Volume 86

AUTHOR INDEX

Ahlman, B. 653–662
Albano, J.D.M. 227–231
Aldred, G.P. 517–522
Amris, S. 433–440
Andersson, K. 653–662
Angus, R.M. 291–295
Arnal, M. 663–669
Arvesen, B.L. 505–510
Ashby, M.J. 723–730
Atucha, N.M. 405–409

Baggio, B. 239–243
Balcke, P. 633–638
Ballardie, F.W. 627–632
Balsama, M. 209–215
Bem-Ishay, D. 263–268
Benestad, H.B. 505–510
Bengtsson, A.-A. 233–237
Beretta-Piccoli, C. 383–390
Berne, C. 159–167

Biaggioni, I. 149–158
Bigs, T. 639–644
Bin Talib, H.K. 11–14
Black, C.M. 141–148
Bone, D. 15–25
Bongiovi, S. 27–34
Bossaert, L. 49–53
Bowron, A. 697–702
Breuille, D. 663–669
Brittenden, J. 123–132
Broom, J. 339–345

Broughton Pipkin, F. 557–565
Brouwer, J. 531–535
Brown, D.S. 339–345
Brown, J. 723–730
Brown, M.A. 251–255, 575–581
Brown, M.J. 723–730
Brundin, T. 611–618
Buddle, M.L. 251–255
Burggraaf, J. 497–503
Byrne, C. 297–303

Calder, A.G. 177–184
Calver, A. 203–208
Cambrey, A.D. 141–148
Campbell, S.K. 227–231
Cario, G.M. 251–255
Carlton, M.A. 251–255
Carstensen, E. 35–41
Casiglia, E. 27–34
Castaigne, A. 523–529
Castaldo, G. 447–451
Caunce, M. 43–48
Cavallin, S. 133–139
Cayton, R.M. 59–65
Ceolotto, G. 239–243
Cervenka, J.H. 149–158
Challners, R.J.G. 627–632
Chawtur, V. 223–226
Chen, H.C. 689–695
Cheung, B.M.Y. 723–730
Clark, M.L. 169–175, 469–477
Clark, R. 709–714
Cochran, M. 223–226
Coffman, J.D. 269–273
Cohen, A.F. 497–503
Cohen, R.A. 269–273
Colangeli, G. 27–34
Connolly, C.K. 645
Coppack, S. 177–184
Cowan, S.J. 479–485
Crijns, H.J.G.M. 531–535
Croft, K.D. 83–90
Crosby, J. 417–424
Curzen, N.P. 359–374
Cusi, D. 383–390

Dassi, S. 209–215
Davidson, C. 297–303
Davies, M. 627–632
Davies, R.J.O. 417–424
Davis, T.M.E. 83–90
De Backer, W.A. 49–53
De Jongh, R.F. 49–53
De Wit, L.Th. 67–74
Deicher, H. 461–467
Devynck, M.-A. 263–268
Dias, J.A. 469–477
Dickerson, J.E.C. 723–730
Dilena, B. 223–226
Dobesova, Z. 11–14
Doherty, J.F. 347–351
Donaldson, G.C. 43–48
du Bois, R.M. 141–148
Dubois-Randt, J.L. 523–529
Duval-Moulin, A.M. 523–529

Edwards, B.D. 627–632
Ekman, A.-C. 285–290
Elia, M. 177–184
Elshater-Zanetti, F. 383–390
Eremin, O. 123–132, 339–345, 671–675
Evans, T.W. 359–374

Fagius, J. 159–167
Falcone, C. 537–545
Falcover, J.S. 479–485
Farrer, A. 227–231
Farthing, M.J.G. 469–477
Fearon, K.C.H. 479–485
Finardi, G. 537–545
Fortunato, G. 447–451
Fraenkel, M.B. 517–522
Franco-Bourland, R.E. 149–158
Frants, R.R. 323–329
Frayn, K.N. 169–175, 177–184
Freeman, W. 59–65
Freyschuss, U. 425–432

