<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahlman, B.</td>
<td>653–662</td>
</tr>
<tr>
<td>Albano, J.D.M.</td>
<td>227–231</td>
</tr>
<tr>
<td>Aldred, G.P.</td>
<td>517–522</td>
</tr>
<tr>
<td>Amris, S.</td>
<td>433–440</td>
</tr>
<tr>
<td>Andersson, K.</td>
<td>653–662</td>
</tr>
<tr>
<td>Angus, R.M.</td>
<td>291–295</td>
</tr>
<tr>
<td>Arnal, M.</td>
<td>663–669</td>
</tr>
<tr>
<td>Arvesen, B.L.</td>
<td>505–510</td>
</tr>
<tr>
<td>Ashby, M.J.</td>
<td>723–730</td>
</tr>
<tr>
<td>Atucha, N.M.</td>
<td>405–409</td>
</tr>
<tr>
<td>Baggio, B.</td>
<td>239–243</td>
</tr>
<tr>
<td>Balcke, P.</td>
<td>633–638</td>
</tr>
<tr>
<td>Ballardie, F.W.</td>
<td>627–632</td>
</tr>
<tr>
<td>Balsama, M.</td>
<td>209–215</td>
</tr>
<tr>
<td>Bem-Ishay, D.</td>
<td>263–268</td>
</tr>
<tr>
<td>Benestad, H.B.</td>
<td>505–510</td>
</tr>
<tr>
<td>Bengtsson, A.-A.</td>
<td>233–237</td>
</tr>
<tr>
<td>Beretta-Piccoli, C.</td>
<td>383–390</td>
</tr>
<tr>
<td>Bernardi, L.</td>
<td>537–545</td>
</tr>
<tr>
<td>Berne, C.</td>
<td>159–167</td>
</tr>
<tr>
<td>Biaggioni, I.</td>
<td>149–158</td>
</tr>
<tr>
<td>Biggs, T.</td>
<td>639–644</td>
</tr>
<tr>
<td>Bin Talib, H.K.</td>
<td>11–14</td>
</tr>
<tr>
<td>Black, C.M.</td>
<td>141–148</td>
</tr>
<tr>
<td>Bone, D.</td>
<td>15–25</td>
</tr>
<tr>
<td>Bongiovi, S.</td>
<td>27–34</td>
</tr>
<tr>
<td>Bossaert, L.</td>
<td>49–53</td>
</tr>
<tr>
<td>Boultner, P.S.</td>
<td>453–460</td>
</tr>
<tr>
<td>Bowron, A.</td>
<td>697–702</td>
</tr>
<tr>
<td>Breuille, D.</td>
<td>663–669</td>
</tr>
<tr>
<td>Brittenden, J.</td>
<td>123–132</td>
</tr>
<tr>
<td>Broom, J.</td>
<td>339–345</td>
</tr>
<tr>
<td>Broughton Pipkin, F.</td>
<td>557–565</td>
</tr>
<tr>
<td>Brouwer, J.</td>
<td>531–535</td>
</tr>
<tr>
<td>Brown, D.S.</td>
<td>339–345</td>
</tr>
<tr>
<td>Brown, J.</td>
<td>723–730</td>
</tr>
<tr>
<td>Brown, M.A.</td>
<td>251–255, 575–581</td>
</tr>
<tr>
<td>Brown, M.J.</td>
<td>723–730</td>
</tr>
<tr>
<td>Brundin, T.</td>
<td>611–618</td>
</tr>
<tr>
<td>Buddle, M.L.</td>
<td>251–255</td>
</tr>
<tr>
<td>Burggraaf, J.</td>
<td>497–503</td>
</tr>
<tr>
<td>Byrne, C.</td>
<td>297–303</td>
</tr>
<tr>
<td>Calder, A.G.</td>
<td>177–184</td>
</tr>
<tr>
<td>Calver, A.</td>
<td>203–208</td>
</tr>
<tr>
<td>Cambrey, A.D.</td>
<td>141–148</td>
</tr>
<tr>
<td>Campbell, S.K.</td>
<td>227–231</td>
</tr>
<tr>
<td>Cario, G.M.</td>
<td>251–255</td>
</tr>
<tr>
<td>Carlton, M.A.</td>
<td>251–255</td>
</tr>
<tr>
<td>Carstensen, E.</td>
<td>35–41</td>
</tr>
<tr>
<td>Casiglia, E.</td>
<td>27–34</td>
</tr>
<tr>
<td>Castaigne, A.</td>
<td>523–529</td>
</tr>
<tr>
<td>Castaldo, G.</td>
<td>447–451</td>
</tr>
<tr>
<td>Caunce, M.</td>
<td>43–48</td>
</tr>
<tr>
<td>Cavallin, S.</td>
<td>133–139</td>
</tr>
<tr>
<td>Cayton, R.M.</td>
<td>59–65</td>
</tr>
<tr>
<td>Ceolotto, G.</td>
<td>239–243</td>
</tr>
<tr>
<td>Cervenka, J.H.</td>
<td>149–158</td>
</tr>
<tr>
<td>Chalmers, R.J.G.</td>
<td>627–632</td>
</tr>
<tr>
<td>Chawtur, V.</td>
<td>223–226</td>
</tr>
<tr>
<td>Chen, H.C.</td>
<td>689–695</td>
</tr>
<tr>
<td>Cheung, B.M.Y.</td>
<td>723–730</td>
</tr>
<tr>
<td>Clark, M.L.</td>
<td>169–175, 469–477</td>
</tr>
<tr>
<td>Clark, R.</td>
<td>709–714</td>
</tr>
<tr>
<td>Cochran, M.</td>
<td>223–226</td>
</tr>
<tr>
<td>Coffman, J.D.</td>
<td>269–273</td>
</tr>
<tr>
<td>Cohen, A.F.</td>
<td>497–503</td>
</tr>
<tr>
<td>Cohen, R.A.</td>
<td>269–273</td>
</tr>
<tr>
<td>Colangelgi, G.</td>
<td>27–34</td>
</tr>
<tr>
<td>Connolly, C.K.</td>
<td>645</td>
</tr>
<tr>
<td>Coppel, S.</td>
<td>177–184</td>
</tr>
<tr>
<td>Cowen, S.J.</td>
<td>479–485</td>
</tr>
<tr>
<td>Crijns, H.J.G.M.</td>
<td>531–535</td>
</tr>
<tr>
<td>Croft, K.D.</td>
<td>83–90</td>
</tr>
<tr>
<td>Crosby, J.</td>
<td>417–424</td>
</tr>
<tr>
<td>Curzen, N.P.</td>
<td>359–374</td>
</tr>
<tr>
<td>Cusi, D.</td>
<td>383–390</td>
</tr>
<tr>
<td>Dassi, S.</td>
<td>209–215</td>
</tr>
<tr>
<td>Davidson, C.</td>
<td>297–303</td>
</tr>
<tr>
<td>Davies, M.</td>
<td>627–632</td>
</tr>
<tr>
<td>Davies, R.J.O.</td>
<td>417–424</td>
</tr>
<tr>
<td>Davis, T.M.E.</td>
<td>83–90</td>
</tr>
<tr>
<td>De Backer, W.A.</td>
<td>49–53</td>
</tr>
<tr>
<td>De Jongh, R.F.</td>
<td>49–53</td>
</tr>
<tr>
<td>De Wit, L.Th.</td>
<td>67–74</td>
</tr>
<tr>
<td>Deicher, H.</td>
<td>461–467</td>
</tr>
<tr>
<td>Devynck, M.-A.</td>
<td>263–268</td>
</tr>
<tr>
<td>Dias, J.A.</td>
<td>469–477</td>
</tr>
<tr>
<td>Dickerson, J.E.C.</td>
<td>723–730</td>
</tr>
<tr>
<td>Dilena, B.</td>
<td>223–226</td>
</tr>
<tr>
<td>Dobesova, Z.</td>
<td>11–14</td>
</tr>
<tr>
<td>Doherty, J.F.</td>
<td>347–351</td>
</tr>
<tr>
<td>Donaldson, G.C.</td>
<td>43–48</td>
</tr>
<tr>
<td>du Bois, R.M.</td>
<td>141–148</td>
</tr>
<tr>
<td>Dubois-Randt, J.L.</td>
<td>523–529</td>
</tr>
<tr>
<td>Duval-Moulin, A.M.</td>
<td>523–529</td>
</tr>
<tr>
<td>Edwards, B.D.</td>
<td>627–632</td>
</tr>
<tr>
<td>Ekman, A.-C.</td>
<td>285–290</td>
</tr>
<tr>
<td>Elia, M.</td>
<td>177–184</td>
</tr>
<tr>
<td>Elshater-Zanetti, F.</td>
<td>383–390</td>
</tr>
<tr>
<td>Eremi, O.</td>
<td>123–132, 339–345, 671–675</td>
</tr>
<tr>
<td>Evans, T.W.</td>
<td>359–374</td>
</tr>
<tr>
<td>Fagius, J.</td>
<td>159–167</td>
</tr>
<tr>
<td>Falcone, C.</td>
<td>537–545</td>
</tr>
<tr>
<td>Falconver, J.S.</td>
<td>479–485</td>
</tr>
<tr>
<td>Farrer, A.</td>
<td>227–231</td>
</tr>
<tr>
<td>Farthing, M.J.G.</td>
<td>469–477</td>
</tr>
<tr>
<td>Fearon, K.C.H.</td>
<td>479–485</td>
</tr>
<tr>
<td>Finardi, G.</td>
<td>537–545</td>
</tr>
<tr>
<td>Fortunato, G.</td>
<td>447–451</td>
</tr>
<tr>
<td>Fraenkel, M.B.</td>
<td>517–522</td>
</tr>
<tr>
<td>Franco-Bourland, R.E.</td>
<td>149–158</td>
</tr>
<tr>
<td>Frants, R.R.</td>
<td>323–329</td>
</tr>
<tr>
<td>Frayn, K.N.</td>
<td>169–175, 177–184</td>
</tr>
<tr>
<td>Freeman, W.</td>
<td>59–65</td>
</tr>
<tr>
<td>Freyschuss, U.</td>
<td>425–432</td>
</tr>
<tr>
<td>Gallati, H.</td>
<td>461–467</td>
</tr>
<tr>
<td>Gambaro, G.</td>
<td>239–243</td>
</tr>
<tr>
<td>Garcia-Estañ, J.</td>
<td>405–409</td>
</tr>
<tr>
<td>Garlick, P.J.</td>
<td>339–345, 671–675</td>
</tr>
<tr>
<td>Geisert, J.</td>
<td>245–249</td>
</tr>
<tr>
<td>Gevers Leuven, J.A.</td>
<td>323–329</td>
</tr>
<tr>
<td>Ginocchio, G.</td>
<td>27–34</td>
</tr>
<tr>
<td>Go, H.</td>
<td>703–707</td>
</tr>
<tr>
<td>Godslands, I.F.</td>
<td>317–322</td>
</tr>
<tr>
<td>Golden, M.H.N.</td>
<td>347–351</td>
</tr>
<tr>
<td>Golinski, P.</td>
<td>741–747</td>
</tr>
<tr>
<td>Goodall, A.H.</td>
<td>731–739</td>
</tr>
<tr>
<td>Goode, H.F.</td>
<td>411–415</td>
</tr>
<tr>
<td>Gottsauener-Wolf, M.</td>
<td>633–638</td>
</tr>
<tr>
<td>Goyal, M.</td>
<td>749–751</td>
</tr>
<tr>
<td>Griffin, G.E.</td>
<td>347–351</td>
</tr>
</tbody>
</table>
Author Index

