Volume 88

AUTHOR INDEX

Abdel-Halim, S.M. 301-306
Abe, Y. 581-585
Adams, L. 453-461
Aderka, D. 365-369
Akaoka, I. 203-210
Albert, A. 149-157
Alexander, G.J.M. 263-268
Alexander, S.L. 4-7
Anderson, S.E. 235-242
Andersson, K. 479-484
Appleyard, C.B. 713-717
Arrhenius-Nyberg, V. 285-292
Backer, A. 39-45
Baker, F.E. 405-412
Balbi, A. 331-336
Ballmer, P.E. 235-242
Barlet-Bas, C. 293-299
Barnes, P.J. 135-139
Beasley, R. 14-17
Beattie, A.D. 727-732
Bee, D. 325-330
Belcher, P.R. 269-275
Benard, D.C. 173-178
Benbow, S.J. 191-196
Benchetrit, G. 453-461
Berenson, C.S. 491-499
Beretz, A. 149-157
Berglund, H. 165-172
Benedict, L. 103-109, 733
Bernheim, J. 623-627
Bevegard, S. 439-446
Bevilacqua, M. 331-336
Blevington, A. 405-412
Bhatnagar, D. 311-318
Bianchini, B. 103-109, 733
Biemond, B.J. 587-594
Biggs, T. 179-184
Bing, R.F. 307-310
Blendis, L. 525-531
Blumsohn, A. 243-244
Bodmer, C.W. 421-426
Boer, P. 351-358
Boer, W.H. 351-358
Bomzon, A. 525-531
Boomsma, F. 675-679
Borch-Johnsen, K. 629-633
Borzi, R.M. 371
Boulton, H. 607-610
Bradley, R.A. 119-130
Bradley, T.D. 173-178
Broom, J. 235-242
Brough, D. 405-412
Brouwer, A. 211-217
Brown, M.J. 571-580
Brunner, H.G. 533-542
Brunner, H.R. 607-610
Bryson, P. 595
Büller, H.R. 587-594
Bölow, A. 543-550
Burgess, C. 14-17
Burnier, M. 607-610
Burrell, L.M. 671-674
Cargill, R.I. 81-86
Carlens, P. 439-446
Carney, S.L. 197-201
Cerutti, C. 651-655
Chambers, S.T. 25-27
Chang, C.-J. 701-706
Cheng, P.E. 701-706
Cheval, L. 293-299
Chinery, R. 401-403
Chou, L. 657-663
Chow, N.-H. 701-706
Chowienczyk, P.J. 111-117
Clarkson, P.B.M. 159-164
Cockcroft, J.R. 111-117
Cohen, E. 453-461
Connell, J.M.C. 563-570
Connor, J.M. 665-670
Constant, J. 95-102
Cooper, G.J.S. 7-12
Cortova, Z. 285-292
Coutie, W. 159-164
Crane, J. 14-17
Crofton, R.J. 727-732
Crotty, B. 51-57
Cuisinard, G. 651-655
Cummings, M.H. 225-233
Cundy, T.F. 12-14
Curry, G. 727-732
D'Inca, R. 727-732
Dallegri, F. 331-336
Dapino, P. 331-336
Davies, D.L. 665-670
De Bono, D.P. 635-641
De Hoyos, A. 173-178
De Leeuw, P.W. 421-426
De Quay, N. 607-610
De Roos, R. 351-358
Delacrétais, E. 607-610
Deng, L.-Y. 611-622
Dekk, F.H.M. 675-679
Diaz, M. 345-350
Donald, R.A. 4-7
Dotan, I. 365-369
Doucet, A. 293-299
Drossos, G.E. 269-275
Duchê, M. 651-655
Durrington, P.N. 311-318
Dyerberg, J. 375-392
Eastell, R. 243-244
Eberhard, M. 557-562
Ebihara, I. 29-37
Edlund, A. 165-172
Eisenhofer, G. 533-542
El-Sayed, H. 463-470
Elghozzi, J.-L. 87-93, 95-102
Elia, M. 319-324
Ellis, M.J. 4-7
Emery, C.J. 325-330
Erne, P. 557-562
Ertl, R.F. 337-344
Espiner, E.A. 4-7, 18-21
Evans, M.J. 4-7
Fabbri, M. 371
Facchin, A. 371
Fasano, L. 371
Fauvel, J.P. 651-655
Favre, H. 293-299
Feldt-Rasmussen, B. 629-633
Fell, G.S. 727-732
Féray, E. 293-299
Fischer, J.T. 345-350
Fotherby, M.D. 185-190
Foy, C.J.W. 665-670
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Najem, R.</td>
<td>651–655</td>
</tr>
<tr>
<td>Nakamura, T.</td>
<td>29–37</td>
</tr>
<tr>
<td>Naoumova, R.</td>
<td>179–184</td>
</tr>
<tr>
<td>Ninnis, R.</td>
<td>681–686</td>
</tr>
<tr>
<td>Noble, M.I.M.</td>
<td>269–275</td>
</tr>
<tr>
<td>Noble, K.S.</td>
<td>179–184</td>
</tr>
<tr>
<td>Noble, M.I.M.</td>
<td>269–275</td>
</tr>
<tr>
<td>Noble, K.S.</td>
<td>179–184</td>
</tr>
<tr>
<td>O'Brien, P.M.S.</td>
<td>311–318</td>
</tr>
<tr>
<td>Ogata, N.</td>
<td>203–210</td>
</tr>
<tr>
<td>Omata, M.</td>
<td>413–419</td>
</tr>
<tr>
<td>Osada, S.</td>
<td>29–37</td>
</tr>
<tr>
<td>Ostenson, C.-G.</td>
<td>301–306</td>
</tr>
<tr>
<td>Ottonello, L.</td>
<td>331–336</td>
</tr>
<tr>
<td>Ovesen, L.</td>
<td>375–392</td>
</tr>
<tr>
<td>Pacak, K.</td>
<td>533–542</td>
</tr>
<tr>
<td>Pacy, P.J.</td>
<td>597–606</td>
</tr>
<tr>
<td>Pal, C.</td>
<td>225–233</td>
</tr>
<tr>
<td>Parker, S.G.</td>
<td>211–217</td>
</tr>
<tr>
<td>Pasternack, A.</td>
<td>427–432</td>
</tr>
<tr>
<td>Patriarca, M.</td>
<td>727–732</td>
</tr>
<tr>
<td>Patterson, M.A.</td>
<td>491–499</td>
</tr>
<tr>
<td>Paulpure, C.Z.</td>
<td>651–655</td>
</tr>
<tr>
<td>Pearce, N.</td>
<td>14–17</td>
</tr>
<tr>
<td>Peña, F.</td>
<td>345–350</td>
</tr>
<tr>
<td>Persson, P.B.</td>
<td>1–2</td>
</tr>
<tr>
<td>Petersson, B.</td>
<td>479–484</td>
</tr>
<tr>
<td>Phillips, P.A.</td>
<td>671–674</td>
</tr>
<tr>
<td>Pillai, R.</td>
<td>269–275</td>
</tr>
<tr>
<td>Pinna, G.</td>
<td>103–109, 733</td>
</tr>
<tr>
<td>Playford, R.J.</td>
<td>401–403</td>
</tr>
<tr>
<td>Podjarny, E.</td>
<td>623–627</td>
</tr>
<tr>
<td>Pomeranz, A.</td>
<td>623–627</td>
</tr>
<tr>
<td>Poston, L.</td>
<td>245–255, 519–524</td>
</tr>
<tr>
<td>Potter, J.F.</td>
<td>185–190</td>
</tr>
<tr>
<td>Pozet, N.</td>
<td>651–655</td>
</tr>
<tr>
<td>Pryce, D.W.</td>
<td>191–196</td>
</tr>
<tr>
<td>Quinn-Baker, A.</td>
<td>141–147</td>
</tr>
<tr>
<td>Quyyumi, A.A.</td>
<td>533–542</td>
</tr>
<tr>
<td>Ramsay, L.</td>
<td>263–268</td>
</tr>
<tr>
<td>Rathaus, M.</td>
<td>623–627</td>
</tr>
<tr>
<td>Reed, J.W.</td>
<td>447–452</td>
</tr>
<tr>
<td>Reid, I.A.</td>
<td>657–663</td>
</tr>
<tr>
<td>Reid, I.R.</td>
<td>12–14</td>
</tr>
<tr>
<td>Rennard, S.I.</td>
<td>337–344</td>
</tr>
<tr>
<td>Reynolds, T.M.</td>
<td>243</td>
</tr>
<tr>
<td>Rezzonico, R.</td>
<td>345–350</td>
</tr>
<tr>
<td>Richards, A.M.</td>
<td>3, 18–21</td>
</tr>
<tr>
<td>Richardson, P.J.</td>
<td>263–268</td>
</tr>
<tr>
<td>Risván, J.</td>
<td>671–674</td>
</tr>
<tr>
<td>Ritter, J.M.</td>
<td>111–117</td>
</tr>
<tr>
<td>Robbins, R.</td>
<td>337–344</td>
</tr>
<tr>
<td>Roberts, N.B.</td>
<td>47–50</td>
</tr>
<tr>
<td>Rolfe, P.</td>
<td>359–364</td>
</tr>
<tr>
<td>Rousselot, M.</td>
<td>293–299</td>
</tr>
<tr>
<td>Ruban, E.</td>
<td>359–364</td>
</tr>
<tr>
<td>Rueckert, P.A.</td>
<td>643–649</td>
</tr>
<tr>
<td>Russell, G.I.</td>
<td>359–364</td>
</tr>
<tr>
<td>Russell, R.I.</td>
<td>727–732</td>
</tr>
<tr>
<td>Rutherford, O.M.</td>
<td>67–71</td>
</tr>
<tr>
