ACKNOWLEDGMENTS

The Editorial Board of Clinical Science gratefully acknowledges the assistance given by the following referees during the year 1989.

Aalkjaer, C.
Aber, G.
Abumrad, N.N.
Adams, P.C.
Agius, L.
Ali Azzawi, F.
Alberti, K.G.M.M.
Allison, M.E.M.
Anderson, D.C.
Anderson, J.
Arnold, J.
Astrup, A.
Baig, W.
Bailey, C.J.
Ball, S.G.
Balment, R.J.
Banga, P.
Barnes, N.
Baron, D.N.
Bartoli, E.
Barton, R.N.
Bassey, E.J.
Batstone, G.F.
Baylis, P.H.
Beall, G.
Belch, J.
Bender, D.
Bennett, W.M.
Bennett, G.W.
Bennett, M.
Bennett, T.
Billing, B.H.
Blaney, L.
Bloom, S.R.
Bobinski, H.
Bonner, G.
Booth, N.A.
Borum, P.
Boucher, R.
Bouloux, P.
Boyd, C.A.R.
Bradley, J.A.
Bremner, I.
Broadky, K.J.
Broughton Pipkin, F.
Brown, E.A.
Brown, J.
Brown, S.B.
Buck, A.C.
Buhler, F.R.
Bukowiecki, L.
Burke, C.W.
Burnett, D.
Burroughs, A.K.
Calcutt, N.A.
Calverley, P.M.A.
Campbell, E.J.M.
Campbell, I.T.
Campbell, R.D.
Campbell, R.W.F.
Cannata, J.B.
Cantin, M.
Caputi, A.P.
Carmichael, D.
Carr, S.J.
Carrell, R.W.
Causon, R.C.
Cawood, M.
Cederblad, G.
Challis, R.A.J.
Chipperfield, A.R.
Church, M.
Clarke, S.W.
Clausen, T.
Clegg, R.A.
Cleland, J.
Clements, M.
Coates, G.
Cobbe, S.
Cockcroft, A.
Coleman, R.
Collins, P.
Connell, J.M.C.
Conor, J.M.
Corr, L.A.
Coulshed, D.
Crick, J.
Cronstein, B.N.
Cuming, A.D.
Cusi, D.
DeQuattro, V.
Dhomeaux, D.
Dick, W.C.
Dietz, R.
Dolin, S.J.
Dominiczak, A.F.
Dormandy, J.A.
Dryburgh, F.J.
Dunnigan, M.G.
Durning, P.
Eccles, R.
Edmonds, M.
Edwards, R.H.T.
Edwards, Y.
El Nahas, A.M.
Elia, M.
Elliott, H.L.
Elwyn, D.H.
Emery, P.W.
Emmeline, N.
Esler, M.
Ensoul, M.P.
Evans, R.D.
Evans, T.W.
Ewing, D.J.
Farrell, T.G.
Fearon, K.C.
Feethal, J.
Ferner, R.E.
Ferrari, P.
Ferrrell, W.R.
Ferriss, J.B.
Firth, J.D.
Flenley, D.C.
Flores, N.
Fogelman, I.
Forsling, M.L.
Forstommer, U.
Fournier, A.
Fox, K.A.A.
Francis, R.M.
Fraser, R.
Fraser, W.D.
Frewen, R.
Freestone, S.
Frisk, R.
Frier, B.M.
Fukagawa, N.
Galton, D.J.
Garay, R.
Garcia, R.
Gardiner, S.M.
Gardner, M.L.G.
Gardner, W.N.
Garland, H.O.
Garlick, P.J.
Garrett, J.R.
Genest, J.
Gibbons, G.F.
Gibson, G.J.
Glorioso, N.
Godfrey, P.P.
Gokal, R.
Goldsmith, D.A.
Gramb, G.
Grant, P.J.
Gray, B.J.
Greaves, M.
Green, I.C.
Green, R.
Greening, A.P.
Greenwood, S.L.
Hall, A.S.
Haliaday, D.
Hamilton, C.A.
Hampton, I.
Harris, M.C.
Haselgrove, J.
Haslett, C.
Hawkey, C.J.
Hawkins, P.N.
Hawthorne, G.C.
Hayler, J.
Hazleman, B.L.
Heagerty, A.M.
Heath, D.F.
Hendry, B.M.
Hennemann, G.
Hiley, C.R.
Hill, S.J.
Hillson, R.M.
Hilton, P.J.
Himsworth, R.L.
Hitman, G.A.
Hjermiddahl, H.
Holgate, S.T.
Holness, M.J.
Horton, R.
Hosking, D.J.
Howie, A.J.
Hughes, A.
Humphries, S.
Iggo, N.C.
Illes, P.
Iltingworth, R.
Ind, P.W.
Innes, J.A.
Jackson, A.
Jackson, D.
Jackson, M.
Jacyna, M.R.
James, P.F.W.
Jardine, A.
Jayne, W.
Jeffcoate, W.J.
Jenkins, J.S.
Jepson, M.
Johnson, C.I.
Jones, J.A.
Jones, D.A.
Jones, N.L.
Jones, P.W.
Jowett, T.
Jung, R.T.
Kalsheker, N.
Kanis, J.
Kantelip, J.P.
Kaumann, A.J.
Kay, A.B.
Keatinge, W.R.
Kellett, G.L.
Kendall, M.J.
Kennedy, L.
Kenyon, C.J.
Kooner, J.
Krams, J.A.
Krieger, J.
Lab, M.J.
Lahiri, A.
Lane, R.
Lang, R.E.
Lanyon, L.E.
Lassen, N.A.
Lebrec, D.
Lechler, R.I.
Leckie, B.J.
Ledingham, J.G.G.
Lee, T.H.
Leese, H.J.
Leiper, J.B.
Levin, G.E.
Levy, J.
Acknowledgments

Nash, G.B.
Nattrass, M.
Neuberger, J.
Newsholme, E.A.
Ng, L.L.
Nicholls, M.G.
Nimmo, I.A.
Noble, A.R.
Nunez, D.J.