Pedersen, E.B. 715–721
Perchet, H. 523–529
Persson, B. 425–432
Pessina, A.C. 27–34, 239–243
Phillips, J.W. 223–226
Pidgeon, G.B. 391–397
Piers, L.S. 441–446
Plester, C.E. 479–485
Poinset, O. 599–610
Ponti, G.B. 209–215
Pouillart, F. 523–529
Price, G.M. 91–102, 103–118, 185–193
Pride, N.B. 55–58
Prothero, A. 575–581
Quesada, T. 405–409
Quevedo, M.R. 91–102, 103–118, 185–193
Rabkin, R. 709–714
Radaelli, A. 537–545
Ramirez, A. 405–409
Ramsay, M.M. 557–565
Rassam, S.M.B. 689–695
Raymond, F.D. 447–451
Reiter, L. 575–581
Remick, D.G. 347–351
Richards, A.M. 391–397
Richardson, R.A. 479–485
Rinaldi, M. 537–545
Robertson, D. 149–158
Robinson, B.G. 583–592
Rodger, A. 575–581
Rose, F. 663–669
Ross, J. 123–132
Rubin, P.C. 195–202, 557–565
Salim, A.F.M. 469–477
Salvatore, F. 447–451
Saruta, T. 311–316, 399–404
Sato, F. 133–139
Sato, K. 133–139
Sato, K.T. 133–139
Saussine, C. 245–249
Schaper, N.C. 567–574
Schoemaker, H.C. 497–503
Schwieger, J.M. 599–610
Seed, W.A. 639–644
Selberg, O. 461–467
Selldén, E. 611–618
Semplinici, A. 239–243
Sestoif, L. 433–440
Shaw, A.J. 627–632
Shaw, R.J. 749–751
Shaw, S. 383–390
Shtyy, P.S. 441–446
Simeon, E. 677–687
Skidmore, R. 557–565
Smelt, A.H.M. 323–329
Smits, P. 275–283
Soares, M. 441–446
Sorensen, S.S. 715–721
Southcott, A.M. 141–148
Spencer, J.L. 83–90
Stockenhuber, F. 633–638
Strong, P. 593–598
Struthers, A.D. 1–9
Sutter, N.D.C. 1–9
Suputtamongkol, Y. 83–90
Surtees, R. 697–702
Süttmann, U. 461–467
Suzuki, H. 399–404
Swan, J.W. 317–322
Symons, A.M. 453–460
Sundercombe-Court, D. 43–48
Takeda, M. 703–707
Tanikawa, T. 703–707
Tashiro, Y. 311–316
Tepel, M. 741–747
Thien, T. 275–283
Thillainayagam, A.V. 469–477
Thompson, C.S. 593–598
Thomson, N.C. 291–295
Tsutsui, T. 703–707
Tynberg, L.A. 619–626
Tytgat, G.N.J. 67–74, 75–82
Ungerstedt, U. 15–25
Vakkuri, O. 285–290
Valiance, P. 203–208
Valle, F. 537–545
van den Berg, M.P. 531–535
Van den Berg, A.M.J.M. 323–329
Van den Laarse, A. 323–329
Van Dijk, W. 75–82
Van Overveld, F.J. 49–53
Van 'T Hooft, F.M. 323–329
Van Wijland, M.J.A. 67–74, 75–82
Vaziri, N.D. 353–357, 511–516
Viganò, M. 537–545
Vincenti, M. 239–243
Vrana, A. 11–14
Vroom, T.F.F.P. 323–329
Vuolteenaho, O. 285–290
Wahren, J. 611–618
Walker, B.E. 411–415
Walter, P. 49–53
Walton, C. 317–322
Wardle, T.D. 619–626
Waterlow, J.C. 441–446
Webber, J. 677–687
Weber, A. 599–610
Webster, N.R. 411–415
Werdman, P. 383–390
Wernerman, J. 653–662
Whitworth, J.A. 251–255, 575–581
Willemsen, J. 275–283
Willigers, J.M. 567–574
Wilmshurst, P. 297–303
Wilson, S.G. 83–90
Wunig, C. 633–638
Yamamura, Y. 399–404
Yandle, T.G. 391–397
Yap, J.C.H. 55–58
Young, L.C. 291–295
Yudkin, J.S. 35–41
Zammit, V.C. 251–255
Zee, R.Y.L. 583–592
Zhao, S.-P. 323–329
Zhu, Z. 741–747
Zicha, J. 11–14, 263–268
Zidek, W. 741–747

