Tjäder, I. 99-106
Toft, J. 621-626
Tomlinson, B. 35-43
Tong, A.M. 201-208
Trevisan, M. 703-710
Trevisan, R. 703-710
Truttmann, A.C. 347-351
Tsai, J.-F. 601-606
Turner, J.M. 763-769
Ueda, S. 65-71
Ullah, I. 399-413, 773-774
Unwin, R.J. 299-305
Urbano-Márquez, A. 155-161
Usov, V. 329-335
Vaira, D. 219-223
Van Asten, W.N.J.C. 483-488
Van Beck, E. 163-168
Van der Kolk, L.E. 583-589
Van Es, P.N. 163-168
Van Essen, H. 131-139
Van Gouw, V. 193-200
Van Lieshout, J.J. 193-200
Visentini, P. 275-281
Vitale, C. 313-318
Volkert, M. 391-398
Wagenmakers, A.J.M. 475-481
Wallace, W.A. 685-690
Wallen, N.H. 225-231
Walter, S.J. 299-305
Walters, B.N. 711-718
Watt, P.W. 591-599
Watts, G.F. 567-573
Webster, N. 371-374
Welham, S.J.M. 607-615
Wernerman, J. 99-106
Wesseling, K.H. 193-200
Weston, P.J. 59-64
Whitaker, R.P. 467-474
Widdop, R.E. 147-154
Willake, C. 163-168
Winearls, C.G. 353-358
Wollersheim, H. 483-488, 559-565
Woo, S. 35-43
Woodrow, G. 763-769
Wu, P.K. 627-631
Xie, Y. 93-98
Yang, M.C.-M. 601-606
Yang, S. 29-33
Yeo, W.W. 399-413, 617-620, 773-774
Yeung, D.T.K. 35-43
Yeung, D.Y.C. 35-43
Young, R. 307-312
Yu, L.-G. 359-364
Zolese, G. 719-723
Accidental falls oestrogen replacement therapy 685–690
Acetylcholine
endothelium, Syndrome X 739–743
nitric oxide, liver cirrhosis 733–738
Action potential cardiac muscle, nutritional iron deficiency 233–239
Activation energy
Na+, K+-ATPase, gestational hypertension 719–723
S-Adenosylhomocysteine metabolism 79–86
S-Adenosylmethionine metabolism 79–86
Adenylate cyclase
G-proteins, signal transduction 527–537*
Adipose tissue
microdialysis, catecholamines 425–430
Adipose tissue blood flow
body mass index 679–683
Adrenaline
lymphocytes, cyclic AMP 612–626
α-Adrenergic receptors
skin, reflex sympathetic dystrophy 73–77
Adrenergic β-receptors
lymphocytes, noradrenaline 621–626
α-Adrenoceptor antagonist
thermoregulation 627–631
Adrenomedullin
G-protein-linked receptors, cyclic AMP 3–16*, 525
salt, essential hypertension 293–298
Ageing
lymphocytes, cyclic AMP 621–626
Alcohol
pancreatitis-associated protein
messenger RNA 213–218
Alcoholic cirrhosis
nitric oxide 23–28
Aliphatic amines
renal failure, choline transport 353–358
Alkalosis
hyperventilation, magnesium 347–351
Almitrine
ventilation, muscle activity 337–345
Ambulatory blood pressure
left ventricular function, hypertension 275–281
Ambulatory monitoring
blood pressure, sleep 45–50
Amino acids
inflammation, cytokines 121–130*
metabolism, vascular disease 79–86
renal transplant recipients,
cyclosporin A 489–496
thermogenesis, anaesthesia 431–439
Aminoglycosides
nephrotoxicity, non-steroidal anti-inflammatory drugs 187–191
Amylase release
pancreatitis 365–369, 771
Anaesthesia
amino acids, thermogenesis 431–439
Angina
cholesterol, lipids 399–413, 773–774
Angiotensin II
microalbuminuria, non-insulin-dependent diabetes 703–710
Angiotensin type 1 receptor antagonists
renal vasodilatation, spontaneously hypertensive rats 147–154
Angiotensin-converting enzyme
 genetic polymorphism, bradykinin 617–620
Antioxidant enzyme
vitamin E, smoking 107–111
Antioxidants
inflammation, cytokines 121–130*
Antisense oligodeoxynucleotides
multidrug resistance 93–98
Aorta
nitric oxide, liver cirrhosis 733–738
Arachidonic acid
phospholipids, Crohn’s disease 509–512
Arterialization
insulin sensitivity, forearm blood flow 65–71
Artery
morphology, syndrome X 739–743
ATP synthesis
Subject Index