Gallati, H. 461–467
Gambaro, G. 239–243
Garcia-Estañ, J. 405–409
Garlick, P.J. 339–345, 671–675
Geisert, J. 245–249
Gevers Leuven, J. 323–329
Ginocchio, G. 27–34
GO, H. 703–707
Godsland, I.F. 317–322
Golden, M.H.N. 347–351
Golinski, P. 741–747
Goodall, A.H. 731–739
Goode, H.F. 411–415
Gottsauner-Wolf, M. 633–638
Goyal, M. 749–751
Griffin, G.E. 347–351
Griffiths, A.J. 169-175
Griffiths, M.J.D. 359-374
Groen, A.K. 67-74, 75-82
Guzzetti, S. 209-215
Haaksma, J. 531-535
Halliday, D. 91-102, 103-118, 185-193
Hamada, M. 257-262
Hannan, W.J. 479-485
Hardy, E. 195-202
Harris, A. 203-208
Harrison, N.K. 141-148
Hatano, A. 703-707
Hatch, M. 195-202
Heales, S. 697-702
Hedenborg, L. 653-662
Heintz, J.F. 523-529
Helwig, J.-J. 245-249
Henriksson, J. 15-25
Herlitz, H. 233-237
Heys, S.D. 123-132, 339-345, 671-675
Hickner, R.C. 15-25
Hirose, H. 311-316
Hittinger, L. 523-529
Hiwada, K. 257-262
Hoeks, A.P.G. 567-574
Hofstra, L. 567-574
Holthues, J. 741-747
Horn, E.H. 195-202
Howarth, J.A. 453-460
Howdle, P.D. 411-415
Huismann, L. 497-503
Humphreys, S.M. 169-175
Hurley, M.V. 305-310
Huvers, F.C. 567-574
Ipallomeni, M. 447-451
Ito, K. 311-316
Iversen, P.O. 433-440, 505-510
Jackson, A.A. 217-222, 441-446
Jacobs, M.-C.G.S. 275-283
Jamison, P.J. 646
Janes, S.L. 731-739
Jansen, T.L.Th.A. 275-283
Jen, T. 433-440
Jones, D.W. 305-310
Jonsson, O. 233-237
Jørgensen, P.G. 49-53
Jorfeldt, L. 15-25
Jude, C. 245-249
Kanno, Y. 399-404
Keatinge, W.R. 43-48
Keil, M. 633-638
Kester, A.D.M. 567-574
Khan, K. 177-184
Kido, K. 311-316
Kitslaar, P.J.E.H.M. 567-574
Klinkspoor, J.H. 67-74, 75-82
Klitgaard, H. 433-440
Kluft, C. 567-574
Koelleman, C.A.M. 75-82
Kohner, E.M. 689-695
Komyama, T. 75-82
Koyama, K. 311-316
Kroon, J.M. 497-503
Kunes, J. 11-14, 263-268
Kurpad, A. 177-184
Kurz, R.W. 633-638
Lacour, B. 263-268
Langlais, P.J. 149-158
Langley, S.C. 217-222
Laurent, G.J. 141-148
Le Quan Sang, K.H. 263-268
Leijonmarck, C.-H. 653-662
Lenders, J.W.M. 275-283
Leppäluoto, J. 285-290
Levi, E. 537-545
Levine, G.L. 149-158
Leuzzi, S. 537-545
Lipworth, B.J. 331-337
Liu, P.T. 453-460
Ljungqvist, O. 653-662
Lomas, D.A. 489-495
Lucini, D. 547-556
Macdonald, I.A. 177-184, 677-687
Madrazo, I. 149-158
Malliani, A. 209-215, 547-556
Marber, M.S. 375-381
Marchesi, E. 537-545
Marchini, F. 239-243
Mario, L. 27-34
Martinelli, L. 537-545
Maruyama, H. 311-316
Massfelder, T. 245-249
Mattock, M. 43-48
Mawer, E.B. 627-632
Maxwell, J.D. 203-208
McAnulty, R.J. 141-148
McCall, R. 291-295
McDevitt, D.G. 331-337
McDougall, J.G. 517-522
McFarlane, L.C. 331-337
McGrath, J.C. 291-295
McKinley, R.K. 646
McNurlan, M.A. 339-345, 671-675
Mehring, N. 741-747
Mekhtien, S. 83-90
Mela, G.S. 547-556
Meln, C. 663-669
Mikhailidis, D.P. 593-598
Millar, J.G.B. 227-231
Millward, D.J. 91-102, 103-118, 185-193
Mizusawa, T. 703-707
Morel, D.R. 599-610
Morrell, N.W. 639-644
Morris, B.J. 583-592
Mortensen, D. 709-714
Moss, D.W. 447-451
Mourad, F.H. 469-477
Müller, M.J. 461-467
Myers, A.R. 141-148
Nally, J.E. 291-295
Neild, P.J. 43-48
Neusser, M. 741-747
Newham, D.J. 305-310
Nicholls, M.G. 599-610
Nijgaard, I. 433-440
Nordgren, N. 425-432
Obled, C. 663-669
Ockeng, J. 461-467
O’Connell, G. 297-303
O’Connor, D.T. 149-158
Okada, H. 399-404
Okayama, H. 257-262
Ormerod, L.P. 749-751
Oude Elferink, R.P.J. 67-74
Overgaard, O. 433-440
Packe, G.E. 59-65
Pacy, P.J. 91-102, 103-118, 185-193
Pagani, M. 209-215, 547-556
Palatini, P. 27-34
Park, K.G.M. 123-132, 339-345, 671-675
Parke, D.V. 453-460
Parkin, H. 677-687
Parmer, R.J. 149-158
Patel, V. 689-695
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedersen, E.B.</td>
<td>715–721</td>
</tr>
<tr>
<td>Perchet, H.</td>
<td>523–529</td>
</tr>
<tr>
<td>Persson, B.</td>
<td>425–432</td>
</tr>
<tr>
<td>Pessina, A.C.</td>
<td>27–34, 239–243</td>
</tr>
<tr>
<td>Phillips, J.W.</td>
<td>223–226</td>
</tr>
<tr>
<td>Pidgeon, G.B.</td>
<td>391–397</td>
</tr>
<tr>
<td>Piers, L.S.</td>
<td>441–446</td>
</tr>
<tr>
<td>Pleister, C.E.</td>
<td>479–485</td>
</tr>
<tr>
<td>Ponti, G.B.</td>
<td>209–215</td>
</tr>
<tr>
<td>Pouillart, F.</td>
<td>523–529</td>
</tr>
<tr>
<td>Price, G.M.</td>
<td>91–102, 103–118, 185–193</td>
</tr>
<tr>
<td>Pride, N.B.</td>
<td>55–58</td>
</tr>
<tr>
<td>Prothero, A.</td>
<td>417–424</td>
</tr>
<tr>
<td>Quesada, T.</td>
<td>405–409</td>
</tr>
<tr>
<td>Quevedo, M.R.</td>
<td>91–102, 103–118, 185–193</td>
</tr>
<tr>
<td>Rabkin, R.</td>
<td>709–714</td>
</tr>
<tr>
<td>Radaelli, A.</td>
<td>537–545</td>
</tr>
<tr>
<td>Ramirez, A.</td>
<td>405–409</td>
</tr>
<tr>
<td>Ramsay, M.M.</td>
<td>557–565</td>
</tr>
<tr>
<td>Rassam, S.M.B.</td>
<td>689–695</td>
</tr>
<tr>
<td>Raymond, F.D.</td>
<td>447–451</td>
</tr>
<tr>
<td>Reiter, L.</td>
<td>575–581</td>
</tr>
<tr>
<td>Remick, D.G.</td>
<td>347–351</td>
</tr>
<tr>
<td>Richards, A.M.</td>
<td>391–397</td>
</tr>
<tr>
<td>Richardsson, R.A.</td>
<td>479–485</td>
</tr>
<tr>
<td>Rinaldi, M.</td>
<td>537–545</td>
</tr>
<tr>
<td>Robertson, D.</td>
<td>149–158</td>
</tr>
<tr>
<td>Robinson, B.G.</td>
<td>583–592</td>
</tr>
<tr>
<td>Rodger, A.</td>
<td>575–581</td>
</tr>
<tr>
<td>Rose, F.</td>