Pacy, P.J.
Page, R.
Parayi, G.S.
Parsons, D.S.
Parsons, V.
Pasternak, C.A.
Paterson, C.R.
Pearson, J.D.
Pedersen, M.M.
Peers, S.H.
Pell, J.M.
Penny, L.
Penny, W.J.
Percy-Robb, I.W.
Perrett, D.
Peters, T.J.
Pirie, S.C.
Podolsky, D.
Pounsford, J.C.
Price, C.P.
Pride, N.B.
Prinz, M.P.
Prowse, C.V.
Purkiss, P.

Raftery, M.J.
Ralston, S.H.
Rampling, M.W.
Ramsden, D.B.
Ratcliffe, P.J.
Rawles, J.M.

Reeds, P.
Reeve, J.
Rennie, M.J.
Rettig, R.
Reynolds, J.J.
Rhodes, J.
Rhodes, J.M.
Richer-Giudicelli, Ch.
Riemersma, R.A.
Ritter, J.M.
Roth, S.
Robbins, P.A.
Roberts, D.H.
Roberts, M.
Robinson, B.F.
Rodger, I.W.
Rosenberg, W.
Rothwell, N.J.
Rouillon, J.E.
Rumsby, M.G.
Russell, G.I.

Safar, M.
Sagnella, G.
Sanders, T.A.B.
Sandilands, G.P.
Sandle, G.I.
Schachter, M.
Schmitz, G.
Scott, A.K.
Scott, A.R.
Scott, J.
Seckl, J.R.
Semple, P.F.
Sever, P.S.
Seymour, C.A.
Shah, J.
Shale, D.
Sharma, R.K.
Sheikh, M.I.
Shirley, D.G.
Shore, A.C.
Short, A.H.
Sikora, K.
Singer, D.R.J.
Slater, J.D.H.
Smith, R.

Soladye, O.A.
Solomon, L.
Sowers, J.R.
Spiller, R.
Stephie, A.
Stevenson, J.C.
Stewart, P.M.
Stoner, H.B.
Strachan, T.
Stradling, J.R.
Struthers, A.D.
Stubbs, M.
Sturrock, R.D.
Sugden, M.C.
Sutters, M.
Swainson, C.P.
Swales, J.D.

Tattersfield, A.
Taube, D.
Taylor, C.M.
Taylor, G.
Taylor, R.
Thomas, H.C.
Thomas, P.
Thomas, R.
Thomas, T.
Thompson, C.J.
Thompson, D.G.
Thurston, H.
Tomson, C.R.V.
Tooke, J.E.
Trevisan, M.
Trifirri, J.T.
Triger, D.R.
Twort, C.H.C.
Turner, N.

Walker, L.D.
Wallace, L.
Walls, J.
Walport, M.
Walker, S.J.
Wambach, G.
Ward, M.K.
Warley, A.R.H.
Wares, T.W.
Warren, P.M.
Warren, R.E.
Wass, J.
Watson, J.C.
Watson, M.L.
Weber, W.W.
Weidmann, P.
Weissberg, P.L.
Westerhof, N.
Whalley, E.
Wheeler, D.C.
Wynne, K.F.
Widdicombe, J.G.
Wieling, W.
Wilcox, R.G.
Wilkins, M.
Wilkinson, M.L.
Wilkinson, R.
Williams, A.J.K.
Williams, B.C.
Williams, J.D.
Williams, R.
Williams, T.D.M.
Wilson, R.
Winney, R.J.
Winter, R.D.J.
Winterton, S.J.
Wiseman, M.J.
Withington, P.G.
Wolledge, R.C.
Wood, J.A.
Woodhead, J.S.
Woodhouse, K.
Woods, K.L.
Woolf, A.S.
Wray, S.

Yates, M.S.
Volume 79

AUTHOR INDEX

Abraham, W.T. 429–435
Ader, J.-L. 29–35
Adsett, D. 505–511
Ajao, P. 315–323
Albano, J.D.M. 117–121
Alberti, K.G.M.M. 167–174
Alion, M. 123–129
Altieri, P. 647–656
Alvarez, A.L. 437–442
Alvestrand, A. 299–305
Amorena, C. 149–154
Anderson, J.R. 239–245
Ardawi, M.S.M. 139–147, 483–490
AriLla, E. 451–456
Arnold, M. 505–511
Atkinson, R. 377–380
Avalle, V. 227–231
Bachmann, F. 513–516
Baggio, B. 113–116
Baker, F. 259–266
Baker, P.N. 403–408
Bähr, V. 57–65
Baleke, P. 471–476, 477–482
Balter, M.S. 155–159
Barrett, E.J. 457–466
Barrios, V. 451–456
Beattie, E.C. 523–530
Bell, G.M. 371–376
Bell, N. 89–95
Bennett, T. 393–401
Bentin, G. 639–645
Bergström, J. 331–337
Bennabeu, F. 551–558
Bhatia, S.S. 117–121
Bibby, D.C. 657–662
Bloom, S.R. 657–662
Bochler, M. 37–42
Bohr, D.F. 415–423
Bondy, C. 599–603
Boni, C. 443–450
Boode, M. 5–8
Boon, N.A. 377–380
Borsatti, A. 113–116
Bowman, A. 307–313
Bradley, J.R. 239–245
Brandt, L.S. 443–450
Braquet, P. 551–558
Britton, J.R. 315–323, 325–330
Broughton Pipkin, F. 403–408
Brown, J.E. 377–380
Brown, M.A. 505–511
Burns, H.J.G. 161–165
Burrows, P.C. 175–183
Burston, D. 267–272
Buzzigoli, G. 443–450

Cadoux-Hudson, T.A.D. 1–3
Caidahl, K. 639–645
Campbell, I.T. 605–611
Campbell, S.K. 117–121
Candian, G. 647–656
Caro, C.G. 215–220
Catalano, C. 167–174
Cercignani, G. 647–656
Cerri, M. 443–450
Chapman, K.R. 155–159
Chapuy, P. 467–470
Christensen, S. 109–112
Cohen, J. 619–623
Compton, A.M. 393–401
Connell, J.M.C. 51–55
Coppack, S.W. 287, 339–348
Cowley, A.J. 239–245
Cragoe, E.J. 357–364
Cruickshank, A.M. 161–165

