<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdel-Rahman, T.A.</td>
<td>485-492</td>
</tr>
<tr>
<td>Abe, K.</td>
<td>31-36, 55-60</td>
</tr>
<tr>
<td>Aihara, A.</td>
<td>55-60</td>
</tr>
<tr>
<td>Al-Ani, M.</td>
<td>235-241</td>
</tr>
<tr>
<td>Aller, M.-A.</td>
<td>321-322</td>
</tr>
<tr>
<td>Ameshima, S.</td>
<td>517-523</td>
</tr>
<tr>
<td>Ang, B.C.</td>
<td>73-75</td>
</tr>
<tr>
<td>Arias, J.</td>
<td>321-322</td>
</tr>
<tr>
<td>Arner, P.</td>
<td>243-253, 453-456</td>
</tr>
<tr>
<td>Ashby, M.J.</td>
<td>37-46</td>
</tr>
<tr>
<td>Abe, K.</td>
<td>31-36, 55-60</td>
</tr>
<tr>
<td>Barnes, P.J.</td>
<td>301-306</td>
</tr>
<tr>
<td>Bartlett, K.</td>
<td>307-313</td>
</tr>
<tr>
<td>Bavington, C.</td>
<td>61-71</td>
</tr>
<tr>
<td>Belcher, P.R.</td>
<td>363-368</td>
</tr>
<tr>
<td>Bennett, J.L.</td>
<td>183-187</td>
</tr>
<tr>
<td>Bennett, M.A.</td>
<td>21-29</td>
</tr>
<tr>
<td>Bergelson, B.A.</td>
<td>261-268</td>
</tr>
<tr>
<td>Bernardi, L.</td>
<td>345-355</td>
</tr>
<tr>
<td>Bettany, J.</td>
<td>105-111</td>
</tr>
<tr>
<td>Bhaskar, A.</td>
<td>315-319</td>
</tr>
<tr>
<td>Bing, C.</td>
<td>499-505</td>
</tr>
<tr>
<td>Blum, M.</td>
<td>379-384</td>
</tr>
<tr>
<td>Boulton, A.J.M.</td>
<td>183-187</td>
</tr>
<tr>
<td>Broughton Pipkin, F.</td>
<td>499-505</td>
</tr>
<tr>
<td>Burnett, J.C.</td>
<td>357-362</td>
</tr>
<tr>
<td>Buxton, B.F.</td>
<td>91-96</td>
</tr>
<tr>
<td>Cabili, S.</td>
<td>379-384</td>
</tr>
<tr>
<td>Cacabelos, R.</td>
<td>153-156</td>
</tr>
<tr>
<td>Calcitai, A.</td>
<td>345-355</td>
</tr>
<tr>
<td>Capdevila, A.</td>
<td>81-85</td>
</tr>
<tr>
<td>Carr, P.</td>
<td>507-510</td>
</tr>
<tr>
<td>Chan, S.-H.</td>
<td>127-133</td>
</tr>
<tr>
<td>Chang, C.-J.</td>
<td>127-133</td>
</tr>
<tr>
<td>Chen, J.R.</td>
<td>91-96</td>
</tr>
<tr>
<td>Cheng, C.</td>
<td>97-103</td>
</tr>
<tr>
<td>Chow, N.-H.</td>
<td>127-133</td>
</tr>
<tr>
<td>Christensen, N.J.</td>
<td>269-276</td>
</tr>
<tr>
<td>Clark, A.F.</td>
<td>435-446</td>
</tr>
<tr>
<td>Clark, M.L.</td>
<td>409-415</td>
</tr>
<tr>
<td>Coats, A.J.S.</td>
<td>345-355</td>
</tr>
<tr>
<td>Collins, K.J.</td>
<td>485-492</td>
</tr>
<tr>
<td>Coote, J.H.</td>
<td>235-241</td>
</tr>
<tr>
<td>Coppack, S.W.</td>
<td>409-415</td>
</tr>
<tr>
<td>Corry, D.B.</td>
<td>2-8</td>
</tr>
<tr>
<td>Court-Payen, M.</td>
<td>269-276</td>
</tr>
<tr>
<td>Cowley, A.J.</td>
<td>473-483</td>
</tr>
<tr>
<td>Csernhovskv, T.</td>
<td>379-384</td>
</tr>
<tr>
<td>Davenport, A.P.</td>
<td>37-46</td>
</tr>
<tr>
<td>De Backer, D.</td>
<td>105-111</td>
</tr>
<tr>
<td>De Blaauw, I.</td>
<td>457-466</td>
</tr>
<tr>
<td>De Jong, P.E.</td>
<td>393-401</td>
</tr>
<tr>
<td>De Landázuri, M.O.</td>
<td>148-153</td>
</tr>
<tr>
<td>De Zeeuw, D.</td>
<td>393-401</td>
</tr>
<tr>
<td>Deutz, N.E.P.</td>
<td>457-466</td>
</tr>
<tr>
<td>Devynck, M.-A.</td>
<td>403-407</td>
</tr>
<tr>
<td>Diez, J.J.</td>
<td>169-171</td>
</tr>
<tr>
<td>Dodd, C.M.</td>
<td>417-425</td>
</tr>
<tr>
<td>Donnelly, A.E.</td>
<td>119-125</td>
</tr>
<tr>
<td>Doré, C.J.</td>
<td>485-492</td>
</tr>
<tr>
<td>Douglas, J.T.</td>
<td>183-187</td>
</tr>
<tr>
<td>Drake-Holland, A.J.</td>
<td>363-368</td>
</tr>
<tr>
<td>Easton, J.C.</td>
<td>485-492</td>
</tr>
<tr>
<td>Eaton, S.</td>
<td>307-313</td>
</tr>
<tr>
<td>Edwards, R.H.T.</td>
<td>295-300, 467-472</td>
</tr>
<tr>
<td>Egido, J.</td>
<td>161-162</td>
</tr>
<tr>
<td>Ellis, C.C.</td>
<td>2-8</td>
</tr>
<tr>
<td>Evans, T.W.</td>
<td>47-54, 173-182, 301-306</td>
</tr>
<tr>
<td>Fahal, I.</td>
<td>295-300</td>
</tr>
<tr>
<td>Färkkilä, M.A.</td>
<td>315-319</td>
</tr>
<tr>
<td>Feihl, F.</td>
<td>369-377</td>
</tr>
<tr>
<td>Fisher, R.M.</td>
<td>409-415</td>
</tr>
<tr>
<td>Fleisher, L.A.</td>
<td>97-103</td>
</tr>
<tr>
<td>Floras, J.S.</td>
<td>189-195</td>
</tr>
<tr>
<td>Fogh-Andersen, N.</td>
<td>511-515</td>
</tr>
<tr>
<td>Ford, G.A.</td>
<td>493-497</td>
</tr>
<tr>
<td>Forskins, A.S.</td>
<td>235-241</td>
</tr>
<tr>
<td>Forni, L.G.</td>
<td>507-510</td>
</tr>
<tr>
<td>Frank, S.M.</td>
<td>97-103</td>
</tr>
<tr>
<td>Frayn, K.N.</td>
<td>243-253, 409-415, 453-456</td>
</tr>
<tr>
<td>Fuller, B.J.</td>
<td>135-141</td>
</tr>
<tr>