exercise, obesity 691–702
ATP-sensitive potassium channels
potassium channel openers 651–663*
Atrial natriuretic peptide
neutral endopeptidase, ventricular pacing 283–291
salt, essential hypertension 293–298
potassium channel openers 651–663*
Autoantigen
T-lymphocytes, biliary cirrhosis 551–558
Autoimmunity
T-lymphocytes, biliary cirrhosis 551–558
Autonomic function
baroreflex sensitivity, insulin-dependent diabetes mellitus 59–64
Autonomic nervous system
heart failure, heart rate variability 391–398
heart failure, spectral power 35–43
Poincaré plot, heart rate variability 201–208
Autoregulation
Na+, K+-ATPase, ouabain 497–502
Balance
oestrogen replacement therapy 685–690
Baroreflex sensitivity
autonomic function, insulin-dependent diabetes mellitus 59–64
Bicarbonate-urea method
energy expenditure, human immunodeficiency virus infection 241–245
Biliary cirrhosis
autoimmunity, T-lymphocytes 551–558
Blastocyst transfer
human embryos 248–249
Bleeding time
inhaled nitric oxide 225–231
Blood flow
vascular disease, ultrasound 17–21
Blood pressure
ambulatory monitoring, sleep 45–50
stroke volume, syncope 193–200
Blood temperature
amino acids, anaesthesia 431–439
Blood transfusion
T-helper 2 cytokines, transforming growth factor 519–523
Body composition
chronic kidney failure 763–769
Body mass index
adipose tissue blood flow 679–683
Bone mineral density
postmenopausal women 307–312
Bone resorption
calcium nephrolithiasis, mineral water 313–318
Bradykinin
angiotensin-converting enzyme, genetic polymorphism 617–620
endothelium, Syndrome X 739–743
Brain
oxidative metabolism, hypertension 539–550
Brain natriuretic peptide
neutral endopeptidase, ventricular pacing 283–291
Breath-holding time
development of breathing, dyspnoea 755–761
Bronchial hyper-responsiveness
lung transplantation, mast cells 319–327
Bumetanide
Na+/K+/2Cl− co-transport 725–731
Caerulein
pancreatitis, intracellular calcium 365–369, 771
Caffeic acid
lipoprotein oxidation, wine 449–458
Calcium
alkalosis, hyperventilation 347–351
Calcium antagonist
oxidents 459–466
urinary bladder 467–474
Calcium nephrolithiasis
mineral water 313–318
Calcium oxalate
urine state of saturation, calcium nephrolithiasis 313–318
Calcium phosphate
urine state of saturation, calcium nephrolithiasis 313–318
Calf muscle pump function
validation, chronic venous insufficiency 483–488
Cancer
eicosanoid production 264–266
Helicobacter pylori, serology 219–223
Capillaroscopy
microcirculation 131–139*
Capsaicin
chilli, stomach 252–254
Carbon dioxide
inspiratory effort sensation, sustained loading 513–518
recovery 665–677
Cardiac muscle
nutritional iron deficiency 233–239
Cardiac oxygenation
ischaemia, spectrophotometry 51–58
Catalase
diabetes 441–448
Catecholamines
adipose tissue, microdialysis 425–430
Cell adhesion
epidermal stem cells, integrins 141–146*
Cell adhesion molecules
 integrins 639–650*
Cell differentiation
 epidermal stem cells 141–146*
Cell division
 epidermal stem cells 141–146*
Cell proliferation
 epidermal growth factor, gastrointestinal tract 503–507
Cerebral blood supply
 hypertension 539–550
Cerebrovascular disease
 hypertension 539–550
Cervical carcinoma
 DNA testing, papillomavirus 250–252
Chemiluminescence
 oxidants, calcium antagonist 459–466
Chemoreceptors
 heart failure, heart rate variability 391–398
Chilli
 capsaicin, stomach 252–254
Cholecystokinin 8
 intracellular calcium, pancreatitis 365–369, 771
Cholesterol
 coronary heart disease, lipids 399–413, 773–774
Cholesterol metabolism
 creatine supplementation 113–118
Choline transport
 renal failure, haemodialysis 353–358
Chronic kidney failure
 body composition 763–769
Chronic venous insufficiency
 calf muscle pump function, validation 483–488
Cirrhosis
 tumour necrosis factor-α, pentoxifylline 29–33
Clinical research
 progress in Singapore 247–266
Colonic mucin
 corticosteroids, nicotine 359–364
Contractile response
 portal hypertension, octreotide 601–606
Contractility
 cardiac muscle, nutritional iron deficiency 233–239
Control of breathing
 breath-holding time, dyspnoea 755–761
Coronary heart disease
 cholesterol, lipids 399–413, 773–774
Coronary risk
 lipids 399–413, 773–774
Corticosteroids
 mucin, colon 359–364
Creatine supplementation
 lipid metabolism 113–118
Crohn’s disease
 fatty acids, phospholipids 509–512
Cromakalim
 therapeutic targets 651–663*
CV-11974
 renal vasodilatation, spontaneously hypertensive rats 147–154
Cyclic AMP
 G-protein-linked receptors, adrenomedullin 3–16*, 525
 G-proteins, signal transduction 527–537*
 lymphocytes, noradrenaline 621–626
Cyclic GMP
 inhaled nitric oxide 225–231
 neutral endopeptidase, ventricular pacing 283–291
Cyclosporin A
 renal transplant recipients 489–496
Cytochrome aa3
 ischaemia, spectrophotometry 51–58
Cytochrome c oxidase
 muscle wasting, zymosan 475–481
Cytokine
 pentoxifylline, cirrhosis 29–33
Cytokines
 nutrients, inflammation 121–130*
Densitometry
 chronic kidney failure 763–769
Dermis
 α-adrenergic receptors, reflex sympathetic dystrophy 73–77
Diabetes
 endothelium, dyslipidaemia 567–573
 microcirculation 131–139*
 oxidative stress 441–448
 oxidative stress, glyoxylase 575–582
Diabetes mellitus
 baroreflex sensitivity, autonomic function 59–64
Diabetic foot
 skin microcirculation, neuropathy 559–565
Diaphragm
 almitrine, electromyography 337–345
Diclofenac sodium
 nephrotoxicity, gentamicin 187–191
DNA testing
 papillomavirus, cervical carcinoma 250–252
Dopamine
 5-hydroxytryptamine, renal sodium excretion 177–185
 renal transplant recipients, cyclosporin A 489–496
Dyslipidaemia
 diabetes, endothelium 567–573
Dyspnoea
control of breathing, breath-holding
 time 755–761