Dambrink, J.H.A. 73–79
Davison, J.M. 631–638
Dawson, D.J. 175–183
De Wardener, H.E. 193–200, 289–297
Derfler, K. 471–476
Devineck, M.-A. 613–618
Dickinson, C.J. 543–550
Dolecki, M. 583–589
Dominicaz, A.F. 415–423
Duckworth, R. 605–611
Dudley, C.R.K. 491–497
Dungan, E.M. 37–42
Dunlop, W. 631–638

Edlund, A. 131–138
El Nahas, A.M. 381–386
El Sayed, A.A. 381–386
Elborn, J.S. 89–95
Eschenhagen, G. 57–65
Fairhurst, J.A. 605–611
Feldon, J. 259–266
Felber, J.P. 513–516
Felsley, C.P. 513–516
Ferranini, E. 443–450
Ferro-Luzzi, A. 227–231
Filioti, V. 613–618
Fine, D.R. 349–355
Finkelstein, S. 437–442
Finocchiaro, L.M.E. 437–442
Firth, J.D. 67–71, 221–226, 559–574, 591–598
Fish, P.J. 215–220
Fisher, R.M. 339–348
Fouke, J.M. 307–313
Fraser, W.D. 161–165
Frayn, K.N. 339–348, 605–611
Frediani, M. 443–450
Freyer, J. 575–581
Fulcher, G.R. 167–174
Fürst, P. 331–337
Gaffney, D. 575–581
Gallen, I.W. 279–285
Gambaro, G. 113–116
Garberi, A. 647–656
Gardiner, S.M. 393–401
Gelfand, R.A. 457–466
Ghatei, M.A. 619–623
Ghiggeri, G.M. 647–656
Gibbons, G.F. 339–348
Ginevri, F. 647–656
Girolami, J.-F. 29–35
Goldsmith, D.J.A. 357–364
Goldstein, A.J. 233–238
Gómez-Garre, D. 551–558
Gonick, H.C. 185–192
Goode, H.F. 247–252
Goss, D.E. 215–220
Gove, C. 67–71
Granström, E.F. 639–645
Grant, P.J. 513–516
Green, J.R.B. 663–668
Griñán, S.A. 523–530
Grime, R.F. 657–662
Grimes, G. 477–482
Grove, E.K. 9–15
<table>
<thead>
<tr>
<th>Author Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guillou, P.J. 247–252</td>
</tr>
<tr>
<td>Gusmano, R. 647–656</td>
</tr>
<tr>
<td>Haines, D.J. 663–668</td>
</tr>
<tr>
<td>Hall, R.I. 247–252</td>
</tr>
<tr>
<td>Halls, J. 215–220</td>
</tr>
<tr>
<td>Harmeyer, J. 409–414</td>
</tr>
<tr>
<td>Hartley, G. 517–522</td>
</tr>
<tr>
<td>Hauser, A.-C. 471–476</td>
</tr>
<tr>
<td>Haylor, J. 381–386</td>
</tr>
<tr>
<td>Heath, D.F. 201–213</td>
</tr>
<tr>
<td>Hensen, J. 429–435</td>
</tr>
<tr>
<td>Heseltine, D. 517–522</td>
</tr>
<tr>
<td>Hilton, P.J. 357–364</td>
</tr>
<tr>
<td>Hjelte, L. 299–305</td>
</tr>
<tr>
<td>Holmes, R. 175–183</td>
</tr>
<tr>
<td>Hulks, G. 51–55</td>
</tr>
<tr>
<td>Humphreys, S.M. 339–348</td>
</tr>
<tr>
<td>Hunter, J.O. 425–427</td>
</tr>
<tr>
<td>Imholz, B.P.M. 73–79</td>
</tr>
<tr>
<td>Ireland, S.B. 537–542</td>
</tr>
<tr>
<td>Jackson, A.A. 253–258</td>
</tr>
<tr>
<td>Jadine, A.G. 51–55</td>
</tr>
<tr>
<td>Jamal, Y.S. 139–147</td>
</tr>
<tr>
<td>James, G. 371–376</td>
</tr>
<tr>
<td>James, M.A. 499–504</td>
</tr>
<tr>
<td>James, O.F.W. 517–522</td>
</tr>
<tr>
<td>Janata, O. 471–476</td>
</tr>
<tr>
<td>Jenkins, D. 669–670</td>
</tr>
<tr>
<td>Jenkins, M.V. 233–238</td>
</tr>
<tr>
<td>Johns, E.J. 43–50</td>
</tr>
<tr>
<td>Jones, J.V. 499–504</td>
</tr>
<tr>
<td>Jones, P.W. 17–21</td>
</tr>
<tr>
<td>Horfeldt, L. 81–87</td>
</tr>
<tr>
<td>Kador, P. 599–603</td>
</tr>
<tr>
<td>Kademaker, J.M. 73–79</td>
</tr>
<tr>
<td>Katariy, M. 233–238</td>
</tr>
<tr>
<td>Kaune, R. 409–414</td>
</tr>
<tr>
<td>Kelleher, J. 247–252</td>
</tr>
<tr>
<td>Kelly, S.M. 425–427</td>
</tr>
<tr>
<td>Kelsey, C.R. 233–238</td>
</tr>
<tr>
<td>Kemp, G.J. 491–497</td>
</tr>
<tr>
<td>Khalil-Manesh, F. 185–192</td>
</tr>
<tr>
<td>Khoja, S.M. 483–490</td>
</tr>
<tr>
<td>Knox, A.J. 315–323, 325–330</td>
</tr>
<tr>
<td>Kruijf, E.K.O. 513–516</td>
</tr>
<tr>
<td>Kurz, R.W. 477–482</td>
</tr>
<tr>
<td>Lagarde, M. 467–470</td>
</tr>
<tr>
<td>Lam, H.-C. 619–623</td>
</tr>
<tr>
<td>Lanne, B. 639–645</td>
</tr>
<tr>
<td>Laragh, J.H. 371–376</td>
</tr>
<tr>
<td>Larsson, M. 299–305</td>
</tr>
<tr>
<td>Le Quan, Sang, K.H. 613–618</td>
</tr>
<tr>
<td>Leclercq, C. 227–231</td>
</tr>
<tr>
<td>Lee, M.R. 377–380</td>
</tr>
<tr>
<td>Leenen, F.H.H. 155–159</td>
</tr>
<tr>
<td>Levenson, J. 613–618</td>
</tr>
<tr>
<td>Lever, M.J. 215–220</td>
</tr>
<tr>
<td>Lightman, Stan 599–603</td>
</tr>
<tr>
<td>Lightman, Susan 599–603</td>
</tr>
<tr>
<td>Linde, B. 131–138</td>
</tr>
<tr>
<td>Lloyd, J.V. 37–42</td>
</tr>
<tr>
<td>Lobley, R.W. 175–183</td>
</tr>
<tr>
<td>Louard, R.J. 457–466</td>
</tr>
<tr>
<td>Loveridge, N. 233–238</td>
</tr>
<tr>