<td>Ryge, C.</td>
<td>543–550</td>
</tr>
<tr>
<td>Sacra, P.</td>
<td>47–50</td>
</tr>
<tr>
<td>Sahlin, K.</td>
<td>687–693</td>
</tr>
<tr>
<td>Sakurai, M.</td>
<td>581–585</td>
</tr>
<tr>
<td>Salter, A.M.</td>
<td>373–374</td>
</tr>
<tr>
<td>Samani, N.J.</td>
<td>635–641, 665–670</td>
</tr>
<tr>
<td>Sandström, B.</td>
<td>375–392</td>
</tr>
<tr>
<td>Saxerholt, H.</td>
<td>285–292</td>
</tr>
<tr>
<td>Schaaf, N.C.</td>
<td>607–610</td>
</tr>
<tr>
<td>Schalekamp, M.A.D.H.</td>
<td>657–679</td>
</tr>
<tr>
<td>Schaper, N.C.</td>
<td>421–426</td>
</tr>
<tr>
<td>Schiffrin, E.L.</td>
<td>277–283, 611–622</td>
</tr>
<tr>
<td>Schoenfeld, N.</td>
<td>365–369</td>
</tr>
<tr>
<td>Schott, J.</td>
<td>67–71</td>
</tr>
<tr>
<td>Schulz, P.-E.</td>
<td>607–610</td>
</tr>
<tr>
<td>Schwarting, K.</td>
<td>39–45</td>
</tr>
<tr>
<td>Scirocco, M.C.</td>
<td>331–336</td>
</tr>
<tr>
<td>Scott, J.M.</td>
<td>73–79, 471–477</td>
</tr>
<tr>
<td>Seed, W.A.</td>
<td>179–184</td>
</tr>
<tr>
<td>Sekino, N.</td>
<td>203–210</td>
</tr>
<tr>
<td>Sériès, F.</td>
<td>707–712</td>
</tr>
<tr>
<td>Shibahara, S.</td>
<td>581–585</td>
</tr>
<tr>
<td>Shoji, S.</td>
<td>337–344</td>
</tr>
<tr>
<td>Simonsen, L.</td>
<td>543–550</td>
</tr>
<tr>
<td>Skottner, A.</td>
<td>258–292</td>
</tr>
<tr>
<td>Sleight, P.</td>
<td>103–109, 733</td>
</tr>
<tr>
<td>Slutzker, L.</td>
<td>563–570</td>
</tr>
<tr>
<td>Sönksen, P.H.</td>
<td>225–233</td>
</tr>
<tr>
<td>Stauss, H.M.</td>
<td>1–2</td>
</tr>
<tr>
<td>Stender, S.</td>
<td>375–392</td>
</tr>
<tr>
<td>Struthers, A.D.</td>
<td>81–86</td>
</tr>
<tr>
<td>Sturmiolo, G.S.</td>
<td>727–732</td>
</tr>
<tr>
<td>Subhan, M.M.F.</td>
<td>447–452</td>
</tr>
<tr>
<td>Suzuki, E.</td>
<td>413–419</td>
</tr>
<tr>
<td>Suzuki, H.</td>
<td>581–585</td>
</tr>
<tr>
<td>Suzuki, Y.</td>
<td>413–419</td>
</tr>
<tr>
<td>Sztern, M.</td>
<td>365–369</td>
</tr>
<tr>
<td>Tachibana, Y.</td>
<td>203–210</td>
</tr>
<tr>
<td>Takahashi, K.</td>
<td>581–585</td>
</tr>
<tr>
<td>Takahashi, T.</td>
<td>29–37</td>
</tr>
<tr>
<td>Tapia, P.S.</td>
<td>485–489</td>
</tr>
<tr>
<td>Tavazzi, L.</td>
<td>103–109, 733</td>
</tr>
<tr>
<td>Taylor, E.A.</td>
<td>695–700</td>
</tr>
<tr>
<td>Taylor, P.D.</td>
<td>245–255, 519–524</td>
</tr>
<tr>
<td>Taylor, W.H.</td>
<td>47–50</td>
</tr>
<tr>
<td>Ten Cate, H.</td>
<td>587–594</td>
</tr>
<tr>
<td>Ten Cate, J.W.</td>
<td>587–594</td>
</tr>
<tr>
<td>Theodorsson, E.</td>
<td>165–172</td>
</tr>
<tr>
<td>Thomas, S.H.L.</td>
<td>447–452</td>
</tr>
<tr>
<td>Thomson, N.C.</td>
<td>433–437</td>
</tr>
<tr>
<td>Thorniley, M.S.</td>
<td>359–364</td>
</tr>
<tr>
<td>Tomino, Y.</td>
<td>29–37</td>
</tr>
<tr>
<td>Tooke, J.E.</td>
<td>501–508</td>
</tr>
<tr>
<td>Touyz, R.M.</td>
<td>277–283</td>
</tr>
<tr>
<td>Travis, S.P.L.</td>
<td>51–57</td>
</tr>
<tr>
<td>Tripenbach, T.</td>
<td>345–350</td>
</tr>
<tr>
<td>Troughton, K.L.</td>
<td>485–489</td>
</tr>
<tr>
<td>Tsigos, C.</td>
<td>533–542</td>
</tr>
<tr>
<td>Tzai, T.-S.</td>
<td>701–706</td>
</tr>
<tr>
<td>Umpleby, M.</td>
<td>225–233</td>
</tr>
<tr>
<td>Vallin, H.</td>
<td>165–172</td>
</tr>
<tr>
<td>Van den Meiracker, A.H.</td>
<td>675–679</td>
</tr>
<tr>
<td>Van der Poll, T.</td>
<td>587–594</td>
</tr>
<tr>
<td>Van der Schaaf, M.R.</td>
<td>719–725</td>
</tr>
<tr>
<td>Van Tol, A.</td>
<td>719–725</td>
</tr>
<tr>
<td>Vaughan, D.L.</td>
<td>359–364</td>
</tr>
<tr>
<td>Vial, Y.</td>
<td>607–610</td>
</tr>
<tr>
<td>Villain, E.</td>
<td>95–102</td>
</tr>
<tr>
<td>Villena-Cabrera, N.</td>
<td>345–350</td>
</tr>
<tr>
<td>Von Essen, S.</td>
<td>337–344</td>
</tr>
<tr>
<td>Waebher, B.</td>
<td>607–610</td>
</tr>
<tr>
<td>Walker, B.E.</td>
<td>131–133</td>
</tr>
<tr>
<td>Wallberg-Henriksson, H.</td>
<td>301–306</td>
</tr>
<tr>
<td>Walls, J.</td>
<td>405–412</td>
</tr>
<tr>
<td>Wang, L.</td>
<td>557–562</td>
</tr>
<tr>
<td>Watkins, Y.</td>
<td>67–71</td>
</tr>
<tr>
<td>Watt, G.C.M.</td>
<td>665–670</td>
</tr>
<tr>
<td>Watts, G.F.</td>
<td>225–233</td>
</tr>
<tr>
<td>Webb, G.D.</td>
<td>695–700</td>
</tr>
<tr>
<td>Webster, N.R.</td>
<td>131–133</td>
</tr>
<tr>
<td>Weir, D.G.</td>
<td>73–79, 471–477</td>
</tr>
<tr>
<td>Weise, F.</td>
<td>87–93</td>
</tr>
</tbody>
</table>
Absorption
 jejum, polyunsaturated fat 219–224
Acetaldehyde adducts
 immunoblotting, alcoholic heart muscle disease 263–268
Acetylcholine
 resistance artery, diabetes 519–524
Acute gastric erosions
 cat, human pepsins 47–50
Acute myocardial ischaemia
 natriuretic peptides, exercise 551–556
Acute renal failure
 bile duct ligation, glomerular thromboxane A2 synthesis 39–45
S-Adenosylcysteine
 brain, vitamin B12 471–477
S-Adenosylhomocysteine
 methylation ratio, brain 73–79
S-Adenosylmethionine
 brain, vitamin B12 471–477
 methylation ratio, brain 73–79
Adrenal glands
 metadrenaline 533–542
Adrenalectomy
 metadrenaline 533–542
Adrenaline
 bronchoconstriction 439–446
 platelet aggregation, cardiopulmonary bypass 269–275
α2-Adrenoceptors
 vascular reactivity, diabetic nephropathy 421–426
β-Adrenoceptors
 G-protein α- and β-subunits, atrium 571–580
Adrenocorticotrophic hormone
 regulation of secretion 4–7
Ageing
 Kupffer cells, endotoxin 211–217
β-Agonists
 angiotensin-converting enzyme 433–437
 'New Zealand asthma mortality epidemic' 14–17
Airway epithelial cells
 neutrophil chemotaxis, cigarette smoke 377–344
Airways resistance
 capsaicin, fenspiride 325–330
Alanine
 catabolism, growth factors 285–292
Albumin
 glomerular filtration rate, diabetes 413–419
 synthesis
 feeding, stable isotopes 235–242
 albuminuria
 blood pressure, elderly 185–190
Alcoholic heart muscle disease
 acetaldehyde adducts, immunoblotting 263–268
Alkali-soluble protein
 skeletal muscle, weight loss 479–484
Allopurinol
 ischaemia, kidney 359–364
Amiloride
 platelet aggregation, endothelin 277–283
Amino acid requirements
 protein turnover 597–606*
Volume 88