<td>Garrard, C.S.</td>
<td>345-355</td>
</tr>
<tr>
<td>Garrido, E.</td>
<td>81-85</td>
</tr>
<tr>
<td>Georgiannos, S.N.</td>
<td>73-75</td>
</tr>
<tr>
<td>Ghalay, A.</td>
<td>417-425</td>
</tr>
<tr>
<td>Giles, S.L.</td>
<td>453-456</td>
</tr>
<tr>
<td>Goka, J.</td>
<td>77-80</td>
</tr>
<tr>
<td>Goldstein, D.S.</td>
<td>337-343</td>
</tr>
<tr>
<td>González-Pan, A.</td>
<td>169-171</td>
</tr>
<tr>
<td>Gorodetsky, E.</td>
<td>287-293</td>
</tr>
<tr>
<td>Gosling, R.G.</td>
<td>143-144, 433-434</td>
</tr>
<tr>
<td>Green, C.J.</td>
<td>135-141</td>
</tr>
<tr>
<td>Griffiths, M.J.D.</td>
<td>47-54</td>
</tr>
<tr>
<td>Gutteridge, J.M.C.</td>
<td>47-54</td>
</tr>
<tr>
<td>Halliday, D.</td>
<td>73-75</td>
</tr>
<tr>
<td>Hamada, M.</td>
<td>197-204</td>
</tr>
<tr>
<td>Hannedouche, T.P.</td>
<td>205-213</td>
</tr>
<tr>
<td>Heigenhauser, G.J.F.</td>
<td>323-335</td>
</tr>
<tr>
<td>Heigher, J.</td>
<td>385-391</td>
</tr>
<tr>
<td>Hellie, J.R.</td>
<td>467-472</td>
</tr>
<tr>
<td>Herrero, J.I.</td>
<td>162-167</td>
</tr>
<tr>
<td>Hidalgo, M.A.</td>
<td>135-141</td>
</tr>
<tr>
<td>Higgs, C.M.B.</td>
<td>227-234</td>
</tr>
<tr>
<td>Hilton, P.J.</td>
<td>507-510</td>
</tr>
<tr>
<td>Hiwada, K.</td>
<td>197-204</td>
</tr>
<tr>
<td>Hopkins, K.D.</td>
<td>143-144, 433-434</td>
</tr>
<tr>
<td>Horacek, V.</td>
<td>385-391</td>
</tr>
<tr>
<td>Hest, U.</td>
<td>269-276</td>
</tr>
<tr>
<td>Hughes, R.D.</td>
<td>77-80</td>
</tr>
<tr>
<td>Humphreys, S.M.</td>
<td>409-415</td>
</tr>
<tr>
<td>Hurni, J.-M.</td>
<td>369-377</td>
</tr>
<tr>
<td>Hynd, J.W.</td>
<td>363-368</td>
</tr>
<tr>
<td>Iaina, A.</td>
<td>379-384</td>
</tr>
<tr>
<td>Imai, Y.</td>
<td>55-60</td>
</tr>
<tr>
<td>Ishizaki, T.</td>
<td>517-523</td>
</tr>
<tr>
<td>Ison, J.</td>
<td>485-492</td>
</tr>
<tr>
<td>Jaap, A.J.</td>
<td>113-117</td>
</tr>
<tr>
<td>Jackson, A.A.</td>
<td>215-225</td>
</tr>
<tr>
<td>Jackson, M.J.</td>
<td>295-300, 467-472</td>
</tr>
<tr>
<td>Jacobs, M.-C.</td>
<td>337-343</td>
</tr>
<tr>
<td>Javiera, C.</td>
<td>81-85</td>
</tr>
<tr>
<td>Jobanputra, P.</td>
<td>61-71</td>
</tr>
<tr>
<td>Johnson, I.R.</td>
<td>499-505</td>
</tr>
<tr>
<td>Johnston, C.I.</td>
<td>31-36</td>
</tr>
<tr>
<td>Jones, N.L.</td>
<td>323-335</td>
</tr>
</tbody>
</table>
Kairemo, K.J. 315-319
Kalman, R. 287-293
Kanazawa, M. 31-36
Kasai, Y. 55-60
Kato, J. 55-60
Kawakami, H. 197-204
Keane, H.M. 77-80
Kearney, M.T. 473-483
Kelbaek, H. 269-276
Kinosita, M. 357-362
Kishi, Y. 517-523
Kohzuki, M. 31-36
Kok, W.E.M. 144-146
Kramer, H.J. 385-391
Kuc, R.E. 37-46
Lacour, B. 205-213
Laszlo, G. 227-234
Lehmann, E.D. 143-144, 433-434
Lenders, J.W.M. 337-343
Leyssac, P.P. 511-515
Liaudet, L. 369-377
Liderth, S.A. 183-187
Lin, J.S.-N. 127-133
Liu, J.J. 91-96
Liu, S.F. 301-306
Logan, A.G. 189-195
Lorente, L. 321-322
Lorenzen, T. 269-276
Macdonald, I.A. 473-483
MacLennan, P.A. 467-472
Mahdy, Z.A. 493-497
Mann, D.J. 135-141
Maree, A. 379-384
Markert, M. 369-377
Martinez, F. 205-213
Mato, J.M. 147-148
Matsuda, Y. 357-362
Matsukawa, T. 97-103
Mc Ardle, A. 295-300, 467-472
Mc Ardle, F. 295-300
Meakin, T.S. 215-225
Melot, C. 105-111
Messent, M. 47-54
Miettinen, T.A. 315-319
Millanvoye-Van Brussel, E. 403-407
Miller, J.A. 189-195
Miyabo, S. 517-523
Mohan, R. 255-260
Montserrat, E. 167-169
Moraine, J.J. 105-111
Mullins, J.J. 435-446
Munakata, M. 55-60
Nakai, T. 517-523
Natov, S. 205-213
Navarro-Lopez, F. 156-158
Navis, G. 393-401
Neusser, M. 9-12
Newton, R. 301-306
Nielsen, C.B. 87-89
Nishiyama, A. 55-60
Noble, M.I.M. 363-368
Nuki, G. 61-71
O'Reilly, G. 37-46
Ohkubo, T. 55-60
Okayama, H. 197-204
Olsen, N.V. 511-515
Onodera, N. 55-60
Page, S.F. 295-300
Pedersen, E.B. 87-89
Pedersen-Bjergaard, U. 269-276
Perry, A.J. 473-483
Peters, R.J.G. 144-146
Peters, N.S. 447-452
Plumpton, C. 37-46
Pinto, J. 162-167
Pujol, J. 81-85
Quinlan, G.J. 47-54
Raa sch, R.H. 427-431
Radaelli, A. 345-355
Rahemtulla, F. 747-425
Rasmussen, H. 269-276
Ravell, C.L. 453-456
Record, C.O. 307-313
Reeder, M. 345-355
Robson, S.C. 493-497
Rodriguez-Arnao, J. 169-171
Rossie, T. 369-377
Roszman, C. 167-169
Ruijlope, L.M. 159-160
Ruocco, N.A. 261-268
Sacco, P. 485-492
Sair, M. 173-182
Salter, D.M. 61-71