<td>López-Farré, A. 551–558</td>
</tr>
<tr>
<td>López-Novoa, J.M. 551–558</td>
</tr>
<tr>
<td>Lyall, F. 523–530</td>
</tr>
<tr>
<td>Macdonald, I.A. 279–285, 517–522</td>
</tr>
<tr>
<td>MacGregor, G.A. 5–8</td>
</tr>
<tr>
<td>MacLaughlin, M. 23–27</td>
</tr>
<tr>
<td>MacNee, W. 97–107</td>
</tr>
<tr>
<td>Macovski, O. 467–470</td>
</tr>
<tr>
<td>Macphail, S. 625–630, 631–638</td>
</tr>
<tr>
<td>MacPherson, F. 523–530</td>
</tr>
<tr>
<td>Maleki-Yazdi, M.R. 155–159</td>
</tr>
<tr>
<td>Malmberg, A.-S. 299–305</td>
</tr>
<tr>
<td>Marchetti, J. 29–35</td>
</tr>
<tr>
<td>Marchini, F. 113–116</td>
</tr>
<tr>
<td>Marriott, I. 43–50</td>
</tr>
<tr>
<td>Marshall, J.M. 43–50</td>
</tr>
<tr>
<td>Marshall, V.R. 9–15</td>
</tr>
<tr>
<td>Marzaro, G. 113–116</td>
</tr>
<tr>
<td>Matthews, D.M. 267–272</td>
</tr>
<tr>
<td>Maycock, P.F. 605–611</td>
</tr>
<tr>
<td>McDonough, M.J. 339–348</td>
</tr>
<tr>
<td>McFadden, E.R., Jr. 307–313</td>
</tr>
<tr>
<td>McNally, P.G. 259–266</td>
</tr>
<tr>
<td>Mello Aires, M. 23–27</td>
</tr>
<tr>
<td>Meskini, N. 467–470</td>
</tr>
<tr>
<td>Millar, J.G.B. 117–121</td>
</tr>
<tr>
<td>Mistry, N. 259–266</td>
</tr>
<tr>
<td>Moran, B.J. 253–258</td>
</tr>
<tr>
<td>Morris, J. 357–364</td>
</tr>
<tr>
<td>Morton, J.J. 523–530</td>
</tr>
<tr>
<td>Mosca, F. 443–450</td>
</tr>
<tr>
<td>Mott, V. 625–630</td>
</tr>
<tr>
<td>Müller, A. 149–154</td>
</tr>
<tr>
<td>Muller, A.F. 393–401</td>
</tr>
<tr>
<td>Nahmod, V.E. 437–442</td>
</tr>
<tr>
<td>Nemoz, G. 467–470</td>
</tr>
<tr>
<td>Newsholme, E.A. 483–490</td>
</tr>
<tr>
<td>Ng, L.L. 491–497</td>
</tr>
<tr>
<td>Nicholls, D.P. 89–95</td>
</tr>
<tr>
<td>Northfield, T.C. 349–355</td>
</tr>
<tr>
<td>Oelkers, W. 57–65</td>
</tr>
<tr>
<td>Oleggini, M. 443–450</td>
</tr>
<tr>
<td>Oleggini, R. 647–656</td>
</tr>
<tr>
<td>Orskov, H. 167–174</td>
</tr>
<tr>
<td>Packard, C.J. 575–581</td>
</tr>
<tr>
<td>Panos, M.Z. 67–71</td>
</tr>
<tr>
<td>Parker, K.H. 215–220</td>
</tr>
<tr>
<td>Pasque, C.B. 123–129</td>
</tr>
<tr>
<td>Pecker, M. 371–376</td>
</tr>
<tr>
<td>Pecori, N. 443–450</td>
</tr>
<tr>
<td>Perez-Rodrigo, P. 551–558</td>
</tr>
<tr>
<td>Persson, L. 639–645</td>
</tr>
<tr>
<td>Petersen, J.S. 109–112</td>
</tr>
<tr>
<td>Petersson, A.-S. 639–645</td>
</tr>
<tr>
<td>Pirzanyi, G. 167–174</td>
</tr>
<tr>
<td>Pirola, C.J. 437–442</td>
</tr>
<tr>
<td>Pithois-Merli, I. 613–618</td>
</tr>
<tr>
<td>Poston, L. 273–278, 357–364</td>
</tr>
<tr>
<td>Potter, J.F. 517–522</td>
</tr>
<tr>
<td>Potts, J.L. 339–348</td>
</tr>
<tr>
<td>Pradada, F. 29–35</td>
</tr>
<tr>
<td>Prigent, A.F. 467–470</td>
</tr>
<tr>
<td>Quirk, F.H. 17–21</td>
</tr>
<tr>
<td>Radda, G.K. 1–3, 491–497, 583–589</td>
</tr>
<tr>
<td>Rajagopalan, B. 1–3, 583–589</td>
</tr>
<tr>
<td>Ramon y Cajal, S. 551–558</td>
</tr>
<tr>
<td>Ranaldi, L. 227–231</td>
</tr>
<tr>
<td>Ratcliffe, P.I. 491–497</td>
</tr>
<tr>
<td>Rebuck, A.S. 155–159</td>
</tr>
<tr>
<td>Regan, C.J. 605–611</td>
</tr>
<tr>
<td>Reinhart, W.H. 387–391</td>
</tr>
<tr>
<td>Riley, M. 89–95</td>
</tr>
<tr>
<td>Roberts, A.F.C. 221–226</td>
</tr>
<tr>
<td>Rodriguez, M. 123–129</td>
</tr>
<tr>
<td>Rodriguez-Sánchez, M.N. 451–456</td>
</tr>
<tr>
<td>Rohner, F. 387–391</td>
</tr>
<tr>
<td>Rose, G.A. 233–238</td>
</tr>
<tr>
<td>Russo, D. 523–530</td>
</tr>
<tr>
<td>Rutberg, H. 81–87</td>
</tr>
<tr>
<td>Rutherford, P.A. 365–369</td>
</tr>
<tr>
<td>Ryall, R.L. 9–15</td>
</tr>
<tr>
<td>Saphier, P.W. 233–238</td>
</tr>
<tr>
<td>Scheucher, A. 437–442</td>
</tr>
<tr>
<td>Schrier, R.W. 429–435</td>
</tr>
<tr>
<td>Schroeder, B. 409–414</td>
</tr>
<tr>
<td>Schwitzeger, G. 57–65</td>
</tr>
<tr>
<td>Sealey, J.E. 371–376</td>
</tr>
<tr>
<td>Selby, C. 97–107</td>
</tr>
<tr>
<td>Sertl, K. 477–482</td>
</tr>
<tr>
<td>Shalmi, M. 109–112</td>
</tr>
<tr>
<td>Sharif, H. 583–589</td>
</tr>
<tr>
<td>Shenkin, A. 161–165</td>
</tr>
<tr>
<td>Shepherd, J. 575–581</td>
</tr>
<tr>
<td>Siebert, D.M. 37–42</td>
</tr>
<tr>
<td>Silva, A. 619–623</td>
</tr>
<tr>
<td>Simon, A. 613–618</td>
</tr>
<tr>
<td>Sleight, P. 583–589</td>
</tr>
<tr>
<td>Smaje, L.H. 5–8</td>
</tr>
</tbody>
</table>
Author Index