SUBJECT INDEX

First and last page numbers of papers to which entries refer are given. Page numbers marked with an asterisk refer to Reviews.

Absorption
 jejunum, polyunsaturated fat 219–224

Acetaldehyde adducts
 immunoblotting, alcoholic heart muscle disease 263–268

Acetylcholine
 resistance artery, diabetes 519–524

Acute gastric erosions
 cat, human pepsins 47–50

Acute myocardial ischaemia
 natriuretic peptides, exercise 551–556

Acute renal failure
 bile duct ligation, glomerular thromboxane A2 synthesis 39–45
 S-Adenosylcysteine
 brain, vitamin B12 471–477
 S-Adenosylhomocysteine
 methylation ratio, brain 73–79
 S-Adenosylmethylionine
 brain, vitamin B12 471–477
 methylation ratio, brain 73–79

Adrenal glands
 metadrenaline 533–542

Adrenalectomy
 metadrenaline 533–542

Adrenaline
 bronchoconstriction 439–446
 platelet aggregation, cardiopulmonary bypass 269–275
 α2-Adrenoceptors
 vascular reactivity, diabetic nephropathy 421–426

β-Adrenoceptors
 G-protein α- and β-subunits, atrium 571–580
 Adrenocorticotropic hormone
 regulation of secretion 4–7

Ageing
 Kupffer cells, endotoxin 211–217

β-Agonists
 angiotensin-converting enzyme 433–437
 ‘New Zealand asthma mortality epidemic’ 14–17

Airway epithelial cells
 neutrophil chemotaxis, cigarette smoke 377–344

Airways resistance
 capsaicin, fenspiride 325–330

Alanine
 catabolism, growth factors 285–292

Albumin
 glomerular filtration rate, diabetes 413–419
 Albumin synthesis
 feeding, stable isotopes 235–242