Samra, J.S. 453-456
Sasaki, F. 517-523
Sato, T. 31-36
Satoh, H. 55-60
Saxton, J.M. 119-125
Schmitt, F. 205-213
Scott, P.G. 417-425
Scullard, T.F. 277-285
Segura, R. 81-85
Sekino, M. 55-60
Sessler, D.I. 97-103
Shanmugasundaram, K.R. 255-260
Sharp, M.G.F. 435-446
Sheron, N. 77-80
Shore, A.C. 113-117
Silverberg, D.S. 379-384
Sipkema, P. 144-146
Skorecki, K.L. 189-195
Sleight, P. 345-355
Smits, P. 337-343
Solda, P.L. 345-355
Strandberg, T.A. 315-319
Strandgaard, S. 511-515
Streeten, D.H.P. 277-285
Stubbs, T.A. 473-483
Sundaram, R.K. 255-260
Supaporn, T. 357-362
Taavitsainen, M.J. 315-319
Tepel, M. 9-12
Thien, T. 337-343
Thurston, H. 21-29
Tooke, J.E. 113-117
Townend, J.N. 235-241
Treacher, D.F. 507-510
Tredget, E.E. 417-425
Tsuji, I. 55-60
Tsutsuini, E. 31-36
Tuck, M.L. 2-8
Tzai, T.-S. 127-133
Ulshen, M.H. 427-431
Van Goor, H. 393-401
Vanfraechem, J. 105-111
Vannier, C.A. 97-103
Vejera, J.J. 81-85
Veves, A. 183-187
Vijayalingam, S. 255-260
Vincent, J.-L. 105-111
Von Meyenfeldt, M.F. 457-466
Wapstra, F.H. 393-401
Watanabe, N. 55-60
Wei, C.-M. 357-362
Weinstock, M. 287-293
Wennberg, P.W. 357-362
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
<th>Author</th>
<th>Pages</th>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Willemsen, J.J.</td>
<td>337-343</td>
<td>Yasujima, M.</td>
<td>31-36</td>
<td>Zaidi, K.F.</td>
<td>13-19</td>
</tr>
<tr>
<td>Williams, C.M.</td>
<td>243-253</td>
<td>Yeh, T.-M.</td>
<td>127-133</td>
<td>Zaitoun, A.M.</td>
<td>307-313</td>
</tr>
<tr>
<td>Williams, R.</td>
<td>77-80</td>
<td>Yoshida, K.</td>
<td>31-36</td>
<td>Zhu, Z.</td>
<td>9-12</td>
</tr>
<tr>
<td>Winlove, C.P.</td>
<td>173-182</td>
<td>Yoshino, H.</td>
<td>55-60</td>
<td>Zidek, W.</td>
<td>9-12</td>
</tr>
<tr>
<td>Wollman, Y.</td>
<td>379-384</td>
<td>Young, M.J.</td>
<td>183-187</td>
<td>Zinman, B.</td>
<td>189-195</td>
</tr>
<tr>
<td>Wright, D.A.</td>
<td>507-510</td>
<td>Yu, T.-K.</td>
<td>261-268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wright, M.</td>
<td>61-71</td>
<td>Yudkin, J.S.</td>
<td>13-19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Acetylcholine
 Goldblatt hypertension, angiotensin-converting enzyme inhibitors 21–29
Acid-base control
 muscle, exercise 323–335*
Acute tobacco smoking
 probucol 517–523
Acute renal failure
 lactate metabolism, haemofiltration 507–510
Adipose tissue
 carbohydrate metabolism, insulin resistance 409–415
 interstitial glycerol 453–456
Adrenaline
 baroreflex activity, lower body negative pressure 337–343
Adrenergic agents
 oxygen consumption/delivery relationship 105–111
Adriamycin
 angiotensin-converting enzyme inhibition, proteinuria 393–401
Ageing
 facial cooling, cardiorespiratory reflexes 485–492
Alcohol
 fatty liver, β-oxidation 307–313
Altitude
 brain damage, Sherpas 81–85
Amino acid turnover
 muscle, starvation 457–466
Ammonia
 protein turnover, bed rest 73–75
Angiogenesis
 basic fibroblast growth factor, urothelial carcinoma 127–133
 Angiotensin I-receptor blockade renal effects 205–213
 Angiotensin receptors myometrium, pregnancy 499–505
Angiotensin-converting enzyme inhibitors
 resistance artery, endothelium-dependent relaxation 21–29
Angiotensin-converting enzyme inhibition nephrosis, proteinuria 393–401
 renal effects 205–213
Antioxidant enzymes
 lipid peroxidation, diabetes 255–260
Antioxidant vitamins
 lipid peroxidation, diabetes 255–260
L-Arginine
 nitric oxide, diabetes mellitus 379–384
Arrhythmias
 gap junctions, myocardium 447–452
Arteries
 endothelin B receptor agonists and antagonists 91–96
Articular cartilage
 membrane potential, ion channels 61–71
Asthma
 perception, treatment 227–234
Atrial natriuretic peptide
 gene expression, renovascular hypertension 197–204
 heart failure, diuretics 31–36
 mean blood pressure, epoprostenol 87–89
Autonomic insufficiency
 orthostatic intolerance, venous pooling 277–285
Autonomic tone
 skin microcirculation 345–355
Baroreflex activity
 catecholamines, lower body negative pressure 337–343
 skin microcirculation 345–355
Baroreflex sensitivity
 renal nerves, hypertension 287–293
Basic fibroblast growth factor
 inflammation, urothelial carcinoma 127–133
Subject Index