Sollevi, A. 131–138
Somogyi, A.A. 37–42
Stamp, T.C.B. 233–238
Stanford, C.F. 89–95
Stewart, P.M. 537–542
Stockenhuber, F. 471–476, 477–482
Strandvik, B. 299–305
Strazzullo, P. 531–536
Swan, C.H.J. 663–668
Symonds, E.M. 403–408
Takahashi, K. 619–623
Tattersfield, A.E. 315–323, 325–330
Taylor, D.J. 491–497
Thiede, H.M. 57–65
Thomsen, K. 109–112
Thomson, N.C. 51–55
Tooke, J.E. 5–8
Toti, E. 227–231
Tran-Van, T. 29–35
Tuchelt, H. 57–65
Van Damme, J. 161–165
Villamil, M.F. 149–154
Vinnars, E. 331–337
Walker, B.E. 247–252
Walker, M. 167–174
Waller, D.G. 117–121
Walls, J. 259–266
Warwick, R. 175–183
Wasserman, S.M. 5–8
Watson, M. 357–364
Weiler, E. 185–192
Wennmalm, Å. 639–645
Westaby, D. 67–71
Wieling, W. 73–79
Williams, H.E. 113–116
Williams, R. 67–71
Williams, S.A. 5–8
Wilson, K.M. 37–42
Winell, S. 639–645
Wolin, A.D. 307–313
Woodley, J.F. 663–668
Woolfson, R.G. 273–278
Zammit, V.C. 505–511
Zentler-Munro, P.L. 349–355
Acetylcholine  
endothelium-dependent relaxation, resistance arteries 273–278
Acute metabolic acidosis  
lithium 23–27
Acute renal failure  
platelet-activating factor, glycerol 551–558
Acute-phase protein response  
interleukin-6 161–165
Adenosine  
cardiac output, regional circulation 131–138
Adipose tissue  
postprandial substrate deposition 339–348
Adrenaline  
xorygen 155–159
Adriamycin nephrosis  
dietary protein restriction, xanthine oxidase 647–656
Affinity constant  
sodium pump, erythrocytes 625–630
Ageing  
blood mononuclear cells, cyclic phosphodiesterase 467–470
orthostatic hypotension, postural changes 73–79
Airway smooth muscle contractility  
sodium-transport inhibitors 315–323
Aldose reductase  
ins, diabetes 599–603
Aldosterone  
angiotensin II, atrial natriuretic factor 57–65
Alkaline phosphatase  
zinc, gastrointestinal neoplasms 247–252
Amitriptyline  
airway smooth muscle contractility 315–323
bronchial reactivity, histamine 325–330
Amino acid kinetics  
skeletal muscle, branched-chain amino acids 457–466
Amiloride  
muscle, glucocorticoids 139–147
muscle and plasma, dietary protein 331–337
renal function, isolated kidney 381–386
Amiodarone  
erthrocyte membrane 387–391
Angiotensin II  
aldosterone, atrial natriuretic factor 57–65
hypertrophy, hypertension 523–530
pregnancy-induced hypertension 505–511
sodium handling, nephrotic syndrome 559–574
Angiotensin II binding  
platelets, pregnancy 403–408
Angiotensin-converting enzyme inhibitors  
kidney, kininases 29–35
regional haemodynamics 393–401
L-Arabinose excretion  
intestinal permeability, lactase deficiency 175–183
L-Arginine  
endothelium-derived relaxing factor, cyclosporin A derivatives 149–154
renal function, isolated kidney 381–386
Arterial blood flow pattern  
atherosclerosis, isosorbide dinitrate 215–220
Aspirin infusion  
platelet aggregation, thromboxane 37–42
Asthma  
blood flow, cold challenge 307–313
distress, quality of life 17–21
Atherosclerosis  
arterial blood flow pattern, isosorbide dinitrate 215–220
Atrial natriuretic peptide  
bronchomotor tone 51–55
cardiac tamponade 377–380
renin–angiotensin system, sodium depletion 57–65
sodium excretion, diurnal variation 371–376
sodium handling, nephrotic syndrome 559–574
sodium retention, cirrhosis 67–71
Atrial stretch  
atrial natriuretic peptide 377–380
Autologous serum  
sodium–proton exchange, leucocytes 357–364
Autonomic function  
postprandial blood pressure 517–522
Bias  
primed infusion, Steele equation 201–213
Biocompatibility  
membrane attack complex, haemodialysis 471–476
Blood flow  
cold challenge, asthma 307–313
skeletal muscle, chronic renal failure 239–245
Blood gases  
catheterization, femoral vessels 81–87
Blood mononuclear cells  
cyclic phosphodiesterase, ageing 467–470
Blood pressure  
calcium regulation, cell membrane abnormalities 415–423*
Subject Index