Echocardiography
 left ventricular function, hypertension 275–281

EEG arousal
 blood pressure, sleep 45–50

Eicosanoid production
 hypertension, cancer 264–266

Electromyography
 muscle activity, almitrine 337–345

Embryos
 blastocyst transfer, stem cell production 248–249

Endothelin
 salt, essential hypertension 293–298

Endothelin peptides
 human kidney 267–273*

Endothelin receptors
 human kidney 267–273*

Endothelium
 diabetes, dyslipidaemia 567–573
 phenylephrine, liver cirrhosis 733–738
 Syndrome X 739–743

Energy expenditure
 bicarbonate-urea method, human
 immunodeficiency virus infection 241–245

Epidermal growth factor
 cell proliferation, gastrointestinal tract 503–507

Epidermal stem cells
 cell adhesion, integrins 141–146*

Epidermis
 α-adrenergic receptors, reflex sympathetic
 dystrophy 73–77

Epilepsy
 genetic analysis 264–266

Erythropoietin dysregulation
 renal failure 258–260

Essential hypertension
 salt, adrenomedullin 293–298

Exercise
 ATP synthesis, obesity 691–702
 EXP 3174
 renal vasodilatation, spontaneously hypertensive
 rats 147–154

Familial hypokalaemic periodic paralysis
 sodium pump 261–264

Fatiguability
 cytochrome c oxidase, zymosan 475–481

Fatigue
 inspiratory effort sensation, CO2
 responsiveness 513–518

Fats
 inflammation, cytokines 121–130*

phospholipids, Crohn’s disease 509–512

Fetal programming
 maternal nutrition, hypertension 607–615

Fibroblasts
 intracellular pH, free cytosolic calcium 703–710

Fluidity
 Na+, K+-ATPase, gestational hypertension 719–723

Fluoxetine
 5-hydroxytryptamine, platelet aggregation 87–92

Forearm blood flow
 arterIALIZATION 65–71
 menstrual cycle 163–168

Free cytosolic calcium
 microalbuminuria, non-insulin-dependent diabetes 703–710

Frusemide
 sodium depletion 299–305

Gallbladder
 sodium/hydrogen exchanger, sodium absorption 209–212

Gastrointestinal tract
 cell proliferation, epidermal growth factor 503–507

Gene expression
 pancreatitis-associated protein, mouse intestine 213–218

Genetic analysis
 research in Singapore 264–266

Genetic polymorphism
 angiotensin-converting enzyme, bradykinin 617–620

Geniohyoid
 almitrine, electromyography 337–345

Genomic
 nephrotoxicity, non-steroidal anti-inflammatory drugs 187–191

Gestational age
 renin, kidney 169–175

Gestational hypertension
 Na+, K+-ATPase 719–723

Glomerular filtration rate
 renal transplant recipients, cyclosporin A 489–496

Glomerulonephritis
 IgA nephropathy 258–260

Glucocorticoids
 fetal programming, hypertension 607–615

Glucose transport
 sarcolemma, insulin 591–599
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gludopa</td>
<td>177–185</td>
</tr>
<tr>
<td>renal metabolism</td>
<td></td>
</tr>
<tr>
<td>γ-L-Glutamyl-5-hydroxy-L-tryptophan renal metabolism</td>
<td>177–185</td>
</tr>
<tr>
<td>Glutathione</td>
<td></td>
</tr>
<tr>
<td>antioxidant, cytokines</td>
<td>121–130*</td>
</tr>
<tr>
<td>Glutathione peroxidase</td>
<td></td>
</tr>
<tr>
<td>diabetes</td>
<td>441–448</td>
</tr>
<tr>
<td>Glycogenolysis</td>
<td></td>
</tr>
<tr>
<td>exercise, obesity</td>
<td>691–702</td>
</tr>
<tr>
<td>Glyoxal</td>
<td></td>
</tr>
<tr>
<td>diabetes, oxidative stress</td>
<td>575–582</td>
</tr>
<tr>
<td>Glyoxylase</td>
<td></td>
</tr>
<tr>
<td>diabetes, oxidative stress</td>
<td>575–582</td>
</tr>
<tr>
<td>G-protein-linked receptors</td>
<td></td>
</tr>
<tr>
<td>adrenomedullin, cyclic AMP</td>
<td>3–16*, 525</td>
</tr>
<tr>
<td>G-proteins</td>
<td></td>
</tr>
<tr>
<td>signal transduction, adenylate cyclase</td>
<td>527–537*</td>
</tr>
<tr>
<td>Granulocyte activation</td>
<td></td>
</tr>
<tr>
<td>inflammatory disease</td>
<td>329–335</td>
</tr>
<tr>
<td>Granulocyte pool</td>
<td></td>
</tr>
<tr>
<td>$^{111}\text{In-}}^{99m\text{Tc}}$-labelled granulocytes, inflammatory disease</td>
<td>329–335</td>
</tr>
<tr>
<td>Grape juice</td>
<td></td>
</tr>
<tr>
<td>phenolic compounds, lipoprotein oxidation</td>
<td>449–458</td>
</tr>
<tr>
<td>Growth hormone</td>
<td></td>
</tr>
<tr>
<td>male infertility</td>
<td>254–256</td>
</tr>
<tr>
<td>Haemodialysis</td>
<td></td>
</tr>
<tr>
<td>blood transfusion</td>
<td>519–523</td>
</tr>
<tr>