AUTHOR INDEX
Acetylcholine
isolated perfused kidney, vasorelaxation 245–249

Acquired immunodeficiency syndrome
malnutrition, tumour necrosis factor 461–467

Acute diarrhoea
rotavirus infection, oral rehydration 469–477

Acute renal failure
insulin-like growth factor-I 709–714

Acute tubular necrosis
insulin-like growth factor-I 709–714

Acute-phase protein
sepsis 663–669

Adenosine receptor agonist
lipolysis, diabetic ketoacidosis 593–598

S-Adenosylmethionine
tetrahydrofolates, biogenic monoamines 697–702

Adipose tissue
metabolism, ketone bodies 677–687

Adolescents
blood pressure, exercise 425–432

Adrenaline
physical and psychological stress 35–41

β-Adrenoceptor antagonists
chronic heart failure, Doppler echocardiography 523–529
heart rate variability, computer analysis 547–556

β-Adrenoceptors
metabolic rate, BRL 35135 331–337

Adult respiratory distress syndrome
coronary artery bypass grafting, corticosterone 49–53

Ageing
haemoconcentration, cold 43–48

Airway smooth muscle
asthma 647–652*

Albuminuria
pre-eclampsia 251–255

Alcoholic myopathy
myosin heavy chain isoforms 433–440

Aldosterone
diabetes, sodium 383–390
ouabain 391–397

Aluminium excretion
urinary citrate 223–226

Ambulatory arterial pressure
heart rate variability, computer analysis 547–556

Amino acids
intestinal mucosa, starvation 653–662
thermogenesis, anaesthesia 611–618

Anaemia
rheumatoid arthritis, cytokines 633–638

Anaesthesia

Antitrypsin
loop–sheet polymerization, cirrhosis 489–495

Apolipoprotein E mutants
lipoproteins, hypertriglyceridaemia 323–329

L-Arginine
pharmacology, immune system 123–132*

Arterial occlusion
Doppler ultrasound 557–565

Arteriovenous exchange
adipose tissue, ketone bodies 677–687

Arthritis
anaemia, cytokines 633–638

Arthrogenic muscle inhibition
muscle strength, rehabilitation 305–310

Articular afferents
arthrogenic muscle inhibition, rehabilitation 305–310

Asthma
airway smooth muscle 647–652*
nasal resistance, bronchoconstriction 55–58
peak expiratory flow 645–646
peak expiratory flow, diurnal variation 59–65