Cushing reflex  543-550*
hypertrophy, renin–angiotensin system  523-530
ventricular arrhythmia, working heart
model  499-504
Blood pressure determination
postural changes, ageing  73-79
Blood-pressure micropuncture
capillary, hypertension  5-8
Brain
somatostatin receptors, ethanol  451-456
Branched-chain amino acids
proteolysis, skeletal muscle  457-466
Bronchial reactivity
histamine, sodium-transport inhibitors  325-330
Bronchomotor tone
atril natriuretic peptide  51-55
Calcitonin receptor
pseudo-vitamin D deficiency rickets type I  409-414
Calcium
platelets, shear stress, hypertension  613-618
Calcium oxalate crystallization
urate  9-15
Calcium regulation
cell membrane abnormalities,
hypertension  415-423*
Calcium-channel blockers
renal haemodynamics, cyclosporin A  259-266
Calcium-entry blocker
isolated perfused heart, endothelin  221-226
Cardiac tamponade
atrial natriuretic peptide  377-380
Cardiovascular system
eicosanoids, inheritance and environmental
factors  639-645
Catecholamines
adrenalin  131-138
dopamine infusion  605-611
hypoglycaemia, glucose-clamp technique  279-285
oxygen  155-159
postprandial blood pressure  517-522
Catheterization
leg blood flow, substrate exchange  81-87
Cholesterol
erythrocyte membrane, amiodarone  387-391
Cholesteryl ester transfer protein
restriction fragment length polymorphism, high-density
lipoprotein cholesterol  575-581
Chromatography
endothelin, Gram-negative bacteria  619-623
Chronic heart failure
skeletal muscle, metabolism  583-589
substrate utilization, exercise  89-95
Chronic renal failure
blood flow, skeletal muscle  239-245
pruritus, histamine  477-482
Chylomicrons
forearm muscle, adipose tissue  339-348
Chyme
lipolysis, enzyme inhibitors  349-355
Cirrhosis
sodium retention, atrial natriuretic peptide  67-71
Coeeliac disease
excretion of raffinose, lactose and L-arabinose  175-183
Cold challenge
blood flow, asthma  307-313
Colonic permeability
urea  253-258
Colostomy
urea metabolism and hydrolysis  253-258
Complement
haemodialysis  471-476
Congestive heart failure
noradrenaline  429-435
Coronary vasoconstriction
endothelin, calcium-entry blocker  221-226
C-reactive protein
surgery, interleukin-6  161-165
Cremophor
endothelium-derived relaxing factor  149-154
Crohn’s disease
excretion of raffinose, lactose and L-arabinose  175-183
Cushing reflex
a reappraisal  543-550*
Cyclic phosphodiesterase
blood mononuclear cells, ageing  467-470
Cyclosporin A
renal haemodynamics, nifedipine  259-266
vehicles, endothelium-derived relaxing
factor  149-154
Cystic fibrosis
essential fatty acid deficiency, renal
function  299-305
Defence response
emotional stress, skin blood flow  43-50
Defunctioned colon
urea metabolism and hydrolysis  253-258
Desamino-d-arginine-vasopressin
kallikrein, urine  117-121
Diabetes
aldose reductase, lens  599-603
primed infusion, glucose  201-213
Dietary fat
prostaglandin E2, tumour necrosis factor-α  657-662
Dietary protein
adriamycin nephrosis, xanthine oxidase  647-656
muscle and plasma amino acids  331-337
Digestion
fatty acids, enzyme inhibitors  349-355
Digoxin
bronchial reactivity, histamine  325-330
<table>
<thead>
<tr>
<th>Subject Index XV</th>
</tr>
</thead>
</table>
| **1,25-Dihydroxyvitamin D$_3$** | Essential hypertension  
| pseudo-vitamin D deficiency rickets type I  | kidney, salt intake  193–200*, 289–297*  
| 409–414 | sodium–lithium countertransport, sodium affinity  365–369  
| Discretionary salt intake | Ethanol  
| lithium-marker technique, population studies  | brain, somatostatin receptors  451–456  
| 227–231 | Exercise  
| Distress | skeletal muscle, chronic heart failure  583–589  
| asthma, quality of life  17–21 | sodium–proton antiport, hypertension  491–497  
| Diuretics | substrate utilization, chronic heart failure  89–95  
| sodium handling, nephrotic syndrome  559–574 |  
| Diurnal variation | Fats  
| sodium excretion, atrial natriuretic peptide  | prostaglandin E$_2$, tumour necrosis factor-α  657–662  
| 371–376 | fatty acid production  
| Dopamine infusion | lipase, enzyme inhibitors  349–355  
| metabolic effects  605–611 | Femoral artery  
| Dye dilution | catheterization, substrate exchange  81–87  
| leg blood flow  81–87 | Femoral vein  
| Emotional stress | catheterization, substrate exchange  81–87  
| skin blood flow, laser Doppler flowmetry  43–50 | Fluoride  
| Enalaprilat | osteoporosis, parathyroid hormone  233–238  
| regional haemodynamics  393–401 | Forearm metabolism  
| Endogenous sodium–potassium adenosine triphosphatase inhibitor enzyme kinetics  185–192 | insulin sensitivity, non-esterified fatty acids  167–174  
| Endothelin | Forearm muscle  
| Gram-negative bacteraemia, tumour necrosis factor-α  619–623 | postprandial substrate deposition  339–348  
| isolated perfused heart  221–226 | Free fatty acids  
| sodium handling, nephrotic syndrome  559–574 | catheterization, femoral vessels  81–87  
| Endothelium-dependent relaxation resistance arteries, N$^0$-monomethyl-L-arginine  273–278 | forearm muscle, adipose tissue  339–348  
| Endothelium-derived relaxing factor cyclosporin A vehicles  149–154 | substrate utilization, chronic heart failure  89–95  
| Endotoxin | Frontoparietal cortex  
| endothelin, tumour necrosis factor-α  619–623 | somatostatin receptors, ethanol  451–456  
| prostaglandin E$_2$, dietary fats  657–662 | Functioning colon  
| Energy expenditure | urea metabolism and hydrolysis  253–258  
| surgical stress, insulin resistance  443–450 |  
| Environmental factors | Galactosaemia  
| prostacyclin, platelet activity  639–645 | aldose reductase, lens  599–603  
| Enzyme kinetics | Gastric mucosa  
| lead, endogenous sodium–potassium adenosine triphosphatase inhibitor  185–192 | mucus, epidermal growth factor  425–427  
| Enzymes | Gastrointestinal neoplasms  
| intestinal mucosa, uraemia  663–668 | leucocyte and muscle zinc, alkaline phosphatase  247–252  
| Epidermal growth factor | Glomerular filtration rate  
| mucus, gastric mucosa  425–427 | essential fatty acid deficiency, cystic fibrosis  299–305  
| Erythrocyte membrane cholesterol, amiodarone  387–391 | isolated kidney, amino acids  381–386  
| Erythrocytes | platelet-activating factor, acute renal failure  551–558  
| deformability, amiodarone  387–391 | Glomeruli  
| sodium pump  625–630 | Glomerulotubular balance  
| sodium pump, pregnancy  631–638 | sodium excretion, nephrotic syndrome  123–129  
| *Escherichia coli* | Glucocorticoids  
| endothelin, tumour necrosis factor-α  619–623 | glutamine metabolism, muscle  139–147  
| Essential fatty acid deficiency | Gluconeogenesis  
| cystic fibrosis, renal function  299–305 | kidney, sepsis  483–490  
|  | Glucose  
|  | catheterization, femoral vessels  81–87  
|  | dopamine infusion  605–611  
|  | forearm muscle, adipose tissue  339–348  
|  | plasminogen activator inhibitor-1  513–516  
|  | primed infusion, bias  201–213  
|  |  
|
Subject Index