<td>renal failure, choline transport</td>
<td>353–358</td>
</tr>
<tr>
<td>Haemodynamics</td>
<td></td>
</tr>
<tr>
<td>ischaemia, spectrophotometry</td>
<td>51–58</td>
</tr>
<tr>
<td>meal ingestion, insulin</td>
<td>415–423</td>
</tr>
<tr>
<td>neutral endopeptidase, ventricular pacing</td>
<td>283–291</td>
</tr>
<tr>
<td>pentoxifylline, cirrhosis</td>
<td>29–33</td>
</tr>
<tr>
<td>Heart failure</td>
<td></td>
</tr>
<tr>
<td>adrenomedullin</td>
<td>3–16*, 525</td>
</tr>
<tr>
<td>autonomic nervous system, spectral power</td>
<td>35–43</td>
</tr>
<tr>
<td>heart rate variability, autonomic nervous system</td>
<td>391–398</td>
</tr>
<tr>
<td>Heart rate</td>
<td></td>
</tr>
<tr>
<td>blood pressure, sleep</td>
<td>45–50</td>
</tr>
<tr>
<td>Heart rate variability</td>
<td></td>
</tr>
<tr>
<td>autonomic nervous system, spectral power</td>
<td>35–43</td>
</tr>
<tr>
<td>heart failure, autonomic nervous system</td>
<td>391–398</td>
</tr>
<tr>
<td>Poincaré plot, parasympathetic nervous system</td>
<td>201–208</td>
</tr>
<tr>
<td>Helicobacter pylori</td>
<td></td>
</tr>
<tr>
<td>serology, cancer</td>
<td>219–223</td>
</tr>
<tr>
<td>High-performance liquid chromatography</td>
<td>non-transferrin-bound iron, preterm</td>
</tr>
<tr>
<td>babies</td>
<td></td>
</tr>
<tr>
<td>Hip</td>
<td></td>
</tr>
<tr>
<td>bone-mineral density, postmenopausal women</td>
<td>307–312</td>
</tr>
<tr>
<td>Homocysteine</td>
<td></td>
</tr>
<tr>
<td>metabolism</td>
<td>79–86</td>
</tr>
<tr>
<td>Hormone replacement therapy</td>
<td></td>
</tr>
<tr>
<td>bone mineral density, postmenopausal women</td>
<td>307–312</td>
</tr>
<tr>
<td>Human immunodeficiency virus infection energy expenditure, bicarbonate-urea method</td>
<td>241–245</td>
</tr>
<tr>
<td>Human leucocyte antigens</td>
<td></td>
</tr>
<tr>
<td>nasopharyngeal carcinoma</td>
<td>256–258</td>
</tr>
<tr>
<td>5-Hydroxytryptamine</td>
<td></td>
</tr>
<tr>
<td>dopamine, renal sodium excretion</td>
<td>177–185</td>
</tr>
<tr>
<td>platelet aggregation, fluoxetine</td>
<td>87–92</td>
</tr>
<tr>
<td>Hyperglycaemia</td>
<td></td>
</tr>
<tr>
<td>insulin release, muscle strength</td>
<td>583–589</td>
</tr>
<tr>
<td>Hyperinsulinaemic euglycaemic clamp insulin sensitivity, arterialization</td>
<td>65–71</td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
</tr>
<tr>
<td>adrenomedullin</td>
<td>3–16*, 525</td>
</tr>
<tr>
<td>contractile response, octreotide</td>
<td>601–606</td>
</tr>
<tr>
<td>eicosanoid production</td>
<td>264–266</td>
</tr>
<tr>
<td>fetal programming, maternal nutrition</td>
<td>607–615</td>
</tr>
<tr>
<td>left ventricular function</td>
<td></td>
</tr>
<tr>
<td>echocardiography</td>
<td>275–281</td>
</tr>
<tr>
<td>microcirculation</td>
<td>131–139*</td>
</tr>
<tr>
<td>Na$^+$, K$^+$-ATPase, ouabain</td>
<td>497–502</td>
</tr>
<tr>
<td>oxidative metabolism, brain</td>
<td>539–550</td>
</tr>
<tr>
<td>renin, gestational age</td>
<td>169–175</td>
</tr>
<tr>
<td>salt, adrenomedullin</td>
<td>293–298</td>
</tr>
<tr>
<td>salt sensitivity</td>
<td>155–161</td>
</tr>
<tr>
<td>Hyperventilation</td>
<td></td>
</tr>
<tr>
<td>alkalosis, magnesium</td>
<td>347–351</td>
</tr>
<tr>
<td>Hypokalaemic periodic paralysis</td>
<td></td>
</tr>
<tr>
<td>insulin release</td>
<td>583–589</td>
</tr>
<tr>
<td>sodium pump</td>
<td>261–264</td>
</tr>
<tr>
<td>Hypometabolism</td>
<td></td>
</tr>
<tr>
<td>amino acids, anaesthesia</td>
<td>431–439</td>
</tr>
<tr>
<td>Hypotension</td>
<td></td>
</tr>
<tr>
<td>stroke volume, syncope</td>
<td>193–200</td>
</tr>
<tr>
<td>Hypothermia</td>
<td></td>
</tr>
<tr>
<td>α-adrenoceptor antagonist</td>
<td>627–631</td>
</tr>
<tr>
<td>amino acids, anaesthesia</td>
<td>431–439</td>
</tr>
<tr>
<td>Hypothermic preservation</td>
<td></td>
</tr>
<tr>
<td>rat heart, protein kinase C inhibitors</td>
<td>745–754</td>
</tr>
<tr>
<td>Hypoxia</td>
<td></td>
</tr>
<tr>
<td>pancreatitis-associated protein messenger RNA</td>
<td>213–218</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td></td>
</tr>
<tr>
<td>nephrotoxicity, gentamicin</td>
<td>187–191</td>
</tr>
<tr>
<td>IgA nephropathy</td>
<td></td>
</tr>
</tbody>
</table>
Subject Index