Atrial fibrillation
atrioventricular node, atropine 531–535
Subject Index xiii

Atrial natriuretic peptide
 bronchi, phosphoramidon-sensitive protease inhibitor 291–295
 diabetes, sodium 383–390
 pharmacokinetics 723–730
 receptor, sodium status 517–522
 sympathetic nervous system 275–283
Atrial natriuretic peptide 99–126
 ethanol, osmolality 285–290
Atrial natriuretic peptide 1–98
 ethanol, osmolality 285–290
Atroventricular node
 atrial fibrillation, atropine 531–535
Atropine
 atrioventricular node, atrial fibrillation 531–535
Autonomic nervous system
 heart rate variability, sympathetic activity 547–556
 heart transplantation, heart rate variability 537–545
Basal metabolic rate
 protein turnover, chronic energy deficiency 441–446
N-α-Benzoyl-L-arginine ethyl ester
 isolated perfused kidney, vasorelaxation 245–249
Bioelectrical impedance analysis
 body composition, human immunodeficiency virus 461–467
 nutritional assessment, surgery 479–485
Biogenic monoamines
 tetrahydrofolates, S-adenosylmethionine 697–702
Biopsy specimen
 intestinal mucosa, free amino acids 653–662
Blood flow
 adipose tissue, ketone bodies 677–687
 cirrhosis, nitric oxide 203–208
Blood pressure
 erythrocyte ion transport, plasma triacylglycerol 11–13
 exercise, adolescents 425–432
 muscular arteries, elasticity 567–574
 ouabain 391–397
 sleep apnoea syndromes 417–424
 sympathetic nervous system, food intake 159–167
Blood temperature
 anaesthesia, amino acids 611–618
Body composition
 bioelectrical impedance analysis, human immunodeficiency virus 461–467
 protein turnover, chronic energy deficiency 441–446
Body mass index
 low-density-lipoprotein receptor, hypertension 583–592
Brain natriuretic peptide
 natriuresis, pharmacokinetics 723–730
 receptor, sodium status 517–522
 Brachial-chain amino acids
 protein metabolism, cancer 339–345
BRL 35135
 metabolic rate, β-adrenoceptors 331–337
Bronchi
 atrial natriuretic peptide, phosphoramidon-sensitive protease inhibitor 291–295
Bronchoconstriction
 nasal resistance, asthma 55–58
Calcium
 hypertension, cyclosporin 1–9*
Cancer
 protein metabolism, branched-chain amino acids 339–345
Cardiac surgery
 lung injury, corticosterone 49–53
Cardiac sympathetic control
 ambulatory arterial pressure, hypertension 209–215
Catecholamines
 ouabain 391–397
Cation transport
 erythrocytes, nephrolithiasis 239–243
Cerebrospinal fluid
 dopamine β-hydroxylase, radioimmunoassay 149–158
Chloride
 absorption, intestine 511–516
Cholesterol
 cold, ageing 43–48
 cholesterol crystallization
 mucin, gallstones 75–82
 cholesterol nucleation
 mucin heterogeneity, gallstones 67–74
Chronic energy deficiency
 protein turnover, basal metabolic rate 441–446
Chronic heart failure
 β-adrenoceptor antagonist, Doppler echocardiography 523–529
Chronic renal failure
 uric acid, intestinal secretion 511–516
Chylomicrons
 dietary fat, forearm exercise 169–175
Circadian rhythm
 atrial natriuretic peptide, ethanol 285–290
Cirrhosis
 antitrypsin, loop-sheet polymerization 489–495
 blood flow, nitric oxide 203–208
 inositol-specific phospholipase D 447–451
<table>
<thead>
<tr>
<th>Subject</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrate</td>
<td>urinary aluminium excretion 223-226</td>
</tr>
<tr>
<td>Cold</td>
<td>haemoconcentration, ageing 43-48</td>
</tr>
<tr>
<td>Colon</td>
<td>uric acid secretion, chronic renal failure 511-516</td>
</tr>
<tr>
<td>Computer analysis</td>
<td>R-R interval variability, hypertension 209-215</td>
</tr>
<tr>
<td>Contractile dysfunction</td>
<td>myocytes, diabetes 257-262</td>
</tr>
<tr>
<td>Coronary artery bypass grafting</td>
<td>lung injury, corticosterone 49-53</td>
</tr>
<tr>
<td>Corticosterone</td>
<td>lung injury, coronary artery bypass grafting 49-53</td>
</tr>
<tr>
<td>C-type natriuretic peptide receptor, sodium status 517-522</td>
<td></td>
</tr>
<tr>
<td>Cyclic AMP</td>
<td>sweat gland, cystic fibrosis 133-139</td>
</tr>
<tr>
<td>Cyclic GMP</td>
<td>platelets, nitric oxide 195-202</td>
</tr>
<tr>
<td>Cyclo-oxygenase</td>
<td>ulcerative colitis 619-626</td>
</tr>
<tr>
<td>Cyclosporin</td>
<td>1,25-dihydroxyvitamin D, psoriasis 627-632</td>
</tr>
<tr>
<td></td>
<td>nephrotoxicity and hypertension 1-9* sweat gland 133-139</td>
</tr>
<tr>
<td>Cystic fibrosis</td>
<td>sweat gland, cyclic AMP 133-139</td>
</tr>
<tr>
<td>Cystic fibrosis transmembrane conductance regulator</td>
<td>sweat gland 133-139</td>
</tr>
<tr>
<td>Cytokines</td>
<td>anaemia, rheumatoid arthritis 633-638</td>
</tr>
<tr>
<td></td>
<td>leucocytes, exercise 505-510</td>
</tr>
<tr>
<td></td>
<td>nitric oxide, polymorphonuclear leucocytes 411-415</td>
</tr>
<tr>
<td></td>
<td>protein-energy malnutrition 347-351</td>
</tr>
<tr>
<td>Cystolic sodium</td>
<td>vascular smooth muscle, hypertension 741-747</td>
</tr>
<tr>
<td>Decompression sickness</td>
<td>lung disease 297-303</td>
</tr>
<tr>
<td>Density gradient ultracentrifugation</td>
<td>lipoproteins, hypertriglyceridaemia 323-329</td>
</tr>
<tr>
<td></td>
<td>1-Desamino-8-D-vasopressin fibrinolysis 497-503</td>
</tr>
<tr>
<td>Diabetes</td>
<td>blood pressure, exercise 425-432</td>
</tr>
<tr>
<td></td>
<td>myocytes, contractile dysfunction 257-262</td>
</tr>
<tr>
<td></td>
<td>sodium, renal and hormonal effects 383-390</td>
</tr>
<tr>
<td></td>
<td>vascular reactivity 689-695</td>
</tr>
<tr>
<td>Diabetic ketoacidosis</td>
<td>lipolysis, adenosine receptor agonist 593-598</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>rotavirus infection, oral rehydration 469-477</td>
</tr>
<tr>
<td>Dietary fat</td>
<td>muscle, exercise 169-175</td>
</tr>
<tr>
<td>Dietary sodium</td>
<td>platelet membrane fluidity, hypertension 263-268</td>
</tr>
<tr>
<td>1,25-Dihydroxyvitamin D</td>
<td>psoriasis, cyclosporin A 627-632</td>
</tr>
<tr>
<td>Diuresis</td>
<td>cold, ageing 43-48</td>
</tr>
<tr>
<td>Diuretics</td>
<td>oxalate transport, intestine 353-357</td>
</tr>
<tr>
<td>Diurnal cycling</td>
<td>body nitrogen, protein intake 91-102, 103-118</td>
</tr>
<tr>
<td></td>
<td>nitrogen balance, stable isotopes 185-193</td>
</tr>
<tr>
<td>Diurnal variation</td>
<td>peak expiratory flow, asthma 59-65</td>
</tr>
<tr>
<td>Diving</td>
<td>decompression sickness 297-303</td>
</tr>
<tr>
<td>Dopamine</td>
<td>β-hydroxylase cerebrospinal fluid, radioimmunoassay 149-158</td>
</tr>
<tr>
<td>Doppler echocardiography</td>
<td>chronic heart failure, β-adrenoceptor antagonist 523-529</td>
</tr>
<tr>
<td>Doppler ultrasound</td>
<td>arterial occlusion 557-565</td>
</tr>
<tr>
<td>Drug resistance</td>
<td>Mycobacterium tuberculosis, restriction fragment length polymorphism 749-751</td>
</tr>
<tr>
<td>Duplex scanning</td>
<td>liver blood flow, 1-desamino-8-D-vasopressin 497-503</td>
</tr>
<tr>
<td>Echocardiography</td>
<td>left ventricular hypertrophy, sleep apnoea syndromes 417-424</td>
</tr>
<tr>
<td>Eicosanoids</td>
<td>ulcerative colitis 619-626</td>
</tr>
<tr>
<td>Elasticity</td>
<td>variation, muscular arteries 567-574</td>
</tr>
<tr>
<td>Endoscopy</td>
<td>intestinal mucosa, free amino acids 653-662</td>
</tr>
<tr>
<td>Endothelin</td>
<td>excretion, renal tubular injury 703-707</td>
</tr>
<tr>
<td></td>
<td>vasculature, sepsis 359-374*</td>
</tr>
<tr>
<td>Endothelium</td>
<td>sepsis 359-374*</td>
</tr>
<tr>
<td>Endothelium-dependent relaxing factor</td>
<td>isolated perfused kidney, parathyroid hormone-related peptide 245-249</td>
</tr>
<tr>
<td>Endotoxin shock</td>
<td>renal function, prostanoids 599-610</td>
</tr>
</tbody>
</table>
Erythrocytes
 cation transport, nephrolithiasis 239–243
 ion transport, plasma triacylglycerol 11–13
Erythropoietin
cytokines, rheumatoid arthritis 633–638
Ethanol
 atrial natriuretic peptide, osmolality 285–290
Euglycaemic clamp technique
 insulin resistance, heart failure 317–322
Exercise
 blood pressure, adolescents 425–432
 haemodynamics, hypertension 27–34
 leucocytes splenectomy 505–510
Extracellular sodium
 platelet membrane fluidity, hypertension 263–268
Extracellular volume expansion
 renal papillary blood flow, nitric oxide 405–409
Extracellular water
 bioelectrical impedance analysis, surgery 479–485