Glucose clamp
  thermogenesis, catecholamines 279–285
  surgical stress, insulin resistance 443–450
Glucose–fatty acid cycle
  non-insulin-dependent diabetes mellitus 167–174
L-Glutamic acid
  renal function, isolated kidney 381–386
Glutaminase
  muscle, glucocorticoids 139–147
Glutamine metabolism
  muscle, glucocorticoids 139–147
Glutamine synthetase
  muscle, glucocorticoids 139–147
Glycerol
  acute renal failure, platelet-activating factor 551–558
  adenosine 131–138
  catheterization, femoral vessels 81–87
  substrate utilization, chronic heart failure 89–95
Glycine
  renal function, isolated kidney 381–386
Glycosaminoglycans
  oxalate, nephrolithiasis 113–116
G-proteins
  blood mononuclear cells, ageing 467–470
Gram-negative bacteria
  endotoxin, tumour necrosis factor-α 619–623
Guanosine 3':5'-cyclic monophosphate
  diurnal variation, atrial natriuretic peptide 371–376
Haemodialysis
  membrane attack complex, biocompatibility 471–476
  uraemic pruritus, histamine 477–482
5-(N,N-Hexamethylene) amiloride
  sodium–proton exchange, leucocytes 357–364
High-density lipoprotein cholesterol
  restriction fragment length polymorphism, cholesteryl ester transfer protein 575–581
Hippocampus
  somatostatin receptors, ethanol 451–456
Histamine
  bronchial reactivity, sodium-transport inhibitors 325–330
  uraemic pruritus, haemodialysis 477–482
Human brain in vivo
  intracellular pH, hypercapnia 1–3
5-Hydroxytryptamine
  pineal gland, hypertension 437–442
Hypercapnia
  human brain in vivo, intracellular pH 1–3
Hypertension
  angiotensin-converting enzyme inhibitors, kidney 29–35
  calcium regulation, cell membrane abnormalities 415–423*
  capillary, blood-pressure micropuncture 5–8
  Cushing reflex 543–550*
  hypertrophy, renin–angiotensin system 523–530
  kidney, salt intake 193–200*, 289–297*
  pineal gland, muscarinic activity 437–442
  platelet cytosolic free calcium concentration, shear stress 613–618
  sodium–lithium countertransport, sodium affinity 365–369
  sodium–proton antiport, skeletal muscle 491–497
Hypertrophy
  hypertension, renin–angiotensin system 523–530
Hyperuricosuria
  calcium oxalate crystallization 9–15
Hypocalcaemia
  calcitriol receptor, pseudo-vitamin D deficiency rickets type I 409–414
Hypoglycaemia
  thermogenesis, catecholamines 279–285
Ibuprofen
  sodium excretion, nephrotic syndrome 123–129
Idiopathic nephrotic syndrome
  susceptibility determinants, linkage disequilibrium 669–670
In situ hybridization
  aldose reductase, lens 599–603
Inheritance
  prostatic, platelet activity 639–645
Inhibition of metabolism
  sodium handling, nephrotic syndrome 559–574
Insulin
  forearm muscle, adipose tissue 339–348
  plasminogen activator inhibitor-1 513–516
  postprandial blood pressure 517–522
Insulin resistance
  surgical stress, glucose clamp 443–450
Insulin sensitivity
  forearm metabolism, non-esterified fatty acids 167–174
Interleukin-6
  surgery, C-reactive protein 161–165
Intestinal mucosa
  enzymes, uraemia 663–668
Intestinal permeability
  excretion of raffinose, lactose and l-arabinose 175–183
Intracellular pH
  human brain in vivo, hypercapnia 1–3
  leucocytes, autologous serum 357–364
Isolated perfused heart
  endothelin, calcium-entry blocker 221–226
Isolated perfused kidney
  nephrotic syndrome, polyamines 591–598
  sodium handling, nephrotic syndrome 559–574
Isosorbide dinitrate
  arterial blood flow pattern, atherosclerosis 215–220
Jejunum
  peptides, kinetics of influx 267–272
Kallikrein
  urine, desamino-D-arginine-vasopressin 117–121
<table>
<thead>
<tr>
<th>Subject Index xvii</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Kallikrein-kinin system</strong></td>
</tr>
<tr>
<td>angiotensin-converting enzyme inhibitors, kidney 29–35</td>
</tr>
<tr>
<td><strong>Kidney</strong></td>
</tr>