primary glomerulonephritis 258–260

Immune complex disease
 inflammation mediators, nitric oxide 375–384*

Immunity
 nitric oxide 375–384*

Immunostaining
 mast cells, lung transplantation 319–327

 111In-99mTc labelled granulocytes
 lung granulocyte pool, inflammatory disease 329–335

Infertility
 growth hormone 254–256

Inflammation
 nutrients, cytokines 121–130*

Inflammation mediators
 nitric oxide, immune complex disease 375–384*

Inflammatory disease
 granulocyte activation, lung granulocyte pool 329–335

Inhaled nitric oxide
 platelet function 225–231

Innervation
 lung transplantation 319–327

Inspiratory effort sensation
 CO_2 responsiveness, sustained loading 513–518

Insulin
 adipose tissue blood flow 679–683
 glucose transport, sarcolemma 591–599
 microalbuminuria, non-insulin-dependent diabetes 703–710
 regional haemodynamics, meal ingestion 415–423

Insulin release
 hypokalaemic periodic paralysis 583–589

Insulin sensitivity
 arterialization 65–71

Insulin-dependent diabetes mellitus
 baroreflex sensitivity, autonomic function 59–64

Integrins
 cell adhesion, epidermal stem cells 141–146*
 cell adhesion molecules 639–650*

Interleukin
 blood transfusion 519–523
 nutrients, inflammation 121–130*

Intracellular calcium
 pancreatitis 365–369, 771

Intracellular pH
 microalbuminuria, non-insulin-dependent diabetes 703–710

Intravenous nutrition
 epidermal growth factor 503–507

Intravital microscopy
 microcirculation 131–139*

Inulin clearance

 15O
 menstrual cycle 163–168

Iron deficiency
 pancreatitis-associated protein messenger RNA 213–218

Iron overload
 pancreatitis-associated protein messenger RNA 213–218

Ischaemia
 cardiac oxygenation, spectrophotometry 51–58
 oxidants, calcium antagonist 459–466

 Iso-electric focusing
 serology, cancer 219–223

Iso-prostane
 lipid peroxidation, pregnancy 711–718

Keratinocytes
 epidermal stem cells 141–146*

Kidney
 endotheilns 267–273*
 fetal programming, hypertension 607–615
 renin, gestational age 169–175

Labelled carbon dioxide
 recovery 665–77

Left ventricular function
 echocardiography, hypertension 275–281

Lipid
 neutrophils, sepsis 371–374

 Lipid metabolism
 creatinine supplementation 113–118

Lipid peroxidation
 diabetes 441–448
 pre-eclampsia, pregnancy 711–718
 vitamin E, smoking 107–111

Lipids
 coronary heart disease, cholesterol 399–413,
 773–774

Lipoprotein oxidation
 phenolic compounds, wine 449–458

Lithium clearance
 renal transplant recipients, cyclosporin A 489–496

Liver
 autoimmunity, T-lymphocytes 551–558

 Liver cirrhosis
 phenylephrine, nitric oxide 733–738

 Loop of Henle
 sodium depletion, frusemide 299–305

 Loss of label
 carbon dioxide 665–677

 Lung granulocyte pool
 111In-99mTc labelled granulocytes, inflammatory disease 329–335