Albminuria
 blood pressure, elderly 185–190

Alcoholic heart muscle disease
 acetaldehyde adducts, immunoblotting 263–268

Alkali-soluble protein
 skeletal muscle, weight loss 479–484

Allopurinol
 ischaemia, kidney 359–364

Amiloride
 platelet aggregation, endothelin 277–283

Amino acid requirements
 protein turnover 597–606*
Amino acids
 McArdle’s disease 687–693
Amylin
 roles in physiology, pathology and therapeutics 7–12
Anaplerosis
 McArdle’s disease 687–693
Angina pectoris
 natriuretic peptides, exercise 551–556
Angiotensin
 β2-agonists 433–437
 DNA and RNA synthesis, fibroblasts 557–562
 lithium, tubular reabsorption 351–358
Angiotensin-converting enzyme
 β2-agonists 433–437
1,5-Anhydroglucitol
 total parenteral nutrition, renal tubular function 203–210
Anti-inflammatory drugs
 α1-antitrypsin, neutrophils 331–336
Antibodies
 acetaldehyde adducts, alcoholic heart muscle disease 263–268
Antidiuretic hormone
 hepatocytes, diabetes 671–674
 urine concentration, parathyroid hormone 197–201
Antioxidant defences
 cigarette smoking 485–489
α1-Antitrypsin
 neutrophils, sulphonamides 331–336
Apolipoprotein B-100
 renal tract, betaines 25–27
Betaines
 bacteria, renal tract 25–27
Bile duct ligation
 glomerular thromboxane A2 synthesis, acute renal failure 39–45
Blood flow
 venous occlusion plethysmography 643–649
Blood pressure
 albuminuria, elderly 185–190
 endothelin 509–517
 head-down tilt, spectral analysis 87–93
 heart transplantation, spectral analysis 95–102
 insulin resistance, dietary fructose 719–725
 kidney, genetics 665–670
 power spectral analysis, autonomic nervous system 1–2
 proteinuria, thromboxane receptor antagonists 623–627
 resistance arteries, endothelium 611–622
Blood volume
 carotid baroreceptors, orthostatic hypotension 463–470
Body composition
 dual-energy X-ray absorptiometry 319–324
Bone density
 research in Auckland 12–14
Brain
 ‘New Zealand mortality epidemic’, β-agonists 14–17
 sympathetic nervous system 439–446
Atherosclerosis
 microalbuminuria, transvascular albumin leakage 629–633
 vascular permeability factor, endothelium 141–147
Atrial natriuretic peptide
 angina pectoris, exercise 551–556
 glomerular filtration rate, diabetes 413–419
 haemodynamics, cardiac pacing 165–172
 renin–angiotensin system 81–86
 studies in New Zealand 18–21
Atrium
 G-protein α- and β-subunits, β-adrenoceptor blockade 571–580
Autonomic nervous system
 heart rate variability, spectral analysis 103–109
 heart transplantation, spectral analysis 95–102
 microcirculation, heart failure 501–508*
Bacteria
 renal tract, betaines 25–27
Baroreflex sensitivity
 heart rate variability, spectral analysis 103–109
 power spectral analysis, heart rate 1–2
 statistical dependence 651–655
Breathing pattern
 altitude, newborn infants 345–350
Breathlessness
 morphine inhalation, exercise 447–452
5-Bromodeoxyuridine
 cell cycle, cell proliferation 119–130*
Bronchoconstriction
 sympathetic nervous system 439–446
Subject Index
n-Butyrate
gangliosides, colonic cancer 491-499

Calcium
endothelin, protein kinase C 277-283
parathyroid hormone, urine concentration 197-201
Calcium absorption
intestine, stable strontrium 243-244
Calcium pump
membrane fluidity, hyperlipidaemia 307-310
Calphostin C
platelet aggregation, endothelin 277-283
Cancer
alkali-soluble protein, skeletal muscle 479-484
colon, gangliosides 491-499
Capillary
haemodynamics, heart failure 501-508*
Capsaicin
airways resistance, fenspiride 325-330
Carbohydrate metabolism
regulation, amylin 7-12
Cardiac pacing
haemodynamics, atrial natriuretic peptide 165-172
Cardiomyopathy
acetaldehyde adducts, immunoblotting 263-268
Cardiopulmonary bypass
platelet aggregation, adrenaline 269-275
Cardiopulmonary receptors
head-down tilt, spectral analysis 87-93
Carotid baroreceptors
plasma volume, orthostatic hypotension 463-470
Catabolism
total parenteral nutrition, growth factors 285-292
Catechol-o-methyltransferase
metadrenaline 533-542
Cell cycle
assessment of cell proliferation 119-130*
Cell lineage
myocytes, retrovirus 257-262
Cell proliferation
methods of assessment 119-130*
Chemokines
infection 393-400
Cholesterol esterification
pregnancy 311-318
Cholinesterase
nitric oxide, endothelium 111-117
Chronic obstructive pulmonary disease
fenspiride 325-330
motor control, tracking task 453-461
Cigarette smoking
cytokines, antioxidant defences 485-489
neutrophil chemotaxis, airway epithelial cells 337-344
Cirrhosis
venous responsiveness, noradrenaline 525-531
Citrate
McArdle's disease 687-693
Clinical research
progress in New Zealand 3-27
Clonidine
vascular reactivity, diabetic nephropathy 421-426
Collecting tubule
rubidium uptake, insulin resistance 293-299
Colon
ion transport, platelet-activating factor 51-57
Colonic cancer
gangliosides, n-butyrate 491-499
Confocal microscopy
gap junctions, confocal microscopy 257-262
Congestive heart failure
continuous positive airway pressure, haemodynamics 173-178
Connexin
gap junctions, confocal microscopy 257-262
Continuous ambulatory peritoneal dialysis
diabetes, insulin action 427-432
Continuous positive airway pressure
haemodynamics, congestive heart failure 173-178
respiratory efforts 707-712
Contractile properties
skeletal muscle, growth hormone deficiency 67-71
Control of breathing
altitude, newborn infants 345-350
tracking task, chronic obstructive pulmonary disease 453-461
Copper stable isotopes
kinetic studies, Wilson's disease 727-732
Coproporphyria
uroporphyrin, haem arginate 365-369
Coronary artery flow
exercise, nitrates 635-641
Corticotrophin
regulation of secretion 4-7
Cyclic GMP
glomerular filtration rate, atrial natriuretic peptide 413-419
Cyclo-oxygenase
endothelium, hypertension 611-622
Cytokines
cigarette smoking 485-489
protein synthesis, dietary fats 59-66
sepsis, plasminogen activator 587-594
Daltroban
bile duct ligation, acute renal failure 39–45
proteinuria, blood pressure 623–627
Danish Nutrition Council
trans fatty acids 375–392
Decompression illness
cardiorespiratory abnormalities 595–596
Diabetes
endothelin, resistance artery 519–524
goiter 245–255*
glomerular filtration rate, atrial natriuretic peptide 413–419
glycosylated haemoglobin, semi-carbazide-sensitive amine oxidase 675–679
insulin action, continuous ambulatory peritoneal dialysis 427–432
islet amyloid 7–12
neuropathy, flow motion 191–196
vascular reactivity, clonidine 421–426
vasopressin receptor, hepatocytes 671–674
Dietary fats
protein synthesis, cytokines 59–66
Dietary fructose
insulin resistance, blood pressure 719–725
Dihydroxyphenylglycol
metadrenaline 533–542
Direct analysis
fat mass, dual-energy X-ray absorptiometry 319–324
Disseminated intravascular coagulation
vascular smooth muscle, thrombin 149–157
Diurnal cycling
amino acid requirements 597–606*
DNA
skeletal muscle, weight loss 479–484
DNA synthesis
fibroblasts, angiotensin IV 557–562
Doppler echocardiography
left ventricular filling, brain natriuretic peptide 159–164
Doppler ultrasound
coronary artery flow, nitrates 635–641
Dual-energy X-ray absorptiometry
body composition 319–324
Edrophonium
nitric oxide, endothelium 111–117
Eicosanoids
endothelin, hypertension 611–622
Elderly
albuminuria, blood pressure 185–190
Electrolytes
blood pressure, genetics 665–670
Endothelial cells
nitric oxide, L-arginine 135–139
Endothelin
blood pressure 509–517
focal glomerular sclerosis, low-protein diet 29–37
hypertension 509–517
platelet aggregation, protein kinase C 277–283
Endothelin receptors
focal glomerular sclerosis, low-protein diet 29–37
Endothelium
cholinesterase, nitric oxide 111–117
insulin-dependent diabetes mellitus 245–255*
microcirculation, heart failure 501–508*
resistance arteries, hypertension 611–622
resistance artery, diabetes 519–524
vascular permeability factor, atherosclerosis 141–147
Endothelium-derived relaxing factor
pregnancy 607–610
resistance arteries, hypertension 611–622
Endotoxin
cytokines, dietary fats 59–66
Kupffer cells, ageing 211–217
Energy expenditure
glucose-induced thermogenesis 543–550
Epidermal growth factor
mucosal healing 401–403
Erythrocytes
membrane function, hyperlipidaemia 307–310
metabolic acidosis, inorganic phosphate 405–412
Exercise
breathlessness, morphine inhalation 447–452
coronary artery flow, Doppler ultrasound 635–641
natriuretic peptides, angina pectoris 551–556
Family studies
kidney, hypertension 665–670
Fat mass
dual-energy X-ray absorptiometry, direct analysis 319–324
Feeding
albumin synthesis, stable isotopes 235–242
Fenspiride
airway resistance, capsaicin 325–330
Ferritin
urological disease 701–706
Fetus
lipoprotein metabolism 311–318
Fibrinolysis
sepsis, plasminogen activator 587–594
Flow cytometry
assessment of cell proliferation 119–130*
Flow motion
neuropathy, diabetes 191–196
Focal glomerular sclerosis
endothelin, low-protein diet 29–37
Folate
methyltransferases, brain 73–79
Free fatty acids
kinetics, insulin 681–686
Fructose
insulin resistance, blood pressure 719–725
Frusemide
renin secretion, nitric oxide 657–663
Fumarate
McArdle's disease 687–693