<td>663–669</td>
</tr>
<tr>
<td>Ross, J.</td>
<td>123–132</td>
</tr>
<tr>
<td>Rubin, P.C.</td>
<td>195–202, 557–565</td>
</tr>
<tr>
<td>Salim, A.F.M.</td>
<td>469–477</td>
</tr>
<tr>
<td>Salvatore, F.</td>
<td>447–451</td>
</tr>
<tr>
<td>Saruta, T.</td>
<td>311–316, 399–404</td>
</tr>
<tr>
<td>Sato, F.</td>
<td>133–139</td>
</tr>
<tr>
<td>Sato, K.</td>
<td>133–139</td>
</tr>
<tr>
<td>Satò, K.T.</td>
<td>133–139</td>
</tr>
<tr>
<td>Saussine, C.</td>
<td>245–249</td>
</tr>
<tr>
<td>Schaper, N.C.</td>
<td>567–574</td>
</tr>
<tr>
<td>Schoemaker, H.C.</td>
<td>497–503</td>
</tr>
<tr>
<td>Schwieger, I.M.</td>
<td>599–610</td>
</tr>
<tr>
<td>Seed, W.A.</td>
<td>639–644</td>
</tr>
<tr>
<td>Selberg, O.</td>
<td>461–467</td>
</tr>
<tr>
<td>Selldén, E.</td>
<td>611–618</td>
</tr>
<tr>
<td>Semplicini, A.</td>
<td>239–243</td>
</tr>
<tr>
<td>Sestofí, L.</td>
<td>433–440</td>
</tr>
<tr>
<td>Shaw, A.J.</td>
<td>627–632</td>
</tr>
<tr>
<td>Shaw, R.J.</td>
<td>749–751</td>
</tr>
<tr>
<td>Shaw, S.</td>
<td>383–390</td>
</tr>
<tr>
<td>Shetty, P.S.</td>
<td>441–446</td>
</tr>
<tr>
<td>Simek, M.M.</td>
<td>557–565</td>
</tr>
<tr>
<td>Smelt, A.H.M.</td>
<td>323–329</td>
</tr>
<tr>
<td>Smiths, M.</td>
<td>275–283</td>
</tr>
<tr>
<td>Soares, M.</td>
<td>441–446</td>
</tr>
<tr>
<td>Sorensen, S.S.</td>
<td>715–721</td>
</tr>
<tr>
<td>Southcott, A.M.</td>
<td>141–148</td>
</tr>
<tr>
<td>Spencer, J.L.</td>
<td>83–90</td>
</tr>
<tr>
<td>Stockenhuber, F.</td>
<td>633–638</td>
</tr>
<tr>
<td>Stone, R.A.</td>
<td>149–158</td>
</tr>
<tr>
<td>Stradling, J.R.</td>
<td>417–424</td>
</tr>
<tr>
<td>Strong, P.</td>
<td>593–598</td>
</tr>
<tr>
<td>Struthers, A.D.</td>
<td>1–9</td>
</tr>
<tr>
<td>Sturrock, N.D.C.</td>
<td>1–9</td>
</tr>
<tr>
<td>Suputtamongkol, Y.</td>
<td>83–90</td>
</tr>
<tr>
<td>Surtees, R.</td>
<td>697–702</td>
</tr>
<tr>
<td>Süß, U.</td>
<td>461–467</td>
</tr>
<tr>
<td>Suzuki, H.</td>
<td>399–404</td>
</tr>
<tr>
<td>Swan, J.W.</td>
<td>317–322</td>
</tr>
<tr>
<td>Symons, A.M.</td>
<td>453–460</td>
</tr>
<tr>
<td>Sundercombe-Court, D.</td>
<td>43–48</td>
</tr>
<tr>
<td>Takeda, M.</td>
<td>703–707</td>
</tr>
<tr>
<td>Tanikawa, T.</td>
<td>703–707</td>
</tr>
<tr>
<td>Tashiro, Y.</td>
<td>311–316</td>
</tr>
<tr>
<td>Tepel, M.</td>
<td>741–747</td>
</tr>
<tr>
<td>Thien, T.</td>
<td>275–283</td>
</tr>
<tr>
<td>Thillainayagam, A.V.</td>
<td>469–477</td>
</tr>
<tr>
<td>Thompson, C.S.</td>
<td>593–598</td>
</tr>
<tr>
<td>Thomson, N.C.</td>
<td>291–295</td>
</tr>
<tr>
<td>Tsutsui, T.</td>
<td>703–707</td>
</tr>
<tr>
<td>Turnberg, L.A.</td>
<td>619–626</td>
</tr>
<tr>
<td>Tyltgat, G.N.J.</td>
<td>67–74, 75–82</td>
</tr>
<tr>
<td>Ungerstedt, U.</td>
<td>15–25</td>
</tr>
<tr>
<td>Vakkuri, O.</td>
<td>285–290</td>
</tr>
<tr>
<td>Vallance, P.</td>
<td>203–208</td>
</tr>
<tr>
<td>Valle, F.</td>
<td>537–545</td>
</tr>
<tr>
<td>van den Berg, M.P.</td>
<td>531–535</td>
</tr>
<tr>
<td>van den Maagdenberg, A.M.J.M.</td>
<td>323–329</td>
</tr>
<tr>
<td>Van den Laarse, A.</td>
<td>323–329</td>
</tr>
<tr>
<td>Van Dijk, W.</td>
<td>75–82</td>
</tr>
<tr>
<td>Van Overveld, F.J.</td>
<td>49–53</td>
</tr>
<tr>
<td>Van 'T Hooft, F.M.</td>
<td>323–329</td>
</tr>
<tr>
<td>Van Wijland, M.J.A.</td>
<td>67–74, 75–82</td>
</tr>
<tr>
<td>Vaziri, N.D.</td>
<td>353–357, 511–516</td>
</tr>
<tr>
<td>Viganò, M.</td>
<td>537–545</td>
</tr>
<tr>
<td>Vincenti, M.</td>
<td>239–243</td>
</tr>
<tr>
<td>Vrana, A.</td>
<td>11–14</td>
</tr>
<tr>
<td>Vroom, T.F.F.P.</td>
<td>323–329</td>
</tr>
<tr>
<td>Vuolteenaho, O.</td>
<td>285–290</td>
</tr>
<tr>
<td>Wahren, J.</td>
<td>611–618</td>
</tr>
<tr>
<td>Walker, B.E.</td>
<td>411–415</td>
</tr>
<tr>
<td>Walter, P.</td>
<td>49–53</td>
</tr>
<tr>
<td>Walton, C.</td>
<td>317–322</td>
</tr>
<tr>
<td>Wang, M.-X.</td>
<td>251–255</td>
</tr>
<tr>
<td>Wardle, T.D.</td>
<td>619–626</td>
</tr>
<tr>
<td>Waterloo, J.C.</td>
<td>441–446</td>
</tr>
<tr>
<td>Webber, J.</td>
<td>677–687</td>
</tr>
<tr>
<td>Weber, A.</td>
<td>599–610</td>
</tr>
<tr>
<td>Webster, N.R.</td>
<td>411–415</td>
</tr>
<tr>
<td>Weidmann, P.</td>
<td>383–390</td>
</tr>
<tr>
<td>Werner, J.</td>
<td>653–662</td>
</tr>
<tr>
<td>Wheelton, N.M.</td>
<td>331–337</td>
</tr>
<tr>
<td>White, N.J.</td>
<td>83–90</td>
</tr>
<tr>
<td>Whitworth, J.A.</td>
<td>251–255, 575–581</td>
</tr>
<tr>
<td>Wilmshurst, P.</td>
<td>297–303</td>
</tr>
<tr>
<td>Wilson, S.G.</td>
<td>83–90</td>
</tr>
<tr>
<td>Wurmig, C.</td>
<td>633–638</td>
</tr>
<tr>
<td>Yamamura, Y.</td>
<td>399–404</td>
</tr>
<tr>
<td>Yandle, T.G.</td>
<td>391–397</td>
</tr>
<tr>
<td>Yap, J.C.H.</td>
<td>55–58</td>
</tr>
<tr>
<td>Young, L.C.</td>
<td>291–295</td>
</tr>
<tr>
<td>Yudkin, J.S.</td>
<td>35–41</td>
</tr>
<tr>
<td>Zammit, V.C.</td>
<td>251–255</td>
</tr>
<tr>
<td>Zee, R.Y.L.</td>
<td>583–592</td>
</tr>
<tr>
<td>Zhao, S.-P.</td>
<td>323–329</td>
</tr>
<tr>
<td>Zhu, Z.</td>
<td>741–747</td>
</tr>
<tr>
<td>Ziclia, J.</td>
<td>11–14, 263–268</td>
</tr>
<tr>
<td>Zidek, W.</td>
<td>741–747</td>
</tr>
</tbody>
</table>
Acetylcholine
isolated perfused kidney, vasorelaxation 245–249