Beclomethasone
asthma, perception 227–234
Bed rest
protein turnover, urea 73–75
Big endothelin
immunochemistry, human endocardial endothelial cells 37–46
Bile acid malabsorption
lathosterol, 73SeHCAT test 315–319
Blood
carbon dioxide, exercise 323–335*
Blood flow
autonomic tone, skin 345–355
meal composition 269–276
Blood pressure
lisinopril, angiotensin-converting enzyme inhibition 393–401
seasonal variation 55–60
Blood pressure regulation
gene targeting 435–446*
Bradykinin
Goldblatt hypertension, angiotensin-converting enzyme inhibitors 21–29
Brain damage
Sherpas, magnetic resonance 81–85
Brain natriuretic peptide
gene expression, renovascular hypertension 197–204
Breath-holding
facial cooling, ageing 485–492
Bronchoconstriction
perception, treatment 227–234
Buffering capacity
platelets, diabetes 13–19
Burns
wound healing, proteoglycans 417–425
Calcium
vascular smooth muscle, ouabain 9–12
L-Canavanine
nitric oxide synthase, endotoxaemia 369–377
Canine kidney
glomerular haemodynamics, endothelin-1 385–391
Capillary filtration coefficient
diabetes, microangiopathy 113–117
Carbohydrate
postprandial haemodynamics 269–276
Carbohydrate meal
haemodynamics, cardiac transplant 473–483
Carbohydrate metabolism
insulin resistance 409–415
Carbon dioxide
metabolism, exercise 323–335*
Cardiac output
meal composition 269–276
Cardiac transplant
postprandial haemodynamics 473–483
Cardiac vagus
facial cooling, ageing 485–492
Cardiology
Spain 156–158
Cardiomyocytes
phospholipase A2, hypertension 403–407
Cardiopulmonary baroreceptors
catecholamines, lower body negative pressure 337–343
Cardiorespiratory reflexes
facial cooling, ageing 485–492
Cartilage
membrane potential, ion channels 61–71
Catecholamines
baroreflex activity, lower body negative pressure 337–343
Cell attachment
endothelial cells, organ preservation 135–141
Cerebral hypoxia
Sherpas, magnetic resonance 81–85
Chlorothiazide
renin, heart failure 31–36
Cholesterol
coronary vascular reserve, endothelium 261–268
Cholesterol synthesis
bile acid synthesis, lathosterol 315–319
Chondrocytes
mechanoreceptors, ion channels 61–71
Chronic fatigue syndrome
enterovirus, polymerase chain reaction 295–300
Chronic renal failure
sodium, potassium pump 3–8
Climbing
brain damage, Sherpas 81–85
Clinical research
progress in Spain 147–171
Coagulation
thrombin, recombinant hirudin 363–368
Compliance
definitions 143–146, 433–434
Connexin43
arrhythmias, gap junctions 447–452
Coronary blood flow
natriuretic peptides 357–362
Coronary heart disease
fatty acids 243–253*
Coronary thrombosis
thrombin, recombinant hirudin 363–368
Coronary vascular reserve
endothelium, hypercholesterolaemia 261–268
Creatine kinase
muscle damage, chronic fatigue syndrome 295–300