Gangliosides
colon cancer, n-butyrate 491–499
Gap junctions
connexin, confocal microscopy 257–262
Gas chromatography–mass spectrometry
very-low-density lipoprotein apolipoprotein
B-100, density 225–233

Glucose
atrial natriuretic peptide, glomerular filtration rate 413–419
thermogenesis, splanchnic and leg tissue 543–550
Glucose intolerance
glucose transport, skeletal muscle 301–306
Glucose metabolism
insulin action, continuous ambulatory peritoneal dialysis 427–432
Glucose transport
skeletal muscle, glucose intolerance 301–306
Glycerol
insulin 681–686
Glycogenolysis
McArdle's disease 687–693
Glycolysis
inorganic phosphate, metabolic acidosis 405–412
Glycosylated haemoglobin
diabetes, semi-carbazide-sensitive amine oxidase 675–679
Goto–Kakizaki rat
glucose transport, skeletal muscle 301–306
G-protein
α- and β-subunits, atrium 571–580
Growth hormone
alanine, catabolism 285–292
Growth hormone deficiency
skeletal muscle, contractile properties 67–71
GTPase-activating protein
neurofibrin, neurofibromatosis 581–585
Haem arginate
uroporphyrin, coproporphyria 365–369
Haemodynamics
cardiac pacing, atrial natriuretic peptide 165–172
continuous positive airway pressure, congestive heart failure 173–178
head-down tilt, spectral analysis 87–93
microcirculation, heart failure 501–508*
Haemostasis
cardiopulmonary bypass, adrenaline 269–275
Head-down tilt
haemodynamics, spectral analysis 87–93
Heart
gap junctions, connexin 257–262
Heart failure
heart rate variability, spectral analysis 103–109
metadrenaline 533–542
microcirculation, haemodynamics 501–508*
Heart rate
head-down tilt, spectral analysis 87–93
heart transplantation, spectral analysis 95–102
power spectral analysis, autonomic nervous system 1–2
Heart rate variability
spectral analysis, baroreflex sensitivity 103–109
Heart transplantation
blood pressure, spectral analysis 95–102
Heat shock protein
infection 393–400
Heparin
vascular smooth muscle, thrombin 149–157
Hepatocytes
vasopressin receptor, diabetes 671–674
Hering–Breuer reflexes
altitude, newborn infants 345–350
Hirudin
platelet aggregation, adrenaline 269–275
vascular smooth muscle, thrombin 149–157
Human pepsins
acute gastric erosions, cat 47–50
Hyperaldosteronism
 hypertension, hereditary 563–570
Hyperalimentation
 1,5-anhydroglucitol, renal tubular function 203–210
Hyperlipidaemia
 calcium pump, membrane fluidity 307–310
Hyperphosphataemia
 metabolic acidosis, uraemia 405–412
Hypertension
 albuminuria, elderly 185–190
 endothelin 509–517
 hereditary, hyperaldosteronism 563–570
 kidney, genetics 665–670
 metadrenaline 533–542
 resistance arteries, endothelium 611–622
 rubidium uptake, nephron 293–299
Hypomethylation
 brain, vitamin B12 73–79, 471–477
Hypoxia
 vagal reflexes, newborn infants 345–350
Idiopathic pulmonary fibrosis
 superoxide dismutase 371
Infarct artery patency
 thrombolytic therapy 21–24
Infection
 chemokines 393–400
Inflammation
 urinary ferritin 701–706
 inflammatory bowel disease
 platelet-activating factor, synthesis de novo 713–717
Inhalation
 morphine, breathlessness 447–452
Inorganic phosphate
 metabolic acidosis, uraemia 405–412
Insulin
 free fatty acids, kinetics 681–686
 diabetes, continuous ambulatory peritoneal dialysis 427–432
Insulin resistance
 blood pressure, dietary fructose 719–725
 glucose transport, skeletal muscle 301–306
 obesity and hypertension, amylin 7–12
 rubidium uptake, nephron 293–299
 very-low-density lipoprotein apolipoprotein B-100, obesity 225–233
Insulin sensitivity
 insulin action, continuous ambulatory peritoneal dialysis 427–432
 insulin-like growth factor-I alanine, catabolism 285–292
 free fatty acids, kinetics 681–686
 muscle strength, growth hormone deficiency 67–71
Interleukin-1
 Kupffer cells, endotoxin 211–217
Interleukin-6
 cigarette smoking 485–489
 fibrinolysis, sepsis 587–594
 Kupffer cells, endotoxin 211–217
Interleukin-8
 infection 393–400
Internal mammary graft
 exercise, nitrates 635–641
Intestinal trefoil factor
 mucosal healing 401–403
Intestine
 calcium absorption, stable strontium 243–244
 intraperitoneal insulin
 metabolic effects, continuous ambulatory peritoneal dialysis 427–432
Ischaemia
 platelet-activating factor, distal colon 51–57
 Kupffer cells
 kidney, allopurinol 359–364
Jejunum
 absorption, polyunsaturated fat 219–224
Ki-67
 cell cycle, cell proliferation 119–130*
Kidney
 blood pressure, genetics 665–670
 ischaemia, allopurinol 359–364
 81mKr ventilation–perfusion inequality 179–184
 Kupffer cells
 endotoxin, ageing 211–217
Laser Doppler flowmetry
 neuropathy, diabetes 191–196
Lean mass
 dual-energy X-ray absorptiometry, direct analysis 319–324
Left ventricular filling
 Doppler echocardiography, brain natriuretic peptide 159–164
Leucocytes
 sodium–potassium-dependent adenosine triphosphatase, potassium 695–700
Leukotrienes
 Kupffer cells, endotoxin 211–217
Lipoproteins
 pregnancy 311–318
Lithium
 tubular reabsorption, angiotensin II 351–358
<table>
<thead>
<tr>
<th>Subject Index</th>
<th>xix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-protein diet</td>
<td>endothelin gene expression, focal glomerular sclerosis 29–37</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>sodium–potassium-dependent adenosine triphosphatase, potassium 695–700</td>
</tr>
<tr>
<td>Macula densa</td>
<td>renin secretion, nitric oxide 657–663</td>
</tr>
<tr>
<td>Malaria</td>
<td>chemokines 393–400</td>
</tr>
<tr>
<td>Malate</td>
<td>McArdle’s disease 687–693</td>
</tr>
<tr>
<td>Membrane cholesterol</td>
<td>erythrocytes, hyperlipidaemia 307–310</td>
</tr>
<tr>
<td>Membrane fluidity</td>
<td>calcium pump, hyperlipidaemia 307–310</td>
</tr>
<tr>
<td>Messenger RNA</td>
<td>vasopressin receptor, diabetes 671–674</td>
</tr>
<tr>
<td>Metabolic acidosis</td>
<td>inorganic phosphate, uraemia 405–412</td>
</tr>
<tr>
<td>Metadrenaline</td>
<td>sympathetic nervous system 533–542</td>
</tr>
<tr>
<td>Methacholine</td>
<td>nic oxide, endothelium 111–117</td>
</tr>
<tr>
<td>Methionine synthase</td>
<td>methylation ratio, brain 73–79</td>