Acquired immunodeficiency syndrome
malnutrition, tumour necrosis factor 461–467

Acute diarrhoea
rotavirus infection, oral rehydration 469–477

Acute renal failure
insulin-like growth factor-1 709–714

Acute tubular necrosis
insulin-like growth factor-1 709–714

Acute-phase protein
sepsis 663–669

Adenosine receptor agonist
lipolysis, diabetic ketoacidosis 593–598

S-Adenosylmethionine
tetrahydrofolates, biogenic monoamines 697–702

Adipose tissue
metabolism, ketone bodies 677–687

Adolescents
blood pressure, exercise 425–432

Adrenaline
physical and psychological stress 35–41

β-Adrenoceptor antagonists
chronic heart failure, Doppler echocardiography 523–529
heart rate variability, computer analysis 547–556

β-Adrenoceptors
metabolic rate, BRL 35135 331–337

Adult respiratory distress syndrome
coronary artery bypass grafting, corticosterone 49–53

Ageing
haemococoncentration, cold 43–48

Airway smooth muscle
asthma 647–652*

Albuminuria
pre-eclampsia 251–255

Alcoholic myopathy
myosin heavy chain isoforms 433–440

Aldosterone
diabetes, sodium 383–390
ouabain 391–397

Aluminium excretion
urinary citrate 223–226

Ambulatory arterial pressure
heart rate variability, computer analysis 547–556

cardiac sympathetic control, hypertension 209–215

Amino acids
intestinal mucosa, starvation 653–662
thermogenesis, anaesthesia 611–618

Anaemia
rheumatoid arthritis, cytokines 633–638

Anaesthesia
amino acids, thermogenesis 611–618

Antitrypsin
loop–sheet polymerization, cirrhosis 489–495

Apolipoprotein E mutants
lipoproteins, hypertriglyceridaemia 323–329

L-Arginine
pharmacology, immune system 123–132*

Arterial occlusion
Doppler ultrasound 557–565

Arteriovenous exchange
adipose tissue, ketone bodies 677–687

Arthritis
anaemia, cytokines 633–638

Arthrogenic muscle inhibition
muscle strength, rehabilitation 305–310

Articular afferents
arthrogenic muscle inhibition, rehabilitation 305–310

Atrial fibrillation
atrioventricular node, atropine 531–535
Atrial natriuretic peptide
- bronchi, phosphoramidon-sensitive protease inhibitor 291–295
- diabetes, sodium 383–390
- pharmacokinetics 723–730
- receptor, sodium status 517–522
- sympathetic nervous system 275–283
Atrial natriuretic peptide 99–126
- ethanol, osmolality 285–290
Atrial natriuretic peptide 1–98
- ethanol, osmolality 285–290
Atrioventricular node
- atrial fibrillation, atropine 531–535
Atropine
- atrioventricular node, atrial fibrillation 531–535
Autonomic nervous system
- heart rate variability, sympathetic activity 547–556
- heart transplantation, heart rate variability 537–545
Basal metabolic rate
- protein turnover, chronic energy deficiency 441–446
N-α-Benzoyl-L-arginine ethyl ester
- isolated perfused kidney, vasorelaxation 245–249
Bioelectrical impedance analysis
- body composition, human immunodeficiency virus 461–467
- nutritional assessment, surgery 479–485
Biogenic monoamines
tetrahydrofolates,
S-adenosylmethionine 697–702
Biopsy specimen
- intestinal mucosa, free amino acids 653–662
Blood flow
- adipose tissue, ketone bodies 677–687
- cirrhosis, nitric oxide 203–208
Blood pressure
- erythrocyte ion transport, plasma triacylglycerol 11–13
- exercise, adolescents 425–432
- muscular arteries, elasticity 567–574
- ouabain 391–397
- sleep apnoea syndromes 417–424
- sympathetic nervous system, food intake 159–167
Blood temperature
- anaesthesia, amino acids 611–618
Body composition
- bioelectrical impedance analysis, human immunodeficiency virus 461–467
- protein turnover, chronic energy deficiency 441–446

Body mass index
- low-density-lipoprotein receptor, hypertension 583–592

Brain natriuretic peptide
- natriuresis, pharmacokinetics 723–730
- receptor, sodium status 517–522

Branched-chain amino acids
- protein metabolism, cancer 339–345

BRL 35135
- metabolic rate, β-adrenoceptors 331–337

Bronchi
- atrial natriuretic peptide, phosphoramidon-sensitive protease inhibitor 291–295

Bronchoconstriction
- nasal resistance, asthma 55–58

Calcium
- hypertension, cyclosporin 1–9*

Cancer
- protein metabolism, branched-chain amino acids 339–345

Cardiac surgery
- lung injury, corticosterone 49–53

Cardiac sympathetic control
- ambulatory arterial pressure, hypertension 209–215

Catecholamines
- ouabain 391–397

Cation transport
- erythrocytes, nephrolithiasis 239–243

Cerebrospinal fluid
dopamine β-hydroxylase,
radioimmunoassay 149–158

Chloride
- absorption, intestine 511–516

Cholesterol
cold, ageing 43–48

Cholesterol crystallization
- mucin, gallstones 75–82

Cholesterol nucleation
- mucin heterogeneity, gallstones 67–74

Chronic energy deficiency
- protein turnover, basal metabolic rate 441–446

Chronic heart failure
- β-adrenoceptor antagonist, Doppler echocardiography 523–529