Factor X
 cold, ageing 43–48
Familial dysbetalipoproteinaemia
 lipoproteins, apolipoprotein E mutants 323–329
Fasting
 protein turnover, diurnal cycling 103–118
Feeding
 protein turnover, diurnal cycling 103–118
Fetus
 protein deficiency, hypertension 121, 217–222
Fibrinogen
 cold, ageing 43–48
 platelets, pre-eclampsia 731–739
Fibrinolysis
 l-desamino-8-D-vasopressin 497–503
 Fibroblast proliferation
 systemic sclerosis, insulin-like growth factor-1 141–148
Flow cytometry
 platelet activation, pre-eclampsia 731–739
Fluid therapy
 acute diarrhoea, rotavirus infection 469–477
 sympathetic nervous system, microneurography 159–167
Foramen ovale
 decompression sickness 297–303
Forearm blood flow
 cirrhosis, nitric oxide 203–208
 dietary fat 169–175
 forearm vascular resistance
 lower body negative pressure, atrial natriuretic peptide 275–283
Free amino acids
 intestinal mucosa, starvation 653–662
 Functional joint stability rehabilitation 305–310
Gallstones
 mucins heterogeneity 67–74, 75–82
Gastrointestinal function
 sympathetic nervous system, microneurography 159–167
 Gender differences
 urinary kallikrein 227–231
 Glomerular filtration rate
 pre-eclampsia 251–255
 Glomerular sclerosis
 vasopressin 399–404
 Glucagon secretion
 Zucker fatty rats 311–316
Glucose
 dietary fat, forearm exercise 169–175
 muscle blood flow, microdialysis probe 15–25
 Glucose polymer
 oral rehydration, acute diarrhoea 469–477
 Glucose tolerance test
 insulin resistance, heart failure 317–322
Glucose turnover
 pregnancy, malaria 83–90
Glucose uptake
 adipose tissue, ketone bodies 677–687
Glycerol
 adipose tissue, noradrenaline 177–184
 [13C]Glycine
 protein turnover, diurnal cycling 103–118
Granulocytes
 exercise, splenectomy 505–510
Growth hormone
 intracellular sodium, renin–angiotensin system 233–237
Guanylate cyclase
 platelets, nitric oxide 195–202
Haemoconcentration
 cold, ageing 43–48
Haemodynamics
 l-desamino-8-D-vasopressin 497–503
 hypertension, exercise 27–34
Harmonic frequencies
 arterial occlusion 557–565
Heart failure
 insulin resistance, mathematical modelling 317–322
Heart rate variability
heart transplantation, autonomic reinnervation 537–545
sympathetic activity, computer analysis 547–556
Heart transplantation
heart rate variability, autonomic reinnervation 537–545
Heart rate variability
myocardial protection 375–381
Heat-shock proteins
myocardial protection 375–381
Hepatitis
inositol-specific phospholipase D 447–451
Hepatocellular carcinoma
inositol-specific phospholipase D 447–451
Histamine
adult respiratory distress syndrome, corticosterone 49–53
nasal resistance, asthma 55–58
Human immunodeficiency virus
malnutrition, tumour necrosis factor 461–467
5-Hydroxytryptamine
sympathetic nervous system 269–273
Hypertension
ambulatory arterial pressure, cardiac sympathetic control 209–215
dopamine β-hydroxylase, cerebrospinal fluid 149–158
erthrocyte ion transport, plasma triacylglycerol 11–13
fetus, protein deficiency 121, 217–222
haemodynamics, exercise 27–34
low-density-lipoprotein receptor, plasma triacylglycerol 583–592
platelets, membrane fluidity 263–268
pregnancy, albuminuria 251–255
renal failure, vasopressin 399–404
renin, frusemide 575–581
sleep apnoea syndromes 417–424
sodium, cyclosporin 1–9*
vascular smooth muscle, cytosolic sodium 741–747
Hypertriglyceridaemia
apolipoprotein E mutants 323–329
erythrocyte ion transport, blood pressure 11–13
Hypometabolism
anaesthesia, amino acids 611–618
Hypothermia
anaesthesia, amino acids 611–618
Hypoxic vasoconstriction
pulmonary circulation, technetium-99m 639–644
Ileum
uric acid secretion, chronic renal failure 511–516
Immune system
L-arginine, pharmacology 123–132*
Indomethacin
renal function, uninephrectomy 715–721
Infection
protein turnover 663–669
Insulin-specific phospholipase D
disease 447–451
Insulin
sympathetic nervous system, food intake 159–167
Insulin receptor
restriction fragment length polymorphism, hypertension 583–592
Insulin resistance
mathematical modelling, heart failure 317–322
Insulin secretion
Zucker fatty rats 311–316
Insulin-like growth factor-1
acute renal failure 709–714
fibroblast proliferation, systemic sclerosis 141–148
Interferon
anaemia, rheumatoid arthritis 633–638
nitric oxide, polymorphonuclear leucocytes 411–415
Interleukin
anaemia, rheumatoid arthritis 633–638
nitric oxide, polymorphonuclear leucocytes 411–415
phospholipase A₂, ulcerative colitis 619–626
protein synthesis, lymphocytes 671–675
protein-energy malnutrition 347–351
Intermittent isometric exercise
muscle blood flow, microdialysis probe 15–25
Intestinal mucosa
free amino acids, starvation 653–662
Intestine
oxalate transport, thiazides 353–357
Ischaemia–reperfusion
oxidative stress, liver 453–460
Isoleucine
protein metabolism, cancer 339–345
Isoprenaline
protein metabolism, cancer 339–345
Jejunum
uric acid secretion, chronic renal failure 511–516
Ketoacidosis
lipolysis, adenosine receptor agonist 593–598
Ketone bodies
metabolism, adipose tissue 677–687
Subject Index