</tr>
<tr>
<td>Methylation ratio</td>
<td>brain, vitamin B₁₂ 471–477</td>
</tr>
<tr>
<td>Methyltransferases</td>
<td>vitamin B₁₂, brain 73–79</td>
</tr>
<tr>
<td>Malic acid</td>
<td>very-low-density lipoprotein apolipoprotein B-100, obesity 225–233</td>
</tr>
<tr>
<td>Microalbuminuria</td>
<td>diabetes, vascular reactivity 421–426</td>
</tr>
<tr>
<td>Microcirculation</td>
<td>transvascular albumin leakage 629–633</td>
</tr>
<tr>
<td>Monoamine oxidase</td>
<td>metadrenaline 533–542</td>
</tr>
<tr>
<td>Monocyte chemotactic protein</td>
<td>infection 393–400</td>
</tr>
<tr>
<td>Morphine</td>
<td>inhalation, breathlessness 447–452</td>
</tr>
<tr>
<td>Motor control</td>
<td>tracking task, chronic obstructive pulmonary disease 453–461</td>
</tr>
<tr>
<td>Mucosal healing</td>
<td>intestinal trefoil factor, epidermal growth factor 401–403</td>
</tr>
<tr>
<td>Muscarinic receptors</td>
<td>nic oxide, endothelium 111–117</td>
</tr>
<tr>
<td>Muscle contraction</td>
<td>tricarboxylic acid cycle, McArdle’s disease 687–693</td>
</tr>
<tr>
<td>Muscle strength</td>
<td>insulin-like growth factor-I, growth hormone deficiency 67–71</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>thrombolytic therapy, left ventricular function 21–24</td>
</tr>
<tr>
<td>Myocytes</td>
<td>connexin, gap junctions 257–262</td>
</tr>
<tr>
<td>Natriuretic peptides</td>
<td>studies in New Zealand 18–21</td>
</tr>
<tr>
<td>Near-infrared spectroscopy</td>
<td>ischaemia, kidney 359–364</td>
</tr>
<tr>
<td>Neonatal respiration</td>
<td>vagal reflexes, altitude 345–350</td>
</tr>
<tr>
<td>Neurofibroma</td>
<td>neurofibrin, GTPase-activating protein 581–585</td>
</tr>
<tr>
<td>Neurofibromatosis</td>
<td>neurofibrin, GTPase-activating protein 581–585</td>
</tr>
<tr>
<td>Neurofibromin</td>
<td>GTPase-activating protein, neurofibromatosis 581–585</td>
</tr>
<tr>
<td>Neuropathy</td>
<td>diabetes, flow motion 191–196</td>
</tr>
<tr>
<td>Neuropeptide Y</td>
<td>bronchoconstriction 439–446</td>
</tr>
<tr>
<td>Neutrophil chemotaxis</td>
<td>airway epithelial cells, cigarette smoking 337–344</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>α₁-antitrypsin, sulphonamides 331–336</td>
</tr>
<tr>
<td>New Zealand</td>
<td>progress in clinical research 3–27</td>
</tr>
<tr>
<td>‘New Zealand asthma mortality epidemic’</td>
<td>β-agonists 14–17</td>
</tr>
<tr>
<td>Newborn infants</td>
<td>vagal reflexes, altitude 345–350</td>
</tr>
<tr>
<td>Nitrates</td>
<td>coronary artery flow, Doppler ultrasound 635–641</td>
</tr>
<tr>
<td>Nitric oxide</td>
<td>cholinesterase, endothelium 111–117</td>
</tr>
<tr>
<td>endothelial cells, L-arginine 135–139</td>
<td></td>
</tr>
<tr>
<td>endothotoxin shock, thrombin 149–157</td>
<td></td>
</tr>
<tr>
<td>insulin-dependent diabetes mellitus 245–255*</td>
<td></td>
</tr>
<tr>
<td>pregnancy 607–610</td>
<td></td>
</tr>
<tr>
<td>renin secretion, macula densa 657–663</td>
<td></td>
</tr>
<tr>
<td>resistance arteries, hypertension 611–622</td>
<td></td>
</tr>
<tr>
<td>resistance artery, diabetes 519–524</td>
<td></td>
</tr>
<tr>
<td>septic shock 131–133</td>
<td></td>
</tr>
</tbody>
</table>
Nitric oxide synthase
endothelial cells, L-arginine 135–139
septic shock 131–133
N^G^-Nitro-L-arginine methyl ester
renin secretion, macula densa 657–663
Nitrogen balance
amino acid requirements 597–606*
Nitrous oxide
methylation ratio, brain 73–79
Noradrenaline
bronchoconstriction 439–446
vascular reactivity, diabetic
nephropathy 421–426
venous responsiveness, cirrhosis 525–531
Normetadrenaline
sympathetic nervous system 533–542
Norrie disease
metadrenaline 533–542
Obesity
very-low-density lipoprotein apolipoprotein B-100, insulin resistance 225–233
Oedema
microcirculation, heart failure 501–508*
Orthophosphate
metabolic acidosis, uraemia 405–412
Orthostatic hypotension
carotid baroreceptors, plasma volume 463–470
Osteoporosis
research in Auckland 12–14
Ouabain
sodium-potassium-dependent adenosine triphosphatase, lymphocytes 695–700
Oxidative metabolism
McArdle's disease 687–693
Oxygen uptake
glucose-induced thermogenesis 543–550
Parathyroid hormone
urine concentration, arginine vasopressin 197–201
Patent foramen ovale
decompression illness 595–596
Pepsins
acute gastric erosions, cat 47–50
Permeability
distal colon, platelet-activating factor 51–57
Phaeochromocytoma
metadrenaline 533–542
Phenylephrine
vascular reactivity, diabetic nephropathy 421–426
Plasma volume
carotid baroreceptors, orthostatic hypotension 463–470
Plasminogen activator
fibrinolysis, sepsis 587–594
Plasminogen activator inhibitor 1
fibrinolysis, sepsis 587–594
Platelet aggregation
cardiopulmonary bypass, adrenaline 269–275
endothelin, protein kinase C 277–283
Platelet-activating factor
ion transport, distal colon 51–57
synthesis de novo, inflammatory bowel disease 713–717
Platelet-derived growth factor
endothelium, atherosclerosis 141–147
Polyamine
cell cycle, cell proliferation 119–130*
Polyol
total parenteral nutrition, renal tubular function 203–210
Polyunsaturated fat
jejunal function 219–224
Porphobilinogen deaminase
uroporphyrin, haem arginate 365–369
Postmenopausal osteoporosis
research in Auckland 12–14
Potassium
sodium-potassium-dependent adenosine triphosphatase, lymphocytes 695–700
Potassium channels
endothelium, hypertension 611–622
Power spectral analysis
heart rate, blood pressure 1–2
Pre-ascitic cirrhosis
venous responsiveness, noradrenaline 525–531
Pre-eclampsia
nitric oxide 607–610
Pregnancy
lipoprotein metabolism 311–318
nitric oxide 607–610
Proliferating cell nuclear antigen
cell cycle, cell proliferation 119–130*
Prostaglandins
Kupffer cells, endotoxin 211–217
Protein
hypomethylation, vitamin B₁₂ 471–477
Protein kinase C
endothelin, platelet aggregation 277–283
Protein synthesis
cytokines, dietary fats 59–66
Protein turnover
amino acid requirements 596–606*
Proteinuria
blood pressure, thromboxane receptor antagonists 623–627
Proximal convoluted tubule
rubidium uptake, insulin resistance 293–299
Subject Index