Chronic renal failure
- uric acid, intestinal secretion 511–516

Chylomicrons
dietary fat, forearm exercise 169–175

Circadian rhythm
- atrial natriuretic peptide, ethanol 285–290

Cirrhosis
- antitrypsin, loop-sheet polymerization 489–495
- blood flow, nitric oxide 203–208
- inositol-specific phospholipase D 447–451
Citrate
 urinary aluminium excretion 223–226
Cold
 haemoconcentration, ageing 43–48
Colon
 uric acid secretion, chronic renal failure 511–516
Computer analysis
 R–R interval variability, hypertension 209–215
Contractile dysfunction
 myocytes, diabetes 257–262
Coronary artery bypass grafting
 lung injury, corticosterone 49–53
Corticosterone
 lung injury, coronary artery bypass grafting 49–53
C-type natriuretic peptide
 receptor, sodium status 517–522
Cyclic AMP
 sweat gland, cystic fibrosis 133–139
Cyclic GMP
 platelets, nitric oxide 195–202
Cyclo-oxygenase
 ulcerative colitis 619–626
Cyclosporin
 1,25-dihydroxyvitamin D, psoriasis 627–632
 nephrotoxicity and hypertension 1–9*
 sweat gland 133–139
Cystic fibrosis
 sweat gland, cyclic AMP 133–139
Cystic fibrosis transmembrane conductance regulator
 sweat gland 133–139
Cytokines
 anaemia, rheumatoid arthritis 633–638
 leucocytes, exercise 505–510
 nitric oxide, polymorphonuclear leucocytes 411–415
 protein-energy malnutrition 347–351
Cystolic sodium
 vascular smooth muscle, hypertension 741–747
Decompression sickness
 lung disease 297–303
Density gradient ultracentrifugation
 lipoproteins, hypertriglyceridaemia 323–329
1-Desamino-8-D-vasopressin
 fibrinolysis 497–503
Diabetes
 blood pressure, exercise 425–432
 myocytes, contractile dysfunction 257–262
 sodium, renal and hormonal effects 383–390
 vascular reactivity 689–695
Diabetic ketoacidosis
 lipolysis, adenosine receptor agonist 593–598
Diarrhoea
 rotavirus infection, oral rehydration 469–477
Dietary fat
 muscle, exercise 169–175
Dietary sodium
 platelet membrane fluidity, hypertension 263–268
1,25-Dihydroxyvitamin D
 psoriasis, cyclosporin A 627–632
Diuresis
 cold, ageing 43–48
Diuretics
 oxalate transport, intestine 353–357
Diurnal cycling
 body nitrogen, protein intake 91–102, 103–118
 nitrogen balance, stable isotopes 185–193
Diurnal variation
 peak expiratory flow, asthma 59–65
Diving
 decompression sickness 297–303
Dopamine β-hydroxylase
 cerebrospinal fluid, radioimmunoassay 149–158
Doppler echocardiography
 chronic heart failure, β-adrenoceptor antagonist 523–529
Doppler ultrasound
 arterial occlusion 557–565
Drug resistance
 Mycobacterium tuberculosis, restriction fragment length polymorphism 749–751
Duplex scanning
 liver blood flow, 1-desamino-8-D-vasopressin 497–503

Echocardiography
 left ventricular hypertrophy, sleep apnoea syndromes 417–424
Eicosanoids
 ulcerative colitis 619–626
Elasticity
 variation, muscular arteries 567–574
Endoscopy
 intestinal mucosa, free amino acids 653–662
Endothelin
 excretion, renal tubular injury 703–707
 vasculature, sepsis 359–374*
Endothelium
 sepsis 359–374*
Endothelium-dependent relaxing factor
 isolated perfused kidney, parathyroid hormone-related peptide 245–249
Endotoxin shock
 renal function, prostanoids 599–610
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythrocytes</td>
<td>239-243</td>
</tr>
<tr>
<td>cation transport, nephrolithiasis</td>
<td>11-13</td>
</tr>
<tr>
<td>ion transport, plasma triacylglycerol</td>
<td>633-638</td>
</tr>
<tr>
<td>Ethanol</td>
<td>285-290</td>
</tr>
<tr>
<td>atrial natriuretic peptide, osmolality</td>
<td>505-510</td>
</tr>
<tr>
<td>Euglycaemic clamp technique</td>
<td>317-322</td>
</tr>
<tr>
<td>insulin resistance, heart failure</td>
<td>11-13</td>
</tr>
<tr>
<td>Exercise</td>
<td>425-432</td>
</tr>
<tr>
<td>haemodynamics, hypertension</td>
<td>27-34</td>
</tr>
<tr>
<td>leucocytes splenectomy</td>
<td>479-485</td>
</tr>
<tr>
<td>Extracellular sodium</td>
<td>653-662</td>
</tr>
<tr>
<td>platelet membrane fluidity, hypertension</td>
<td>263-268</td>
</tr>
<tr>
<td>Extracellular volume expansion</td>
<td>405-409</td>
</tr>
<tr>
<td>renal papillary blood flow, nitric oxide</td>
<td>405-409</td>
</tr>
<tr>
<td>Extracellular water</td>
<td>479-485</td>
</tr>
<tr>
<td>bioelectrical impedance analysis, surgery</td>
<td>141-148</td>
</tr>
<tr>
<td>Factor X</td>
<td>43-48</td>
</tr>
<tr>
<td>cold, ageing</td>
<td>103-118</td>
</tr>
<tr>
<td>Familial dysbetalipoproteinaemia</td>
<td>251-255</td>
</tr>
<tr>
<td>lipoproteins, apolipoprotein E mutants</td>
<td>141-148</td>
</tr>
<tr>
<td>Fasting</td>
<td>103-118</td>
</tr>
<tr>
<td>protein turnover, diurnal cycling</td>
<td>141-148</td>
</tr>
<tr>
<td>Feeding</td>
<td>311-316</td>
</tr>
<tr>
<td>Protein turnover, diurnal cycling</td>
<td>11-13</td>
</tr>
<tr>
<td>Fetus</td>
<td>731-739</td>
</tr>
<tr>
<td>protein deficiency, hypertension</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>103-118</td>
</tr>
<tr>
<td>cold, ageing</td>
<td>141-148</td>
</tr>
<tr>
<td>platelets, pre-eclampsia</td>
<td>469-477</td>
</tr>
<tr>
<td>Fibrinolysis</td>
<td>177-184</td>
</tr>
<tr>
<td>cold, ageing</td>
<td>731-739</td>
</tr>
<tr>
<td>platelets, pre-eclampsia</td>
<td>103-118</td>
</tr>
<tr>
<td>Flow cytometry</td>
<td>83-90</td>
</tr>
<tr>
<td>acute diarrhoea, rotavirus infection</td>
<td>103-118</td>
</tr>
<tr>
<td>Fluid therapy</td>
<td>177-184</td>
</tr>
<tr>
<td>acute diarrhoea, rotavirus infection</td>
<td>141-148</td>
</tr>
<tr>
<td>Food intake</td>
<td>15-25</td>
</tr>
<tr>
<td>sympathetic nervous system, microneurography</td>
<td>141-148</td>
</tr>
<tr>
<td>Foramen ovale</td>
<td>159-167</td>
</tr>
<tr>
<td>decompression sickness</td>
<td>497-503</td>
</tr>
<tr>
<td>Fibroblast proliferation</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>systemic sclerosis, insulin-like growth factor-1</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>Flow cytometry</td>
<td>233-237</td>
</tr>
<tr>
<td>platelet activation, pre-eclampsia</td>
<td>233-237</td>
</tr>
<tr>
<td>Fluid therapy</td>
<td>233-237</td>
</tr>
<tr>
<td>acute diarrhoea, rotavirus infection</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>Growth hormone</td>
<td>677-687</td>
</tr>
<tr>
<td>exercise, splenectomy</td>
<td>177-184</td>
</tr>
<tr>
<td>Granulocytes</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>exercise, splenectomy</td>
<td>103-118</td>
</tr>
<tr>
<td>Guanlylate cyclase</td>
<td>195-202</td>
</tr>
<tr>
<td>platelets, nitric oxide</td>
<td>103-118</td>
</tr>
<tr>
<td>Haemoconcentration</td>
<td>15-25</td>
</tr>
<tr>
<td>cold, ageing</td>
<td>195-202</td>
</tr>
<tr>
<td>Haemodynamics</td>
<td>317-322</td>
</tr>
<tr>
<td>1-desamino-8-D-vasopressin</td>
<td>103-118</td>
</tr>
<tr>
<td>Haemodynamics</td>
<td>469-477</td>
</tr>
<tr>
<td>hypertension, exercise</td>
<td>103-118</td>
</tr>
<tr>
<td>Harmonic frequencies</td>
<td>27-34</td>
</tr>
<tr>
<td>arterial occlusion</td>
<td>103-118</td>
</tr>
<tr>
<td>Heart failure</td>
<td>27-34</td>
</tr>
<tr>
<td>insulin resistance, mathematical modelling</td>
<td>27-34</td>
</tr>
<tr>
<td>Gallstones</td>
<td>233-237</td>
</tr>
<tr>
<td>mucin heterogeneity</td>
<td>469-477</td>
</tr>
<tr>
<td>Gastrointestinal function</td>
<td>27-34</td>
</tr>
<tr>
<td>sympathetic nervous system, microneurography</td>
<td>103-118</td>
</tr>
<tr>
<td>Gender differences</td>
<td>91-98</td>
</tr>
<tr>
<td>urinary kallikrein</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>Glomerular filtration rate</td>
<td>233-237</td>
</tr>
<tr>
<td>pre-eclampsia</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>Glomerular sclerosis</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>vasopressin</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>Glucagon secretion</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>Zucker fatty rats</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>Glutamine</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>oral rehydration, acute diarrhoea</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>Glucose turnover</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>dietary fat, forearm exercise</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>muscle blood flow, microdialysis probe</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>Glucose polymer</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>adipose tissue, ketone bodies</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>Glycerol</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>adipose tissue, noradrenaline</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>[15N]Glycine</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>protein turnover, diurnal cycling</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>Granulocytes</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>exercise, splenectomy</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>foramen ovale</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>exercise, splenectomy</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>Foramen ovale</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>decompression sickness</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>Harmonic frequencies</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>arterial occlusion</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>Heart failure</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>insulin resistance, mathematical modelling</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>modelling</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>Haemoconcentration</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>cold, ageing</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>Haemodynamics</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>1-desamino-8-D-vasopressin</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>Haemodynamics</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>hypertension, exercise</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>Harmonic frequencies</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>arterial occlusion</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>Heart failure</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>insulin resistance, mathematical modelling</td>
<td>121, 217-222</td>
</tr>
<tr>
<td>modelling</td>
<td>121, 217-222</td>
</tr>
</tbody>
</table>
Heart rate variability
heart transplantation, autonomic reinnervation 537–545
sympathetic activity, computer analysis 547–556
Heart transplantation
heart rate variability, autonomic reinnervation 537–545
Heat stress
myocardial protection 375–381
Heat-shock proteins
myocardial protection 375–381
Hepatitis
inositol-specific phospholipase D 447–451
Hepatocellular carcinoma
inositol-specific phospholipase D 447–451
Histamine
adult respiratory distress syndrome, corticosterone 49–53
nasal resistance, asthma 55–58
Human immunodeficiency virus
malnutrition, tumour necrosis factor 461–467
5-Hydroxytryptamine
sympathetic nervous system 269–273
Hypertension
ambulatory arterial pressure, cardiac sympathetic control 209–215
dopamine β-hydroxylase, cerebrospinal fluid 149–158
erthrocyte ion transport, plasma triacylglycerol 11–13
fetus, protein deficiency 121, 217–222
haemodynamics, exercise 27–34
low-density-lipoprotein receptor, plasma triacylglycerol 583–592
platelets, membrane fluidity 263–268
pregnancy, albuminuria 251–255
renal failure, vasopressin 399–404
renin, frusemide 575–581
sleep apnoea syndromes 417–424
sodium, cyclosporin 1–9*
vascular smooth muscle, cytosolic sodium 741–747
Hypertriglyceridaemia
apolipoprotein E mutants 323–329
erthrocyte ion transport, blood pressure 11–13
Hypometabolism
anaesthesia, amino acids 611–618
Hypothermia
anaesthesia, amino acids 611–618
Hypoxic vasoconstriction
pulmonary circulation, technetium-99m 639–644
Ileum
uric acid secretion, chronic renal failure 511–516
Immune system
L-arginine, pharmacology 123–132*
Indomethacin
renal function, uninephrectomy 715–721
Infection
protein turnover 663–669
Inositol-specific phospholipase D
Disease 447–451
Insulin
sympathetic nervous system, food intake 159–167
Insulin receptor
restriction fragment length polymorphism, hypertension 583–592
Insulin resistance
mathematical modelling, heart failure 317–322
Insulin secretion
Zucker fatty rats 311–316
Insulin-like growth factor-1
acute renal failure 709–714
fibroblast proliferation, systemic sclerosis 141–148
Interferon
anaemia, rheumatoid arthritis 633–638
nitric oxide, polymorphonuclear leucocytes 411–415
Interleukin
anaemia, rheumatoid arthritis 633–638
nitric oxide, polymorphonuclear leucocytes 411–415
phospholipase A2, ulcerative colitis 619–626
protein synthesis, lymphocytes 671–675
protein-energy malnutrition 347–351
Intermittent isometric exercise
muscle blood flow, microdialysis probe 15–25
Intestinal mucosa
free amino acids, starvation 653–662
Intestine
oxalate transport, thiazides 353–357
Ischaemia–reperfusion
oxidative stress, liver 453–460
Isoleucine
protein metabolism, cancer 339–345
Isoprenaline
protein metabolism, cancer 339–345
Jejunum
uric acid secretion, chronic renal failure 511–516
Ketoacidosis
lipolysis, adenosine receptor agonist 593–598
Ketone bodies
metabolism, adipose tissue 677–687
Kidney
insulin-like growth factor-1 709–714
natriuretic peptide receptors, sodium status 517–522