Kidney
 insulin-like growth factor-1 709–714
 natriuretic peptide receptors, sodium status 517–522

Labile protein reserves
 nitrogen balance, stable isotopes 185–193

Lactate
 muscle blood flow, microdialysis probe 15–25

Laser Doppler flowmetry
 renal papillary blood flow, nitric oxide 405–409

Left ventricular hypertrophy
 echocardiography, sleep apnoea syndromes 417–424

Leucine
 nitrogen balance, protein requirements 91–102
 protein metabolism, cancer 339–345

Leucocytes
 exercise, splenectomy 505–510

Leukotriene C4
 ulcerative colitis 619–626

Lipolysis
 adenosine receptor agonist, diabetic ketoacidosis 593–598
 adipose tissue, noradrenaline 177–184

Lipoproteins
 apolipoprotein E mutants, hypertriglyceridaemia 323–329

Lipooxygenase
 ulcerative colitis 619–626

Lithium clearance
 uninephrectomy, indomethacin 715–721

Liver
 antitrypsin, loop-sheet polymerization 489–495
 blood flow, 1-desamino-8-D-vasopressin 497–503
 oxidative stress, surgical trauma 453–460

Loop-sheet polymerization
 antitrypsin, cirrhosis 489–495

Low-density-lipoprotein receptor restriction fragment length polymorphism, hypertension 583–592

Lower body negative pressure
 forearm vascular resistance, atrial natriuretic peptide 275–283

Lung disease
 decompression sickness 297–303

Lung injury
 coronary artery bypass grafting, corticosterone 49–53

Lymphocytes
 exercise, splenectomy 505–510
 protein synthesis 671–675

Macrophages
 1,25-dihydroxyvitamin D, cyclosporin A 627–632

Malaria
 glucose turnover, pregnancy 83–90

Malnutrition
 cytokine production 347–351
 tumour necrosis factor, human immunodeficiency virus 461–467

Mathematical modelling
 insulin resistance, heart failure 317–322

Membrane fluidity
 platelets, hypertension 263–268

Menstrual cycle
 urinary kallikrein, spironolactone 227–231

Metabolic economy
 protein turnover, chronic energy deficiency 441–446

Metabolic rate
 anaesthesia, amino acids 611–618
 BRL 35135, β-adrenoceptors 331–337

Metabolism
 dopamine β-hydroxylase, cerebrospinal fluid 149–158

Metoprolol
 chronic heart failure, Doppler echocardiography 523–529

Microneurography
 sympathetic nervous system, food intake 159–167

Monocytes
 exercise, splenectomy 505–510

Mucin
 heterogeneity, gallstones 67–74

Muscle
 dietary fat, exercise 169–175
 metabolism, alcohol 433–440
 protein metabolism, branched-chain amino acids 339–345

Muscle atrophy
 alcohol 433–440
 protein turnover, sepsis 663–669

Muscle blood flow
 microdialysis probe, intermittent isometric exercise 15–25

Muscle strength
 arthrogenic muscle inhibition, rehabilitation 305–310

Muscular arteries
 elasticity, variation 567–574
Mycobacterium tuberculosis
- drug resistance, restriction fragment length polymorphism 749–751

Myocardial infarction
- stress proteins 375–381

Myocardial protection
- stress proteins 375–381

Myocytes
- contractile dysfunction, diabetes 257–262

Myosin heavy chain isoforms
- stress proteins 375–381

Nadolol
- metabolic rate, β-adrenoceptors 331–337

Nasal resistance
- bronchoconstriction, asthma 55–58

Natriuresis
- brain natriuretic peptide 723–730

Natriuretic peptide receptor
- kidney, sodium status 517–522

Natriuretic peptides
- pharmacokinetics 723–730

Nephrolithiasis
- cation transport, erythrocytes 239–243

Nephropathy
- blood pressure, adolescents 425–432

Nephrotoxicity
- renin-angiotensin system, cyclosporin 1–9*

Neutrophils
- nitric oxide, cytokines 411–415

Nitric oxide
- blood flow, cirrhosis 203–208
- hypertension, cyclosporin 1–9*
- isolated perfused kidney, parathyroid hormone-related peptide 245–249
- platelets, pre-eclampsia 195–202
- polymorphonuclear leucocytes, cytokines 411–415
- renal papillary blood flow, extracellular volume expansion 405–409
- vasculature, sepsis 359–374*

Nitric oxide synthetase
- isolated perfused kidney, parathyroid hormone-related peptide 245–249
- N⁶-Nitro-L-arginine methyl ester
- isolated perfused kidney, vasorelaxation 245–249