 Lung transplantation
 mast cells, bronchial hyper-responsiveness 319–327

 Lymphocytes
 cyclic AMP, noradrenaline 621–626
 protein synthesis, stable isotope 99–106
Magnesium
 alkalosis, hyperventilation 347–351
Magnetic resonance spectroscopy
 ATP synthesis 691–702
Male infertility
 growth hormone 254–256
Mast cells
 lung transplantation, bronchial
 hyper-responsiveness 319–327
Maternal nutrition
 fetal programming, hypertension 607–615
Meal ingestion
 regional haemodynamics, insulin 415–423
Mean arterial pressure
 metabolic risk factors, sex 385–389
Membrane
 sarcolemma, glucose transport 591–599
Membrane current
 cardiac muscle, nutritional iron
 deficiency 233–239
Menstrual cycle
 sex hormones, vascular relaxation 163–168
Mesenteric artery
 contractile response, octreotide 601–606
Messenger RNA
 pancreatitis-associated protein, mouse
 intestine 213–218
Metabolic risk factors
 blood pressure, sex 385–389
Metabolism
 amino acids, vascular disease 79–86
 thermoregulation, \(\alpha \)-adrenoceptor
 antagonist 627–631
Methodology
 labelled carbon dioxide, recovery 665–677
Methylglyoxal
 diabetes, oxidative stress 575–582
5-Methyltetrahydrofolate
 metabolism 79–86
Microalbuminuria
 intracellular pH, free cytosolic calcium 703–710
Microcirculation
 cardiovascular disease 131–139*
 diabetic foot, neuropathy 559–565
Microdialysis
 adipose tissue, catecholamines 425–430
Microperfusion
 loop of Henle, frusemide 299–305
Micropuncture
 sodium depletion, frusemide 299–305
Mineral water
 calcium nephrolithiasis 313–318
Mitochondria
 ischaemia, spectrophotometry 51–58
Morphology
 artery, Syndrome X 739–743
Mouse intestine
 pancreatitis-associated protein, messenger RNA 213–218
Mucin
 corticosteroids, nicotine 359–364
Multidrug resistance
 antisense oligodeoxynucleotides 93–98
Muscle
 oestrogen replacement therapy 685–690
 metabolism
 exercise, obesity 691–702
 strength
 hypokalaemic periodic paralysis 583–589
 wasting
 cytochrome c oxidase, zymosan 475–481
Myocardial infarction
 cholesterol, lipids 399–413, 773–774
Na\(^+\)/K\(^+\)/2Cl\(^–\) co-transport
 platelets 725–731
Na\(^+\), K\(^+\)-ATPase
 gestational hypertension 719–723
 ouabain, hypertension 497–502
Nasopharyngeal carcinoma
 human leucocyte antigens 256–258
Natriuresis
 adrenomedullin 3–16*, 525
 neutral endopeptidase, ventricular
 pacing 283–291
Natriuretic peptides
 neutral endopeptidase, ventricular
 pacing 283–291
Natural killer cells
 thyroid hormone, thyrotrophin 621–626
Nephrotoxicity
 gentamicin, non-steroidal anti-inflammatory
 drugs 187–191
Neuropathy
 diabetic foot, skin microcirculation 559–565
Neutral endopeptidase
 natriuretic peptides, ventricular pacing 283–291
Neutrophils
 total parenteral nutrition, sepsis 371–374
Nicotine
 mucin, colon 359–364
Nitric oxide
 alcoholic cirrhosis 23–28
 diabetes, dyslipidaemia 567–573
 immunity 375–384*
 phenylephrine, liver cirrhosis 733–738
 platelet function 225–231
Nitric oxide synthase
 immunity 375–384*
Non-insulin-dependent diabetes
 intracellular pH, free cytosolic calcium 703–710
Non-steroidal anti-inflammatory drugs
 nephrotoxicity, gentamicin 187–191
Non-transferrin-bound iron
 high-performance liquid chromatography, preterm
 babies 633–638
Noradrenaline
 lymphocytes, cyclic AMP 621–626
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt sensitivity, hypertension</td>
</tr>
<tr>
<td>Nutrients</td>
</tr>
<tr>
<td>Inflammation, cytokines</td>
</tr>
<tr>
<td>Nutritional iron deficiency</td>
</tr>
<tr>
<td>Cardiac muscle</td>
</tr>
<tr>
<td>Adipose tissue blood flow</td>
</tr>
<tr>
<td>ATP synthesis, exercise</td>
</tr>
<tr>
<td>Octreotide</td>
</tr>
<tr>
<td>Contractile response, portal hypertension</td>
</tr>
<tr>
<td>Oestrogen replacement therapy muscle, balance</td>
</tr>
<tr>
<td>Ouabain</td>
</tr>
<tr>
<td>Na+, K+-ATPase, hypertension</td>
</tr>
<tr>
<td>Oxidants</td>
</tr>
<tr>
<td>Oxidation exercise, obesity</td>
</tr>
<tr>
<td>Oxidative metabolism</td>
</tr>
<tr>
<td>Oxidative stress diabetes</td>
</tr>
<tr>
<td>Diabetes</td>
</tr>
<tr>
<td>Oxygen consumption</td>
</tr>
<tr>
<td>Pancreatic acinar cells</td>
</tr>
<tr>
<td>Intracellular calcium, pancreatitis</td>
</tr>
<tr>
<td>Pancreatitis</td>
</tr>
<tr>
<td>Pancreatitis-associated protein messenger RNA, mouse intestine</td>
</tr>
<tr>
<td>Papillomavirus</td>
</tr>
<tr>
<td>DNA testing, cervical carcinoma</td>
</tr>
<tr>
<td>Parathyroid hormone, clear cell</td>
</tr>
<tr>
<td>Parasympathetic nervous system</td>
</tr>
<tr>
<td>Parenteral nutrition</td>
</tr>
<tr>
<td>Epidermal growth factor</td>
</tr>
<tr>
<td>Pentoxifylline</td>
</tr>
<tr>
<td>Tumour necrosis factor-α, cirrhosis</td>
</tr>
<tr>
<td>Phagocytosis</td>
</tr>
<tr>
<td>Phenolic compounds</td>
</tr>
<tr>