Labile protein reserves
nitrogen balance, stable isotopes 185–193

Lactate
muscle blood flow, microdialysis probe 15–25

Laser Doppler flowmetry
renal papillary blood flow, nitric oxide 405–409

Left ventricular hypertrophy
echocardiography, sleep apnoea syndromes 417–424

Leucine
nitrogen balance, protein requirements 91–102
protein metabolism, cancer 339–345

Leucocytes
exercise, splenectomy 505–510

Leukotriene C4
ulcerative colitis 619–626

Lipolysis
adenosine receptor agonist, diabetic ketoacidosis 593–598
adipose tissue, noradrenaline 177–184

Lipoproteins
apolipoprotein E mutants, hypertriglyceridaemia 323–329

Lipoxigenase
ulcerative colitis 619–626

Lithium clearance
uninephrectomy, indomethacin 715–721

Liver
antipyrin, loop-sheet polymerization 489–495
blood flow, 1-desamino-8-D-vasopressin 497–503
oxidative stress, surgical trauma 453–460

Loop-sheet polymerization
antipyrin, cirrhosis 489–495
Low-density-lipoprotein receptor restriction fragment length polymorphism, hypertension 583–592

Lower body negative pressure
forearm vascular resistance, atrial natriuretic peptide 275–283

Lung disease
decompression sickness 297–303

Lung injury
coronary artery bypass grafting, corticosterone 49–53

Lymphocytes
exercise, splenectomy 505–510
protein synthesis 671–675

Macrophages
1,25-dihydroxyvitamin D, cyclosporin A 627–632

Malaria
glucose turnover, pregnancy 83–90

Malnutrition
cytokine production 347–351
tumour necrosis factor, human immunodeficiency virus 461–467