Pulmonary artery pressure
fenspiride 325–330

Renal tract
bacteria, betaines 25–27

Renal tubular function
total parenteral nutrition,
1,5-anhydroglucitol 203–210

Renin–angiotensin system
β₂-agonists 433–437
natriuretic peptides 81–86

Renin secretion
macula densa, nitric oxide 657–663

Resistance arteries
diabetes, glycosylated haemoglobin 675–679

Respiratory efforts
upper airway pressure 707–712

Retrovirus
cell lineage, myocytes 257–262

RNA
skeletal muscle, weight loss 479–484

RNA synthesis
fibroblasts, angiotensin IV 557–562

Rubidium uptake
nephron, insulin resistance 293–299

Secretion
jejenum, polyunsaturated fat 219–224

Semi-carbazide-sensitive amine oxidase
diabetes, glycosylated haemoglobin 675–679

Sepsis
chemokines 393–400
fibrinolysis, plasminogen activator 587–594
nitric oxide synthase 131–133

Serum lipids
insulin action, continuous ambulatory peritoneal dialysis 427–432

Sialic acid
colonic cancer, n-butyrate 491–499

Skeletal muscle
alkali-soluble protein, weight loss 479–484
catabolism, growth factors 285–292
contractile properties, growth hormone deficiency 67–71
glucose transport, glucose intolerance 301–306
glucose-induced thermogenesis 543–550

Sleep apnoea–hypopnoea
respiratory efforts 707–712

Sodium
nephron, insulin resistance 293–299
venous responsiveness, noradrenaline 525–531
Sodium–potassium-dependent adenosine triphosphatase
nephron, insulin resistance 293–299

potassium, lymphocytes 695–700

Spectral analysis
blood pressure, heart transplantation 95–102
haemodynamics, head-down tilt 87–93
heart rate variability, baroreflex sensitivity 103–109

Splanchnic tissues
glucose-induced thermogenesis 543–550

Stable isotopes
albumin synthesis, feeding 235–242
very-low-density lipoprotein B-100, hepatic secretion 225–233

Statistical dependence
baroreflex sensitivity 651–655

Staurosporine
platelet aggregation, endothelin 277–283

Steroid osteoporosis
research in Auckland 12–14

Strontium
calcium absorption, intestine 243–244

Subacute combined degeneration
hypomethylation, vitamin B₁₂ 471–477

Subcutaneous insulin
metabolic effects, continuous ambulatory peritoneal dialysis 427–432

Sulphonamides
α₁-antitrypsin, neutrophils 331–336

Superoxide dismutase
idiopathic pulmonary fibrosis 371

Surgery
alkali-soluble protein, skeletal muscle 479–484

Sympathetic nervous system
bronchoconstriction 439–446
metadrenaline 533–542

Tachycardia
cardiac pacing, atrial natriuretic peptide 165–172

Thermogenesis
glucose, splanchnic and leg tissue 543–550

Thick ascending limb of Henle
rubidium uptake, insulin resistance 293–299

Thrombin
platelet aggregation, endothelin 277–283
vascular smooth muscle, endotoxic shock 149–157