<td>Lipoprotein oxidation, wine</td>
</tr>
<tr>
<td>Phenolamine</td>
</tr>
<tr>
<td>Thermoregulation</td>
</tr>
<tr>
<td>Phenylephrine</td>
</tr>
<tr>
<td>Contractile response, octreotide</td>
</tr>
<tr>
<td>Nitric oxide, liver cirrhosis</td>
</tr>
<tr>
<td>Phosphocreatine breakdown</td>
</tr>
<tr>
<td>Exercise, obesity</td>
</tr>
<tr>
<td>Phospholipids</td>
</tr>
<tr>
<td>Fatty acids, Crohn’s disease</td>
</tr>
<tr>
<td>Physical activity</td>
</tr>
<tr>
<td>Bicarbonate-urea method, human immunodeficiency virus infection</td>
</tr>
<tr>
<td>Physical fitness</td>
</tr>
<tr>
<td>Pinacidil</td>
</tr>
<tr>
<td>Placenta</td>
</tr>
<tr>
<td>Platelet aggregation</td>
</tr>
<tr>
<td>Inhaled nitric oxide</td>
</tr>
<tr>
<td>Platelets</td>
</tr>
<tr>
<td>Oestrogen replacement therapy muscle, balance</td>
</tr>
<tr>
<td>Poincaré plot, heart rate variability</td>
</tr>
<tr>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>Renal endothelins</td>
</tr>
<tr>
<td>Portocaval shunt</td>
</tr>
<tr>
<td>Postmenopausal women</td>
</tr>
<tr>
<td>Bone mineral density</td>
</tr>
<tr>
<td>Posture</td>
</tr>
<tr>
<td>Potassium</td>
</tr>
<tr>
<td>Potassium channel openers</td>
</tr>
<tr>
<td>Pre-eclampsia</td>
</tr>
<tr>
<td>Pregnancy</td>
</tr>
<tr>
<td>Pressure natriuresis</td>
</tr>
<tr>
<td>Non-transferrin-bound iron, high-performance liquid chromatography</td>
</tr>
<tr>
<td>Primary prevention</td>
</tr>
<tr>
<td>Protease</td>
</tr>
<tr>
<td>Rat heart, hypothermic preservation</td>
</tr>
<tr>
<td>Protein synthesis</td>
</tr>
<tr>
<td>Metabolic risk factors, sex</td>
</tr>
<tr>
<td>Rat heart</td>
</tr>
<tr>
<td>Hypothermic preservation, protein kinase C inhibitors</td>
</tr>
<tr>
<td>Recovery</td>
</tr>
</tbody>
</table>
labelled carbon dioxide 665–677
Reflex sympathetic dystrophy
\(\alpha \)-adrenergic receptors, skin 73–77
Renal endotoxins
quantitative polymerase chain reaction
analysis 267–273*
Renal failure
choline transport, haemodialysis 353–358
erythropoietin dysregulation 258–260
Renal plasma flow
renal transplant recipients, cyclosporin A 489–496
Renal sodium excretion
dopamine, 5-hydroxytryptamine 177–185
Renal transplant recipients
amino acids, dopamine 489–496
Renal tubule
sodium depletion, frusemide 299–305
Renal vasodilatation
angiotensin type 1 receptor antagonists, spontaneously hypertensive rats 147–154
Renin
gestational age, kidney 169–175
Renin–aldosterone axis
salt sensitivity, hypertension 155–161
Resistance arteries
nitric oxide, alcoholic cirrhosis 23–28
Respiratory frequency
spectral power 35–43
Salt
adrenomedullin, essential hypertension 293–298
Salt sensitivity
hypertension 155–161
Sarcolemma
glucose transport, insulin 591–599
Schizophrenia
genetic analysis 264–266
Secondary prevention
coronary heart disease 399–413, 773–774
Sepsis
neutrophils, total parenteral nutrition 371–374
Serology
Helicobacter pylori, cancer 219–223
Sex
metabolic risk factors, blood pressure 385–389
Sex hormones
menstrual cycle, vascular relaxation 163–168
Signal transduction
G-proteins, adenylate cyclase 527–537*
Singapore
genetic studies 264–266
progress in clinical research 247–266
Skeletal muscle blood flow
meal ingestion, insulin 415–423
Skin
\(\alpha \)-adrenergic receptors, reflex sympathetic dystrophy 73–77
Skin fibroblasts
intracellular pH, free cytosolic calcium 703–710
Skin microcirculation
diabetic foot, neuropathy 559–565
menstrual cycle 163–168
Sleep
blood pressure, ambulatory monitoring 45–50
Smoking
antioxidant enzyme, vitamin E 107–111
lymphocytes, cyclic AMP 621–626
Smooth muscle
nitric oxide, alcoholic cirrhosis 23–28
Sodium absorption
gallbladder, sodium/hydrogen exchanger 209–212
Sodium clearance
renal transplant recipients, cyclosporin A 489–496
Sodium depletion
frusemide 299–305
Sodium/hydrogen exchanger
gallbladder, sodium absorption 209–212
Sodium pump
hypokalaemic periodic muscle paralysis 261–264
Spectral power
autonomic nervous system, heart failure 35–43
Spectrophotometry
cardiac oxygenation, ischaemia 51–58
Spermatogenesis
growth factors 254–256
Spine
bone mineral density, postmenopausal women 307–312
Spiral laminar flow
vascular disease, ultrasound 17–21
Splanchnic oxygen uptake
amino acids, anaesthesia 431–439
Spontaneously hypertensive rats
oxidative metabolism, brain 539–550
renal vasodilatation, angiotensin type 1 receptor antagonists 147–154
Stable isotope
lymphocytes, protein synthesis 99–106
Stem cell production
human embryos 248–249
Stomach
chilli, capsaicin 252–254
Stroke
cholesterol, lipids 399–413, 773–774
Stroke volume
blood pressure, syncope 193–200
Subcellular fractionation
muscle wasting, zymosan 475–481
Sudden death
baroreflex sensitivity, insulin-dependent diabetes mellitus 59–64
Superoxide dismutase
diabetes 441–448
Surgery
Subject Index