Nitrogen balance
- diurnal cycling, stable isotopes 185–193
- protein requirements, diurnal cycling 91–102

Nitroprusside
- platelets, pre-eclampsia 195–202

Non-esterified fatty acids
- dietary fat, forearm exercise 169–175

Non-insulin-dependent diabetes mellitus
- insulin and glucagon secretion 311–316

Noradrenaline
- blood flow, cirrhosis 203–208
- dopamine β-hydroxylase, cerebrospinal fluid 149–158
- isolated perfused kidney, parathyroid hormone-related peptide 245–249
- lipolysis, adipose tissue 177–184
- physical and psychological stress 35–41

Nose
- bronchoconstriction, asthma 55–58

Nucleation time
- mucin, gallstones 75–82

Nutritional assessment
- bioelectrical impedance analysis, surgery 479–485

Nutritional status
- tumour necrosis factor, human immunodeficiency virus 461–467

Obstructive sleep apnoea
- blood pressure 417–424

Oral rehydration
- acute diarrhoea, rotavirus infection 469–477

Osmolality
- atrial natriuretic peptide, ethanol 285–290

Oxabain
- vasoactive hormones 391–397

Oxabain-like factor
- diabetes, sodium 383–390

Oxalate
- sodium-potassium-chloride co-transport, nephrolithiasis 239–243

Oxidative metabolism
- anaesthesia, amino acids 611–618

Oxidative stress
- liver, surgical trauma 453–460

Oxygen uptake
- exercise, adolescents 425–432

Parasympathetic nervous system
- atrioventricular node, atrial fibrillation 531–535

Parathyroid hormone-related peptide
- isolated perfused kidney, vasorelaxation 245–249

Parkinson’s disease
- dopamine β-hydroxylase, cerebrospinal fluid 149–158

Peak expiratory flow
- asthma 645–646
- diurnal variation, asthma 59–65

Phenylalanine
- nitrogen balance, protein requirements 91–102
- protein turnover, diurnal cycling 103–118

Phosphoinositol-specific phospholipase D disease 447–451
Subject Index

Phospholipase A₂
interleukin-1, ulcerative colitis 619–626
Phosphoramidon-sensitive protease inhibitor
atrial natriuretic peptide, bronchi 291–295
Physical stress
platelet and plasma catecholamines 35–41
Plasma renin activity
diabetes, sodium 383–390
Platelet activation
pre-eclampsia, flow cytometry 731–739
Platelet-catecholamines
stability, stress 35–41
Platelet-activating factor
ulcerative colitis 619–626
Platelet-derived growth factor
fibroblast proliferation, systemic sclerosis 141–148
Platelets
membrane fluidity, hypertension 263–268
nitric oxide, pre-eclampsia 195–202
cis-Platinum
renal tubular injury, urinary
deletion-1 703–707
Pneumonia
inositol-specific phospholipase D 447–451
Polymorphonuclear leucocytes
nitric oxide, cytokines 411–415
Power spectrum analysis
heart rate variability, transplantation 537–545
Pre-eclampsia
albuminuria 251–255
platelet activation, flow cytometry 731–739
platelets, nitric oxide 195–202
renin, frusemide 575–581
Pregnancy
glucose turnover, malaria 83–90
hypertension, albuminuria 251–255
platelet activation, flow cytometry 731–739
renin, frusemide 575–581
Prostaglandins
cyclosporin, nephrotoxicity 1–9*
renal function, uninephrectomy 715–721
ulcerative colitis 619–626
Prostanoids
renal function, endotoxin shock 599–610
Protein C
cold, ageing 43–48
Protein content
intestinal mucosa, starvation 653–662
Protein deficiency
fetus, hypertension 121, 217–222
Protein metabolism
branched-chain amino acids, cancer 339–345
Protein requirements
nitrogen balance, diurnal cycling 91–102
nitrogen balance, stable isotopes 185–193
Protein synthesis
lymphocyte activation 671–675
Protein turnover
basal metabolic rate, chronic energy deficiency 441–446
diurnal cycling, protein intake 103–118
sepsis 663–669
Protein-energy malnutrition
cytokine production 347–351
Proteinase inhibitor
loop-sheet polymerization, cirrhosis 489–495
Psoriasis
renal failure, vasopressin 399–404
Quinine
glucose turnover, pregnancy 83–90
Raynaud’s phenomenon
5-hydroxytryptamine 269–273
Reactive oxygen species
liver, surgical trauma 453–460
Rehabilitation
muscle strength, arthrogenic muscle inhibition 305–310
Reinnervation
heart transplantation, heart rate variability 537–545
Renal disease
dopamine β-hydroxylase, cerebrospinal fluid 149–158
Renal failure
insulin-like growth factor-1 709–714
vasopressin 399–404
Renal function
endotoxin shock, prostanoids 599–610
Renal haemodynamics
uninephrectomy, indomethacin 715–721
Renal papillary blood flow
extracellular volume expansion, nitric oxide 405–409
Renal tubular injury
urinary endothelin-1, cis-platinum 703–707
Renin
ouabain 391–397
pre-eclampsia, frusemide 575–581
Subject Index