Thrombolytic therapy
left ventricular function, myocardial infarction 21–24

Thromboxane A₂
glomerular synthesis, acute renal failure 39–45
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thromboxane A<sub>2</sub>/prostaglandin H<sub>2</sub> receptor antagonism</td>
</tr>
<tr>
<td>bile duct ligation, acute renal failure</td>
</tr>
<tr>
<td>Thromboxane receptor antagonists</td>
</tr>
<tr>
<td>proteinuria, blood pressure</td>
</tr>
<tr>
<td>Thymidine</td>
</tr>
<tr>
<td>cell cycle, cell proliferation</td>
</tr>
<tr>
<td>Thymidine incorporation</td>
</tr>
<tr>
<td>fibroblasts, angiotensin IV</td>
</tr>
<tr>
<td>Tilt</td>
</tr>
<tr>
<td>blood pressure, heart transplantation</td>
</tr>
<tr>
<td>Tissue factor</td>
</tr>
<tr>
<td>fibrinolysis, sepsis</td>
</tr>
<tr>
<td>Tissue-type plasminogen activator</td>
</tr>
<tr>
<td>fibrinolysis, sepsis</td>
</tr>
<tr>
<td>Total enteral nutrition</td>
</tr>
<tr>
<td>1,5-anhydroglucitol, renal tubular function</td>
</tr>
<tr>
<td>Total parenteral nutrition</td>
</tr>
<tr>
<td>1,5-anhydroglucitol, renal tubular function</td>
</tr>
<tr>
<td>catabolism, growth factors</td>
</tr>
<tr>
<td>Toxoplasmosis</td>
</tr>
<tr>
<td>chemokines</td>
</tr>
<tr>
<td>Tracking task</td>
</tr>
<tr>
<td>motor control, obstructive pulmonary disease</td>
</tr>
<tr>
<td>trans Fatty acids</td>
</tr>
<tr>
<td>influence on health</td>
</tr>
<tr>
<td>Transfer function analysis</td>
</tr>
<tr>
<td>haemodynamics, head-down tilt</td>
</tr>
<tr>
<td>Transitional cell carcinoma</td>
</tr>
<tr>
<td>urinary ferritin</td>
</tr>
<tr>
<td>Transvascular albumin leakge</td>
</tr>
<tr>
<td>microalbuminuria, atherosclerosis</td>
</tr>
<tr>
<td>Triacylglycerol</td>
</tr>
<tr>
<td>membrane function, hyperlipidaemia</td>
</tr>
<tr>
<td>Tricarboxylic acid cycle</td>
</tr>
<tr>
<td>McArdle's disease</td>
</tr>
<tr>
<td>Tuberculosis</td>
</tr>
<tr>
<td>chemokines</td>
</tr>
<tr>
<td>Tubular reabsorption</td>
</tr>
<tr>
<td>lithium, angiotensin II</td>
</tr>
<tr>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>cigarette smoking</td>
</tr>
<tr>
<td>fibrinolysis, sepsis</td>
</tr>
<tr>
<td>Kupffer cells, endotoxin</td>
</tr>
<tr>
<td>Tumour-infiltrating lymphocytes</td>
</tr>
<tr>
<td>urinary ferritin</td>
</tr>
<tr>
<td>Upper airway pressure</td>
</tr>
<tr>
<td>respiratory efforts</td>
</tr>
<tr>
<td>Uraemia</td>
</tr>
<tr>
<td>metabolic acidosis, inorganic phosphate</td>
</tr>
<tr>
<td>Uridine incorporation</td>
</tr>
<tr>
<td>fibroblasts, angiotensin IV</td>
</tr>
<tr>
<td>Urinary albumin excretion</td>
</tr>
<tr>
<td>transvascular albumin leakage, atherosclerosis</td>
</tr>
<tr>
<td>Urine concentration</td>
</tr>
<tr>
<td>parathyroid hormone, arginine vasopressin</td>
</tr>
<tr>
<td>Urological disease</td>
</tr>
<tr>
<td>ferritin</td>
</tr>
<tr>
<td>Uroporphyrin</td>
</tr>
<tr>
<td>coproporphyrin, haem arginate</td>
</tr>
<tr>
<td>Vagal reflexes</td>
</tr>
<tr>
<td>altitude, newborn infants</td>
</tr>
<tr>
<td>Variability</td>
</tr>
<tr>
<td>blood pressure, heart transplantation</td>
</tr>
<tr>
<td>Vascular conductance</td>
</tr>
<tr>
<td>venous occlusion plethysmography</td>
</tr>
<tr>
<td>Vascular permeability factor</td>
</tr>
<tr>
<td>endothelium, atherosclerosis</td>
</tr>
<tr>
<td>Vascular reactivity</td>
</tr>
<tr>
<td>diabetic nephropathy, clonidine</td>
</tr>
<tr>
<td>Vascular smooth muscle</td>
</tr>
<tr>
<td>endotoxic shock</td>
</tr>
<tr>
<td>vascular permeability factor, atherosclerosis</td>
</tr>
<tr>
<td>Vasoconstriction</td>
</tr>
<tr>
<td>endothelin, hypertension</td>
</tr>
<tr>
<td>Vasodilatation</td>
</tr>
<tr>
<td>resistance artery, diabetes</td>
</tr>
<tr>
<td>venous occlusion plethysmography</td>
</tr>
<tr>
<td>Vasomotion</td>
</tr>
<tr>
<td>neuropathy, diabetes</td>
</tr>
<tr>
<td>Vasopressin</td>
</tr>
<tr>
<td>haemodynamics, cardiac pacing</td>
</tr>
<tr>
<td>Vasopressin receptor</td>
</tr>
<tr>
<td>hepatocytes, diabetes</td>
</tr>
<tr>
<td>Venous occlusion plethysmography</td>
</tr>
<tr>
<td>blood flow</td>
</tr>
<tr>
<td>Venous responsiveness</td>
</tr>
<tr>
<td>noradrenaline, pre-ascitic cirrhosis</td>
</tr>
<tr>
<td>Ventilation</td>
</tr>
<tr>
<td>fenspiride</td>
</tr>
<tr>
<td>Ventilation-perfusion inequality</td>
</tr>
<tr>
<td><sup>81</sup>Kr, <sup>99</sup>Tc</td>
</tr>
<tr>
<td>Very-low-density lipoprotein apolipoprotein B-100</td>
</tr>
<tr>
<td>hepatic secretion, obesity</td>
</tr>
<tr>
<td>Vitamin B<sub>12</sub></td>
</tr>
<tr>
<td>hypomethylation, brain</td>
</tr>
<tr>
<td>methyltransferases, brain</td>
</tr>
<tr>
<td>Weight loss</td>
</tr>
<tr>
<td>alkali-soluble protein, skeletal muscle</td>
</tr>
<tr>
<td>Wilson's disease</td>
</tr>
<tr>
<td>copper stable isotopes, kinetic studies</td>
</tr>
</tbody>
</table>
Contents continued

Long-term fructose versus corn starch feeding in the spontaneously hypertensive rat by M. R. van der Schaaf, J. A. Joles, A. van Tol and H. A. Koornans 719–725

Correction

Physiology and pathophysiology of heart rate and blood pressure variability in humans: is power spectral analysis largely an index of baroreflex gain? by P. Sleight, M. T. La Rovere, A. Mortara, G. Pinna, R. Maestri, S. Leuzzi, B. Bianchini, L. Tavazzi and L. Bernardi, 733

Author Index

Subject Index