Mathematical modelling
insulin resistance, heart failure 317–322
Membrane fluidity
platelets, hypertension 263–268

Menstrual cycle
urinary kallikrein, spironolactone 227–231
Metabolic economy
protein turnover, chronic energy deficiency 441–446

Metabolic rate
anaesthesia, amino acids 611–618

BRL 35135, β-adrenoceptors 331–337

Methoxyhydroxynonylphenylglycol
dopamine β-hydroxylase, cerebrospinal fluid 149–158

Metoprolol
chronic heart failure, Doppler echocardiography 523–529

Microdialysis probe
muscle blood flow, intermittent isometric exercise 15–25

Microneurography
sympathetic nervous system, food intake 159–167

Monocytes
exercise, splenectomy 505–510

Mucin
heterogeneity, gallstones 67–74

Multisystem organ failure
oxidative stress, liver 453–460

Muscle
dietary fat, exercise 169–175
metabolism, alcohol 433–440
protein metabolism, branched-chain amino acids 339–345

Muscle atrophy
alcohol 433–440
protein turnover, sepsis 663–669

Muscle blood flow
microdialysis probe, intermittent isometric exercise 15–25

Muscle strength
arthrogenic muscle inhibition, rehabilitation 305–310

Muscular arteries
elasticity, variation 567–574
Mycobacterium tuberculosis
 drug resistance, restriction fragment length polymorphism 749-751

Myocardial infarction
 stress proteins 375-381

Myocardial protection
 stress proteins 375-381

Myocytes
 contractile dysfunction, diabetes 257-262

Myosin heavy chain isoforms
 alcohol 433-440

Nadolol
 metabolic rate, β-adrenoceptors 331-337

Nasal resistance
 bronchoconstriction, asthma 55-58

Natriuresis
 brain natriuretic peptide 723-730

Natriuretic peptide receptor
 kidney, sodium status 517-522

Natriuretic peptides
 pharmacokinetics 723-730

Nephrolithiasis
 cation transport, erythrocytes 239-243

Nephropathy
 blood pressure, adolescents 425-432

Nephrotoxicity
 renin-angiotensin system, cyclosporin 1-9*

Neutrophils
 nitric oxide, cytokines 411-415

Nitric oxide
 blood flow, cirrhosis 203-208
 hypertension, cyclosporin 1-9*
 isolated perfused kidney, parathyroid hormone-related peptide 245-249
 platelets, pre-eclampsia 195-202
 polymorphonuclear leucocytes, cytokines 411-415
 renal papillary blood flow, extracellular volume expansion 405-409
 vasculature, sepsis 359-374*

Nitric oxide synthetase
 isolated perfused kidney, parathyroid hormone-related peptide 245-249
 N⁶-Nitro-L-arginine methyl ester
 isolated perfused kidney, vasorelaxation 245-249

Nitrogen balance
 diurnal cycling, stable isotopes 185-193
 protein requirements, diurnal cycling 91-102

Nitroprusside
 platelets, pre-eclampsia 195-202

Non-esterified fatty acids
 dietary fat, forearm exercise 169-175

Non-insulin-dependent diabetes mellitus
 insulin and glucagon secretion 311-316

Noradrenaline
 blood flow, cirrhosis 203-208
 dopamine β-hydroxylase, cerebrospinal fluid 149-158
 isolated perfused kidney, parathyroid hormone-related peptide 245-249
 lipolysis, adipose tissue 177-184
 physical and psychological stress 35-41

Nose
 bronchoconstriction, asthma 55-58

Nucleation time
 mucin, gallstones 75-82

Nutritional assessment
 bioelectrical impedance analysis, surgery 479-485

Nutritional status
 tumour necrosis factor, human immunodeficiency virus 461-467

Obstructive sleep apnoea
 blood pressure 417-424

Oral rehydration
 acute diarrhoea, rotavirus infection 469-477

Osmolality
 atrial natriuretic peptide, ethanol 285-290

Ouabain
 vasoactive hormones 391-397

Ouabain-like factor
 diabetes, sodium 383-390

Oxalate
 sodium-potassium-chloride co-transport, nephrolithiasis 239-243

Oxidative metabolism
 anaesthesia, amino acids 611-618

Oxidative stress
 liver, surgical trauma 453-460

Oxygen uptake
 exercise, adolescents 425-432

Parasympathetic nervous system
 atrioventricular node, atrial fibrillation 531-535

Parathyroid hormone-related peptide
 isolated perfused kidney, vasorelaxation 245-249

Parkinson's disease
 dopamine β-hydroxylase, cerebrospinal fluid 149-158

Peak expiratory flow
 asthma 645-646
 diurnal variation, asthma 59-65

Phenylalanine
 nitrogen balance, protein requirements 91-102
 protein turnover, diurnal cycling 103-118