Cromoglycate
asthma, perception 227–234

Cyclo-oxygenase
gene expression, endotoxaemia 301–306

Cytokines
fulminant hepatic failure 77–80

Daytime length
blood pressure 55–60

Definitions
compliance 433–434

Dermatan sulphate
burns, wound healing 417–425

Diabetes
antioxidant status, lipid peroxidation 255–260
fatty acids, coronary heart disease 243–253*
microalbuminuria, sodium/hydrogen exchange rate 13–19
microangiopathy, vascular permeability 113–117
nitric oxide, l-arginine 379–384
peripheral neuropathy, rheology 183–187
plasma renin activity, hyperglycaemia 189–195

Diuretics
renin, heart failure 31–36

Dobutamine
oxygen consumption/delivery relationship 105–111

Dopamine
renal tubular function, lithium clearance 511–515

Doxorubicin
angiotensin-converting enzyme inhibition,
proteinuria 393–401

Eating
haemodynamic effects 269–276

Eccentric exercise
strength loss, muscle damage 119–125

Elastase inhibitory capacity
acute tobacco smoking, probucol 517–523

Embryonic stem cells
gene targeting 435–446*

Endocardial endothelial cells
endothelin, reverse transcriptase–polymerase chain reaction 37–46

Endocrinology
Spain 169–171

Endogenous lithium clearance
dopamine, renal tubular function 511–515

Endogenous natriuretic peptides
coronary blood flow 357–362

Endothelial cells
permeability, organ preservation 135–141

Endothelin
reverse transcriptase–polymerase chain reaction, human endocardial endothelial cells 37–46

Endothelin B receptor agonists
arteries 91–96

Endothelin B receptor antagonists
arteries 91–96

Endothelin receptor subtypes
arteries 91–96

Endothelin-1
glomerular haemodynamics 385–391

Endothelium
coronary vascular reserve, hypercholesterolaemia 261–268

Endothelium-dependent relaxation
Goldblatt hypertension, angiotensin-converting enzyme inhibitors 21–29

Endotoxaemia
cyclo-oxygenase, gene expression 301–306
nitric oxide synthase, L-canavanine 369–377

Enterovirus
chronic fatigue syndrome, polymerase chain reaction 295–300

Epidermal growth factor
mucosal mass, starvation 427–431

Epoprostenol
atrial natriuretic peptide, mean blood pressure 87–89

Exercise
carbon dioxide, metabolism 323–335*
protein turnover, bed rest 73–75

Exogenous lithium clearance
dopamine, renal tubular function 511–515

Facial cooling
cardiorespiratory reflexes, ageing 485–492

Faecal bile acid excretion
lathosterol, 75SeHCAT test 315–319

Fasting
muscle necrosis, mdx mouse 467–472

Fat
postprandial haemodynamics 269–276

Fat meal
haemodynamics, cardiac transplant 473–483

Fatty acids
coronary heart disease 243–253*

Ferroxidase activity
acute tobacco smoking, probucol 517–523

Forearm
carbohydrate metabolism, insulin resistance 409–415

Forearm blood flow
hyperglycaemia, diabetes 189–195
Fractional dextran clearance
 renin–angiotensin system inhibition 205–213
Fulminant hepatic failure
tumour necrosis factor soluble receptor 77–80

Gap junctions
 arrhythmias, myocardium 447–452
Gene expression
cyclo-oxygenase, endotoxaemia 301–306
 natriuretic peptides, renovascular hypertension 197–204
Gene targeting
 blood pressure regulation 435–446*
Genetic hypertension
 phospholipase A₂, cardiomyocytes 403–407
Glomerular filtration rate
 hyperglycaemia, diabetes 189–195
 renin–angiotensin system inhibition 205–213
Glomerular haemodynamics
 endothealin-1 385–391
Glomerular ultrafiltration
 endothealin-1 385–391
Glomerulosclerosis
 angiotensin-converting enzyme inhibition 393–401
Glucose uptake
 insulin resistance 409–415
Glutathione
 acute tobacco smoking, probucol 517–523
Glycerol
 muscle, adipose tissue 453–456
Glycine
 protein turnover, bed rest 73–75
Guanylyl cyclase
 endogenous natriuretic peptides 357–362

Haematology
 Spain 167–169
Haemodynamic effects
 meal composition 269–276
Haemofiltration
 lactate metabolism, acute renal failure 507–510
Heart failure
 renin, diuretics 31–36
 vascular endothelium, psycho-neuro-immune–endocrine system 321–322
Heart rate
 atrial natriuretic peptide, epoprostenol 87–89
Heart rate variability
 respiratory sinus arrhythmia 227–234
 skin microcirculation, autonomic tone 345–355
 spectral analysis, thermoregulation 97–103
Hepatology
 Spain 162–167