Renin–angiotensin system
cyclosporin, nephrotoxicity 1–9*
intracellular sodium, growth hormone 233–237
Respiratory sinus arrhythmia
heart transplantation, autonomic
reinnervation 537–545
Restriction fragment length polymorphism
low-density-lipoprotein receptor, hypertension 583–592
Mycobacterium tuberculosis, drug resistance 749–751
Retinal blood flow
diabetes 689–695
Rheumatoid arthritis
anaemia, cytokines 633–638
Rotavirus
acute diarrhoea, oral rehydration 469–477
R–R interval variability
ambulatory arterial pressure, hypertension 209–215
Sabra rats
platelets, membrane fluidity 263–268
Salbutamol
metabolic rate, β-adrenoceptors 331–337
Salt
platelet membrane fluidity, hypertension 263–268
Seasonal mortality
thrombosis, ageing 43–48
Sepsis
endothelium 359–374*
protein turnover 663–669
renal function, prostanoids 599–610
Sleep apnoea syndromes
blood pressure 417–424
Smoking
decompression sickness 297–303
Snoring
blood pressure 417–424
Sodium
hypertension, cyclosporin 1–9*
pre-eclampsia, frusemide 575–581
renal and hormonal effects, diabetes 383–390
vascular smooth muscle, hypertension 741–747
Sodium excretion
renal papillary blood flow, nitric oxide 405–409
Sodium leak
blood pressure, plasma triacylglycerol 11–13
Sodium–lithium countertransport
diabetes 383–390
Sodium metabolism
growth hormone, renin–angiotensin system 233–237
Sodium–potassium co-transport
blood pressure, plasma triacylglycerol 11–13
diabetes 383–390
Sodium–potassium pump
blood pressure, plasma triacylglycerol 11–13
Sodium–potassium–chloride co-transport
erthrocytes, nephrolithiasis 239–243
Sodium status
natriuretic peptide receptors, kidney 517–522
Soluble interleukin-2 receptor
anaemia, rheumatoid arthritis 633–638
Soluble tumour necrosis factor receptor
malnutrition, human immunoodeficiency virus 461–467
Somatomedin
acute renal failure 709–714
Spironolactone
urinary kallikrein, menstrual cycle 227–231
Splenectomy
leucocytes, exercise 505–510
Stable isotopes
nitrogen balance, protein requirements 91–102
protein turnover, diurnal cycling 103–118
Starvation
free amino acids, intestinal mucosa 653–662
metabolism, adipose tissue 677–687
Stress
platelet and plasma catecholamines 35–41
Stress proteins
myocardial protection 375–381
Surgery
nutritional assessment, bioelectrical impedance analysis 479–485
oxidative stress, liver 453–460
Sweat gland
cyclical AMP, cystic fibrosis 133–139
Sympathetic nervous system
atrial natriuretic peptide 275–283
food intake, microneurography 159–167
heart rate variability, computer analysis 547–556
5-hydroxytryptamine 269–273
Sympatho-vagal balance
hypertension 209–215
Systemic sclerosis
fibroblast proliferation, insulin-like growth factor-1 141–148
Technetium-99m
pulmonary circulation, hypoxic vasoconstriction 639–644
Tetrahydrofolates
biogenic monoamines, S-adenosylmethionine 697–702
<table>
<thead>
<tr>
<th>Subject Index</th>
<th>xxxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermogenesis</td>
<td>amino acids, anaesthesia 611–618</td>
</tr>
<tr>
<td>Thiazides</td>
<td>oxalate transport, intestine 353–357</td>
</tr>
<tr>
<td>Thrombosis</td>
<td>cold, ageing 43–48</td>
</tr>
<tr>
<td>Total body water</td>
<td>bioelectrical impedance analysis, surgery 479–485</td>
</tr>
<tr>
<td>Total parenteral nutrition</td>
<td>protein metabolism, cancer 339–345</td>
</tr>
<tr>
<td>Triacylglycerol</td>
<td>dietary fat, forearm exercise 169–175</td>
</tr>
<tr>
<td></td>
<td>erythrocyte ion transport, blood pressure 11–13</td>
</tr>
<tr>
<td></td>
<td>low-density-lipoprotein receptor, hypertension 583–592</td>
</tr>
<tr>
<td>Tryptase</td>
<td>adult respiratory distress syndrome, corticosterone 49–53</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>drug resistance, restriction fragment length polymorphism 749–751</td>
</tr>
<tr>
<td>Tubular necrosis</td>
<td>insulin-like growth factor-1 709–714</td>
</tr>
<tr>
<td>Tumour</td>
<td>L-arginine, pharmacology 123–132*</td>
</tr>
<tr>
<td></td>
<td>protein metabolism, branched-chain amino acids 339–345</td>
</tr>
<tr>
<td>Tumour necrosis factor</td>
<td>anaemia, rheumatoid arthritis 633–638</td>
</tr>
<tr>
<td></td>
<td>malnutrition, human immunodeficiency virus 461–467</td>
</tr>
<tr>
<td></td>
<td>protein-energy malnutrition 347–351</td>
</tr>
<tr>
<td>Tyramine</td>
<td>sympathetic nervous system, 5-hydroxytryptamine 269–273</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>protein turnover, diurnal cycling 103–118</td>
</tr>
<tr>
<td>Ulcerative colitis</td>
<td>interleukin-1, phospholipase A₂ 619–626</td>
</tr>
<tr>
<td>Uninephrectomy</td>
<td>renal function, indomethacin 715–721</td>
</tr>
<tr>
<td>Uric acid</td>
<td>intestinal secretion, chronic renal failure 511–516</td>
</tr>
<tr>
<td>Urinary aluminium excretion</td>
<td>urinary citrate 223–226</td>
</tr>
<tr>
<td>Urinary citrate</td>
<td>urinary aluminium excretion 223–226</td>
</tr>
<tr>
<td>Urinary endothelin-1</td>
<td>renal tubular injury, cis-platinum 703–707</td>
</tr>
<tr>
<td>Urinary kallikrein</td>
<td>gender differences 227–231</td>
</tr>
<tr>
<td>Vagal activity</td>
<td>heart rate variability, computer analysis 547–556</td>
</tr>
<tr>
<td>Valine</td>
<td>protein metabolism, cancer 339–345</td>
</tr>
<tr>
<td>Valsalva manoeuvre</td>
<td>Doppler ultrasound 557–565</td>
</tr>
<tr>
<td>Vascular reactivity</td>
<td>diabetes 689–695</td>
</tr>
<tr>
<td>Vascular smooth muscle</td>
<td>cytosolic sodium, hypertension 741–747</td>
</tr>
<tr>
<td>Vasculature</td>
<td>endothelin, sepsis 359–374*</td>
</tr>
<tr>
<td>Vasodilatation</td>
<td>forearm, atrial natriuretic peptide 275–283</td>
</tr>
<tr>
<td>Vasopressin</td>
<td>renal failure 399–404</td>
</tr>
<tr>
<td>Vasorelaxation</td>
<td>isolated perfused kidney, parathyroid hormone-related peptide 245–249</td>
</tr>
<tr>
<td>Vein size</td>
<td>cirrhosis, nitric oxide 203–208</td>
</tr>
<tr>
<td>Ventricular rhythm</td>
<td>atrial fibrillation, atropine 531–535</td>
</tr>
<tr>
<td>Verapamil</td>
<td>isolated perfused kidney, vasorelaxation 245–249</td>
</tr>
<tr>
<td>Vesicle leakage</td>
<td>mucin, gallstones 75–82</td>
</tr>
<tr>
<td>Volume expansion</td>
<td>renal papillary blood flow, nitric oxide 405–409</td>
</tr>
<tr>
<td>Wasting</td>
<td>tumour necrosis factor, human immunodeficiency virus 461–467</td>
</tr>
<tr>
<td>Working capacity</td>
<td>skeletal muscle, alcohol 433–440</td>
</tr>
<tr>
<td>Zucker fatty rats</td>
<td>insulin and glucagon secretion 311–316</td>
</tr>
</tbody>
</table>