Phosphoinositol-specific phospholipase D
 disease 447-451
Phospholipase A₂
interleukin-1, ulcerative colitis 619–626
Phosphoramidon-sensitive protease inhibitor
atrial natriuretic peptide, bronchi 291–295
Physical stress
platelet and plasma catecholamines 35–41
Plasma renin activity
diabetes, sodium 383–390
Platelet activation
pre-eclampsia, flow cytometry 731–739
Platelet catecholamines
stability, stress 35–41
Platelet-activating factor
ulcerative colitis 619–626
Platelet-derived growth factor
fibroblast proliferation, systemic sclerosis 141–148
Platelets
membrane fluidity, hypertension 263–268
nitric oxide, pre-eclampsia 195–202
cis-Platinum
renal tubular injury, urinary endothelin-1 703–707
Pneumonia
inositol-specific phospholipase D 447–451
Polymorphonuclear leucocytes
nitric oxide, cytokines 411–415
Power spectrum analysis
heart rate variability, transplantation 537–545
Pre-eclampsia
albuminuria 251–255
platelet activation, flow cytometry 731–739
platelets, nitric oxide 195–202
renin, frusemide 575–581
Pregnancy
glucose turnover, malaria 83–90
hypertension, albuminuria 251–255
platelet activation, flow cytometry 731–739
renin, frusemide 575–581
Prostaglandins
cyclosporin, nephrotoxicity 1–9*
renal function, uninephrectomy 715–721
ulcerative colitis 619–626
Prostanoids
renal function, endotoxin shock 599–610
Protein C
cold, ageing 43–48
Protein content
intestinal mucosa, starvation 653–662
Protein deficiency
fetus, hypertension 121, 217–222
Protein metabolism
branched-chain amino acids, cancer 339–345
Protein requirements
nitrogen balance, diurnal cycling 91–102
nitrogen balance, stable isotopes 185–193
Protein synthesis
lymphocyte activation 671–675
Protein turnover
basal metabolic rate, chronic energy deficiency 441–446
diurnal cycling, protein intake 103–118
sepsis 663–669
Protein-energy malnutrition
cytokine production 347–351
Proteinase inhibitor
loop-sheet polymerization, cirrhosis 489–495
Psoriasis
renal failure, vasopressin 399–404
Psychological stress
platelet and plasma catecholamines 35–41
Pulmonary circulation
hypoxic vasoconstriction, technetium-99m 639–644
Pulmonary fibrosis
systemic sclerosis, insulin-like growth factor-1 141–148
Quinine
glucose turnover, pregnancy 83–90
Raynaud’s phenomenon
5-hydroxytryptamine 269–273
Reactive oxygen species
liver, surgical trauma 453–460
Rehabilitation
muscle strength, arthrogenic muscle inhibition 305–310
Reinnervation
heart transplantation, heart rate variability 537–545
Renal disease
dopamine β-hydroxylase, cerebrospinal fluid 149–158
Renal failure
insulin-like growth factor-1 709–714
vasopressin 399–404
Renal function
endotoxin shock, prostanoids 599–610
Renal haemodynamics
uninephrectomy, indomethacin 715–721
Renal papillary blood flow
extracellular volume expansion, nitric oxide 405–409
Renal tubular injury
urinary endothelin-1, cis-platinum 703–707
Renin
ouabain 391–397
pre-eclampsia, frusemide 575–581
Renin–angiotensin system
cyclosporin, nephrotoxicity 1–9*
intracellular sodium, growth hormone 233–237
Respiratory sinus arrhythmia
heart transplantation, autonomic reinnervation 537–545
Restriction fragment length polymorphism
low-density-lipoprotein receptor, hypertension 583–592
*Mycobacterium tuberculosis, drug resistance 749–751
Retinal blood flow
diabetes 689–695
Rheumatoid arthritis
anaemia, cytokines 633–638
Rotavirus
acute diarrhoea, oral rehydration 469–477
R–R interval variability
ambulatory arterial pressure, hypertension 209–215
Sabra rats
platelets, membrane fluidity 263–268
Salbutamol
metabolic rate, β-adrenoceptors 331–337
Salt
platelet membrane fluidity, hypertension 263–268
Seasonal mortality
thrombosis, ageing 43–48
Sepsis
endothelium 359–374*
protein turnover 663–669
renal function, prostanoids 599–610
Sleep apnoea syndromes
blood pressure 417–424
Smoking
decompression sickness 297–303
Snoring
blood pressure 417–424
Sodium
hypertension, cyclosporin 1–9*
pre-eclampsia, furosemide 575–581
renal and hormonal effects, diabetes 383–390
vascular smooth muscle, hypertension 741–747
Sodium excretion
renal papillary blood flow, nitric oxide 405–409
Sodium leak
blood pressure, plasma triacylglycerol 11–13
Sodium–lithium countertransport
diabetes 383–390
Sodium metabolism
growth hormone, renin–angiotensin system 233–237
Sodium–potassium co-transport
blood pressure, plasma triacylglycerol 11–13
diabetes 383–390
Sodium–potassium pump
blood pressure, plasma triacylglycerol 11–13
Sodium–potassium–chloride co-transport
erthrocytes, nephrolithiasis 239–243
Sodium status
natriuretic peptide receptors, kidney 517–522
Soluble interleukin-2 receptor
anaemia, rheumatoid arthritis 633–638
Soluble tumour necrosis factor receptor
malnutrition, human immunodeficiency virus 461–467
Somatomedin
acute renal failure 709–714
Spironolactone
urinary kallikrein, menstrual cycle 227–231
Splenectomy
leucocytes, exercise 505–510
Stable isotopes
nitrogen balance, protein requirements 91–102
protein turnover, diurnal cycling 103–118
Starvation
free amino acids, intestinal mucosa 653–662
metabolism, adipose tissue 677–687
Stress
platelet and plasma catecholamines 35–41
Stress proteins
myocardial protection 375–381
Surgery
nutritional assessment, bioelectrical impedance analysis 479–485
oxidative stress, liver 453–460
Sweat gland
cyclic AMP, cystic fibrosis 133–139
Sympathetic nervous system
atrial natriuretic peptide 275–283
food intake, microneurography 159–167
heart rate variability, computer analysis 547–556
5-hydroxytryptamine 269–273
Sympatho-vagal balance
hypertension 209–215
Systemic sclerosis
fibroblast proliferation, insulin-like growth factor-1 141–148
Technetium-99m
pulmonary circulation, hypoxic vasoconstriction 639–644
Tetrahydrofolates
biogenic monoamines, S-adenosylmethionine 697–702
Thermogenesis
 amino acids, anaesthesia 611–618
Thiazides
 oxalate transport, intestine 353–357
Thrombosis
 cold, ageing 43–48
Total body water
 bioelectrical impedance analysis, surgery 479–485
Total parenteral nutrition
 protein metabolism, cancer 339–345
Triacylglycerol
 dietary fat, forearm exercise 169–175
 erythrocyte ion transport, blood pressure 11–13
 low-density-lipoprotein receptor, hypertension 583–592
Tryptase
 adult respiratory distress syndrome, corticosterone 49–53
Tuberculosis
 drug resistance, restriction fragment length polymorphism 749–751
Tubular necrosis
 insulin-like growth factor-1 709–714
Tumour
 L-arginine, pharmacology 123–132*
 protein metabolism, branched-chain amino acids 339–345
Tumour necrosis factor
 anaemia, rheumatoid arthritis 633–638
 malnutrition, human immunodeficiency virus 461–467
 protein-energy malnutrition 347–351
Tyramine
 sympathetic nervous system, 5-hydroxytryptamine 269–273
Tyrosine
 protein turnover, diurnal cycling 103–118
Ulcerative colitis
 interleukin-1, phospholipase A₂ 619–626
Uninephrectomy
 renal function, indomethacin 715–721
Uric acid
 intestinal secretion, chronic renal failure 511–516
Urinary aluminium excretion
 urinary citrate 223–226
 urinary aluminium excretion 223–226
 urinary endothelin-1 renal tubular injury, cis-platinum 703–707
 Urinary kallikrein gender differences 227–231
Vagal activity
 heart rate variability, computer analysis 547–556
Valine
 protein metabolism, cancer 339–345
Valsalva manoeuvre
 Doppler ultrasound 557–565
Vascular reactivity
 diabetes 689–695
 Vascular smooth muscle cytosolic sodium, hypertension 741–747
 Vasculature
 endothelin, sepsis 359–374*
 Vasodilatation
 forearm, atrial natriuretic peptide 275–283
 Vasopressin
 renal failure 399–404
 Vasorelaxation
 isolated perfused kidney, parathyroid hormone-related peptide 245–249
Vein size
 cirrhosis, nitric oxide 203–208
Ventricular rhythm
 atrial fibrillation, atropine 531–535
Verapamil
 isolated perfused kidney, vasorelaxation 245–249
Vesicle leakage
 mucin, gallstones 75–82
Volume expansion
 renal papillary blood flow, nitric oxide 405–409
Wasting
 tumour necrosis factor, human immunodeficiency virus 461–467
Working capacity
 skeletal muscle, alcohol 433–440
Zucker fatty rats
 insulin and glucagon secretion 311–316