Hirudin
 thrombin, intracoronary thrombosis 363–368
Homologous recombination
 gene targeting 435–446*
Host–tumour interaction
 basic fibroblast growth factor, urothelial carcinoma 127–133
Hypercholesterolaemia
 coronary vascular reserve, endothelium 261–268
Hyperglycaemia
 plasma renin activity, diabetes 189–195
Hypertension
 baroreflex sensitivity, renal nerves 287–293
 phospholipase A₂, cardiomyocytes 403–407
 resistance artery, angiotensin-converting enzyme inhibitors 21–29
 sodium/hydrogen exchange rate, diabetes 13–19
 Spain 159–160
Hypertension research
 gene targeting 435–446*
Hypertrophic scars
 wound healing, proteoglycans 417–425
Hypertrophy
 arrhythmias, gap junctions 447–452
Hypothermia
 heart rate variability, spectral analysis 97–103
Hypoxia
 Sherpas, magnetic resonance 81–85
Hypoxic pulmonary vasoconstriction
 lung oedema, reactive oxygen species scavengers 47–54

Ileal resection
 bile acid malabsorption 315–319
Immunological research
 Spain 148–153
Indoor temperature
 blood pressure 55–60
Inducible nitric oxide synthase
 endotoxaemia, L-canavanine 369–377
Inflammation
 basic fibroblast growth factor, urothelial carcinoma 127–133
Infra-red photoplethysmography
 skin microcirculation, autonomic tone 345–355
Insulin resistance
 carbohydrate metabolism 409–415
 fatty acids, coronary heart disease 243–253*
Interstitial glycerol
 muscle, adipose tissue 453–456
Ischaemia
 arrhythmias, gap junctions 447–452
Ischaemia–reperfusion injury
 hypoxic pulmonary vasoconstriction, reactive oxygen species scavengers 47–54
<table>
<thead>
<tr>
<th>Subject</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney function</td>
<td>511–515</td>
</tr>
<tr>
<td>dopamine, lithium clearance</td>
<td></td>
</tr>
<tr>
<td>Lactate metabolism</td>
<td>507–510</td>
</tr>
<tr>
<td>haemofiltration, acute renal failure</td>
<td></td>
</tr>
<tr>
<td>insulin resistance</td>
<td>409–415</td>
</tr>
<tr>
<td>Lactic acidosis</td>
<td>507–510</td>
</tr>
<tr>
<td>haemofiltration, acute renal failure</td>
<td></td>
</tr>
<tr>
<td>Lathosterol</td>
<td></td>
</tr>
<tr>
<td>"75SeHCAT test, bile acid malabsorption</td>
<td>315–319</td>
</tr>
<tr>
<td>Lipid peroxide</td>
<td>517–523</td>
</tr>
<tr>
<td>acute tobacco smoking, probucol</td>
<td></td>
</tr>
<tr>
<td>Lipid peroxidation</td>
<td>255–260</td>
</tr>
<tr>
<td>antioxidant status, diabetes</td>
<td></td>
</tr>
<tr>
<td>Lipolysis</td>
<td>453–456</td>
</tr>
<tr>
<td>adipose tissue</td>
<td></td>
</tr>
<tr>
<td>Lipopolysaccharide</td>
<td>301–306</td>
</tr>
<tr>
<td>cyclo-oxygenase, gene expression</td>
<td></td>
</tr>
<tr>
<td>Lisinopril</td>
<td>393–401</td>
</tr>
<tr>
<td>angiotensin-converting enzyme inhibition, nephrosis</td>
<td></td>
</tr>
<tr>
<td>Lithium clearance</td>
<td>511–515</td>
</tr>
<tr>
<td>dopamine, renal tubular function</td>
<td></td>
</tr>
<tr>
<td>renin–angiotensin system inhibition</td>
<td>205–213</td>
</tr>
<tr>
<td>Liver</td>
<td>307–313</td>
</tr>
<tr>
<td>alcohol, β-oxidation</td>
<td></td>
</tr>
<tr>
<td>Liver failure</td>
<td>77–80</td>
</tr>
<tr>
<td>tumour necrosis factor soluble receptor</td>
<td></td>
</tr>
<tr>
<td>Lower body negative pressure</td>
<td>337–343</td>
</tr>
<tr>
<td>baroreflex activity, catecholamines</td>
<td></td>
</tr>
<tr>
<td>facial cooling, ageing</td>
<td>485–492</td>
</tr>
<tr>
<td>Luminal epidermal growth factor</td>
<td>427–431</td>
</tr>
<tr>
<td>mucosal mass, starvation</td>
<td></td>
</tr>
<tr>
<td>Lung oedema</td>
<td>47–54</td>
</tr>
<tr>
<td>hypoxic pulmonary vasoconstriction, reactive oxygen species scavengers</td>
<td></td>
</tr>
<tr>
<td>Mature scars</td>
<td>417–425</td>
</tr>
<tr>
<td>wound healing, proteoglycans</td>
<td></td>
</tr>
<tr>
<td>Mdx mouse</td>
<td>467–472</td>
</tr>
<tr>
<td>muscle necrosis, fasting</td>
<td></td>
</tr>
<tr>
<td>Meal composition</td>
<td>269–276</td>
</tr>
<tr>
<td>haemodynamic effects</td>
<td></td>
</tr>
<tr>
<td>Mean blood pressure</td>
<td>87–89</td>
</tr>
<tr>
<td>atrial natriuretic peptide, epoprostenol</td>
<td></td>
</tr>
<tr>
<td>Membrane transport</td>
<td>457–466</td>
</tr>
<tr>
<td>amino acids, starvation</td>
<td></td>
</tr>
<tr>
<td>Menstrual cycle</td>
<td>499–505</td>
</tr>
<tr>
<td>angiotensin receptors, myometrium</td>
<td></td>
</tr>
<tr>
<td>Metabolism</td>
<td>323–335*</td>
</tr>
<tr>
<td>carbon dioxide, exercise</td>
<td></td>
</tr>
<tr>
<td>Microalbuminurina</td>
<td>113–117</td>
</tr>
<tr>
<td>diabetes, vascular permeability</td>
<td></td>
</tr>
<tr>
<td>sodium/hydrogen exchange rate, diabetes</td>
<td>13–19</td>
</tr>
<tr>
<td>Microangiopathy</td>
<td>113–117</td>
</tr>
<tr>
<td>diabetes, vascular permeability</td>
<td></td>
</tr>
<tr>
<td>Microcirculation</td>
<td>173–182*</td>
</tr>
<tr>
<td>sepsis</td>
<td></td>
</tr>
<tr>
<td>Microvascular disease</td>
<td>183–187</td>
</tr>
<tr>
<td>rheology, peripheral neuropathy</td>
<td></td>
</tr>
<tr>
<td>Mitochondria</td>
<td>295–300</td>
</tr>
<tr>
<td>muscle, chronic fatigue syndrome</td>