lymphocytes, protein synthesis 99–106
Sustained loading
 inspiratory effort sensation, CO₂ responsiveness 513–518
Sympathetic nervous system
 blood pressure, sleep 45–50
Sympathetic nervous system
 blood pressure, stroke volume 193–200
Syndrome X
 artery, morphology 739–743
T-cell receptor genes
 nasopharyngeal carcinoma 256–258
T-helper 2 cytokines
 blood transfusion 519–523
T-lymphocytes
 autoimmunity, biliary cirrhosis 551–558
Therapeutic targets
 potassium channel openers 651–663*
Thermogenesis
 amino acids, anaesthesia 431–439
Thermoregulation
 α-adrenoceptor antagonist 627–631
Thyroid hormones
 cardiac muscle, nutritional iron deficiency 233–239
 thyrotoxic periodic paralysis
 sodium pump 261–264
Tissue repair
 lung transplantation 319–327
Tolerance
 T-lymphocytes, biliary cirrhosis 551–558
Total body water
 chronic kidney failure 763–769
Total parenteral nutrition
 neutrophils, sepsis 371–374
Transforming growth factor
 blood transfusion 519–523
Triacylglycerol metabolism
 creatine supplementation 113–118
Tryptophan
 Na⁺, K⁺-ATPase, gestational hypertension 719–723
Tubular function
 renal transplant recipients, cyclosporin A 489–496
Tumour necrosis factor
 nutrients, inflammation 121–130*
 pentoxifylline, cirrhosis 29–33

Tumour suppressor gene
 nasopharyngeal carcinoma 256–258
Ultrasound
 blood flow, vascular disease 17–21
Urinary bladder
 calcium antagonist 467–474
Urine state of saturation
 calcium nephrolithiasis, mineral water 313–318
Urogastrone
 cell proliferation, gastrointestinal tract 503–507
Vascular disease
 blood flow, ultrasound 17–21
 metabolism, amino acids 79–86
Vascular relaxation
 sex hormones, menstrual cycle 163–168
 Vascular tone
 menstrual cycle 163–168
Vasoconstriction
 thermoregulation, α-adrenoceptor antagonist 627–631
Vasodilatation
 diabetes, dyslipidaemia 567–573
Vasodilator peptides
 adrenomedullin 3–16*, 525
Vasopressin
 contractile response, octreotide 601–606
Veins
 nitric oxide, alcoholic cirrhosis 23–28
Ventilation
 almitrine 337–345
Ventricular pacing
 natriuretic peptides, neutral endopeptidase 283–291
Vitamin E
 antioxidant enzyme, smoking 107–111
 inflammation, cytokines 121–130*
White-coat hypertension
 left ventricular function, echocardiography 275–281
Wine
 phenolic compounds, lipoprotein oxidation 449–458
X-ray absorptiometry
 chronic kidney failure 763–769
Zymosan
 muscle wasting, cytochrome c oxidase 475–481