<td></td>
</tr>
<tr>
<td>Monolayer continuity</td>
<td>135–141</td>
</tr>
<tr>
<td>endothelial cells, organ preservation</td>
<td></td>
</tr>
<tr>
<td>NGmonomethyl-L-arginine</td>
<td>493–497</td>
</tr>
<tr>
<td>pregnancy</td>
<td></td>
</tr>
<tr>
<td>Mouse embryonic stem cells</td>
<td>435–446*</td>
</tr>
<tr>
<td>gene targeting</td>
<td></td>
</tr>
<tr>
<td>Mucosal mass</td>
<td>427–431</td>
</tr>
<tr>
<td>epidermal growth factor, starvation</td>
<td></td>
</tr>
<tr>
<td>Muscle pain</td>
<td>295–300</td>
</tr>
<tr>
<td>virus infection, chronic fatigue syndrome</td>
<td></td>
</tr>
<tr>
<td>Muscle necrosis</td>
<td>119–125</td>
</tr>
<tr>
<td>strength loss, eccentric exercise</td>
<td></td>
</tr>
<tr>
<td>Muscle damage</td>
<td>467–472</td>
</tr>
<tr>
<td>fasting, mdx mouse</td>
<td></td>
</tr>
<tr>
<td>Muscular dystrophy</td>
<td>467–472</td>
</tr>
<tr>
<td>fasting, mdx mouse</td>
<td></td>
</tr>
<tr>
<td>Myocardium</td>
<td>447–452</td>
</tr>
<tr>
<td>arrhythmias, gap junctions</td>
<td></td>
</tr>
<tr>
<td>Myometrium</td>
<td>499–505</td>
</tr>
<tr>
<td>angiotensin receptors, pregnancy</td>
<td></td>
</tr>
<tr>
<td>Natriuretic peptides</td>
<td>197–204</td>
</tr>
<tr>
<td>gene expression, renovascular hypertension</td>
<td></td>
</tr>
<tr>
<td>Natriuretic peptide receptor antagonist</td>
<td>357–362</td>
</tr>
<tr>
<td>coronary blood flow</td>
<td></td>
</tr>
<tr>
<td>Necrosis</td>
<td>467–472</td>
</tr>
<tr>
<td>fasting, mdx mouse</td>
<td></td>
</tr>
<tr>
<td>Nephrology</td>
<td>161–162</td>
</tr>
<tr>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>Nephrosis</td>
<td>379–384</td>
</tr>
<tr>
<td>angiotensin-converting enzyme inhibition, proteinuria</td>
<td>393–401</td>
</tr>
<tr>
<td>Neuroscience</td>
<td>153–156</td>
</tr>
<tr>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>Nitrate</td>
<td>379–384</td>
</tr>
<tr>
<td>diabetes mellitus</td>
<td></td>
</tr>
<tr>
<td>Nitric oxide</td>
<td>493–497</td>
</tr>
<tr>
<td>L-arginine, diabetes mellitus</td>
<td></td>
</tr>
<tr>
<td>pregnancy</td>
<td></td>
</tr>
</tbody>
</table>
Nitric oxide synthase
endotoxaemia, L-canavanine 369-377
gene expression, endotoxaemia 301-306
Nitric oxide synthase inhibitor
diabetes mellitus 379-384
Nitrite
diabetes mellitus 379-384
Nitroprusside
oxygen consumption/delivery relationship 105-111
Non-essential nitrogen
protein requirements 215-225
Non-esterified fatty acids
coronary heart disease 243-253*
Noradrenaline
baroreflex activity, lower body negative pressure 337-343
Obesity
fatty acids, coronary heart disease 243-253*
Organ preservation
endothelial cells, permeability 135-141
Orthostatic hypotension
autonomic insufficiency, venous pooling 277-285
Orthostatic tachycardia
autonomic insufficiency, venous pooling 277-285
β-Oxidation
fatty liver, alcohol 307-313
Ouabain
calcium, vascular smooth muscle 9-12
Outdoor temperature
blood pressure 55-60
Oxygen uptake
dobutamine, nitroprusside 105-111
Peak expiratory flow
asthma, perception 227-234
Perception
asthma, treatment 227-234
Peripheral neuropathy
rheological and microvascular parameters 183-187
Permeability
endothelial cells, organ preservation 135-141
Phenylalanine turnover
muscle, starvation 457-466
Phospholipase A₁,
cardiomyocytes, hypertension 403-407
Physicochemical factors
carbon dioxide, exercise 323-335*
Plasma renin activity
hyperglycaemia, diabetes 189-195
renal nerves, hypertension 287-293
Platelets
recombinant hirudin, intracoronary thrombosis 363-368
sodium/hydrogen exchange rate, diabetes 13-19
Policy on clinical research
Spain 147-148
Polymerase chain reaction
enterovirus, chronic fatigue syndrome 295-300
Postprandial haemodynamics
heart failure 321-322
Postprandial metabolism
insulin resistance 409-415
Posture
sympathetic activity 345-355
Power spectrum
skin microcirculation, autonomic tone 345-355
Pregnancy
angiotensin receptors, myometrium 499-505
nitric oxide 493-497
Probucol
acute tobacco smoking 517-523
Prostacyclin
atrial natriuretic peptide, mean blood pressure 87-89
Prostaglandin G/H synthase
gene expression, endotoxaemia 301-306
Protein
postprandial haemodynamics 269-276
Protein requirements
urea kinetics 215-225
Protein turnover
muscle, starvation 457-466
post-absorptive state, bed rest 73-75
Proteinuria
angiotensin-converting enzyme inhibition, nephrosis 393-401
Proteoglycans
burns, wound healing 417-425
Psycho-neuro-immune-endocrine system
vascular endothelium, heart failure 321-322
Reactive oxygen species scavengers
lung oedema, hypoxic pulmonary vasoconstriction 47-54
Renal haemodynamics
endothelin-1 385-391
Renal nerves
baroreflex sensitivity, hypertension 287-293
Renal tubular function
dopamine, lithium clearance 511-515
Renovascular hypertension
natriuretic peptides, gene expression 197-204
Resistance artery
Goldblatt hypertension, angiotensin-converting enzyme inhibitors 21–29
Respiratory sinus arrhythmia
heart rate variability 227–234
Rheology
microvascular disease, peripheral neuropathy 183–187

Salt intake
renal nerves, hypertension 287–293
Scopolamine
respiratory sinus arrhythmia 227–234
Seasonal variation
blood pressure 55–60
75SeHCAT test
lathosterol, bile acid malabsorption 315–319
Sepsis
cyclo-oxygenase, endotoxaemia 301–306
microcirculation 173–182*
Sherpas
cerebral hypoxia, magnetic resonance 81–85
Skin microcirculation
autonomic tone 345–355
Small intestine
epidermal growth factor, starvation 427–431
Sodium excretion
renal nerves, hypertension 287–293
Sodium/hydrogen exchange rate
diabetes, microalbuminura 13–19
Sodium–potassium–chloride co-transport
uraemia 3–8
Sodium, potassium pump
uraemia 3–8
Spain
progress in clinical research 147–171
Spectral analysis
heart rate variability, thermoregulation 97–103
Starvation
amino acid turnover, protein turnover 457–466
mucosal mass, epidermal growth
factor 427–431
Steatosis
alcohol, β-oxidation 307–313
Strength loss
muscle damage, eccentric exercise 119–125
Streptozotocin
diabetes mellitus, nitric oxide 379–384
Stress
fatty acids, coronary heart disease 243–253*
Superoxide dismutase
lung oedema, hypoxic pulmonary vasoconstriction 47–54
Sympathetic nerves
sodium retention, hypertension 287–293

Temperature
blood pressure 55–60
Theophylline
asthma, perception 227–234
Thermoregulation
heart rate variability, spectral analysis 97–103
Thrombin
recombinant hirudin, intracoronary thrombosis 363–368
Thrombosis
thrombin, recombinant hirudin 363–368
Tissue nutrition
sepsis 173–182*
Tobacco smoke inhalation
probucol 517–523
Tocopherol
acute tobacco smoking, probucol 517–523
Total exchangeable body sodium
heart failure, diuretics 31–36
Tracer
protein turnover, muscle 457–466
Transitional cell carcinoma
angiogenesis, basic fibroblast growth
factor 127–133
Tumour necrosis factor-α
fulminant hepatic failure 77–80
Tumour necrosis factor soluble receptor
fulminant hepatic failure 77–80

Uraemia
sodium, potassium pump 3–8
Urea
protein turnover, bed rest 73–75
Urea kinetics
protein requirements 215–225
Urological disease
angiogenesis, basic fibroblast growth
factor 127–133
Urothelial carcinoma
inflammation, basic fibroblast growth
factor 127–133
Uterine angiotensin receptors
pregnancy 499–505

Vascular endothelium
heart failure, psycho–neuro–immune–endocrine system 321–322
Vascular mechanics
definitions 143–146
Vascular medicine
Spain 159–160
Vascular permeability
diabetes, microangiopathy 113–117
Vascular smooth muscle
calcium, ouabain 9–12
Subject Index

Vascular structure
 Goldblatt hypertension, angiotensin-converting enzyme inhibitors 21–29
Vasodilating agents
 oxygen consumption/delivery relationship 105–111
Veins
 nitric oxide, pregnancy 493–497
Venous N^6-monomethyl-l-arginine
 pregnancy 493–497

Venous pooling
 orthostatic intolerance, autonomic insufficiency 277–285
Virus infection
 chronic fatigue syndrome, polymerase chain reaction 295–300

Wound healing
 burns, proteoglycans 417–425