<tr>
<td>angiotensin-converting enzyme inhibitors, kininases 29–35</td>
</tr>
<tr>
<td>essential hypertension, salt intake 193–200*, 289–297*</td>
</tr>
<tr>
<td>regulation of gluconeogenesis, sepsis 483–490</td>
</tr>
<tr>
<td><strong>Kidney failure</strong></td>
</tr>
<tr>
<td>small intestine, enzymes 663–668</td>
</tr>
<tr>
<td><strong>Kidney function</strong></td>
</tr>
<tr>
<td>amino acids 381–386</td>
</tr>
<tr>
<td><strong>Kidney perfusion</strong></td>
</tr>
<tr>
<td>sodium retention, atrial natriuretic peptide 67–71</td>
</tr>
<tr>
<td><strong>Kinetics</strong></td>
</tr>
<tr>
<td>neutrophils, lungs 97–107*</td>
</tr>
<tr>
<td>peptides, jejunum 267–272</td>
</tr>
<tr>
<td>renal tubular acidification, lithium 23–27</td>
</tr>
<tr>
<td>sodium–proton antiporter, lymphocytes 531–536</td>
</tr>
<tr>
<td><strong>Kininas</strong></td>
</tr>
<tr>
<td>kidney, angiotensin converting enzyme inhibitors 29–35</td>
</tr>
<tr>
<td><strong>Labrafil</strong></td>
</tr>
<tr>
<td>endothelium-derived relaxing factor 149–154</td>
</tr>
<tr>
<td><strong>Lactate deficiency</strong></td>
</tr>
<tr>
<td>excretion of raffinose, lactose and t-arabinose 175–183</td>
</tr>
<tr>
<td><strong>Lactate</strong></td>
</tr>
<tr>
<td>catheterization, femoral vessels 81–87</td>
</tr>
<tr>
<td><strong>Lactose excretion</strong></td>
</tr>
<tr>
<td>intestinal permeability, lactase deficiency 175–183</td>
</tr>
<tr>
<td><strong>Laser Doppler flowmetry</strong></td>
</tr>
<tr>
<td>skin blood flow, emotional stress 43–50</td>
</tr>
<tr>
<td><strong>Lead</strong></td>
</tr>
<tr>
<td>enzyme kinetics 185–192</td>
</tr>
<tr>
<td><strong>Leg blood flow</strong></td>
</tr>
<tr>
<td>dye dilution, strain-gauge plethysmography 81–87</td>
</tr>
<tr>
<td><strong>Lens</strong></td>
</tr>
<tr>
<td>aldose reductase, diabetes 599–603</td>
</tr>
<tr>
<td><strong>Leucine</strong></td>
</tr>
<tr>
<td>renal function, isolated kidney</td>
</tr>
<tr>
<td>skeletal muscle, branched-chain amino acids 457–466</td>
</tr>
<tr>
<td><strong>Leucocytes</strong></td>
</tr>
<tr>
<td>sodium–proton antiporter, hypertension 491–497</td>
</tr>
<tr>
<td>sodium–proton exchange, autologous serum 357–364</td>
</tr>
<tr>
<td>zinc, gastrointestinal neoplasms 247–252</td>
</tr>
<tr>
<td><strong>Linkage disequilibrium</strong></td>
</tr>
<tr>
<td>idiopathic nephrotic syndrome, susceptibility determinants 669–670</td>
</tr>
<tr>
<td><strong>Lipase</strong></td>
</tr>
<tr>
<td>fatty acids, enzyme inhibitors 349–355</td>
</tr>
<tr>
<td><strong>Lipolysis</strong></td>
</tr>
<tr>
<td>dopamine infusion 605–611</td>
</tr>
<tr>
<td>enzyme inhibitors, chyme 349–355</td>
</tr>
<tr>
<td><strong>Lipopolysaccharide</strong></td>
</tr>
<tr>
<td>endothelin, tumour necrosis factor-α 619–623</td>
</tr>
<tr>
<td><strong>Lisinopril</strong></td>
</tr>
<tr>
<td>regional haemodynamics 393–401</td>
</tr>
<tr>
<td><strong>Lithium</strong></td>
</tr>
<tr>
<td>renal tubular acidification, kinetics 23–27</td>
</tr>
<tr>
<td>urinary excretion, discretionary salt intake 227–231</td>
</tr>
<tr>
<td><strong>Lithium reabsorption</strong></td>
</tr>
<tr>
<td>sodium restriction, water loading 109–112</td>
</tr>
<tr>
<td><strong>Lung</strong></td>
</tr>
<tr>
<td>neutrophil kinetics 97–107*</td>
</tr>
<tr>
<td><strong>Lymphocytes</strong></td>
</tr>
<tr>
<td>sodium–proton antiporter, kinetics 531–536</td>
</tr>
<tr>
<td><strong>Magnesium</strong></td>
</tr>
<tr>
<td>ventricular arrhythmia, blood pressure 499–504</td>
</tr>
<tr>
<td><strong>Maximal enzyme activities</strong></td>
</tr>
<tr>
<td>renal gluconeogenesis, sepsis 483–490</td>
</tr>
<tr>
<td><strong>Maximum velocity</strong></td>
</tr>
<tr>
<td>sodium pump, erythrocytes 625–630</td>
</tr>
<tr>
<td><strong>Melatonin</strong></td>
</tr>
<tr>
<td>pineal gland, hypertension 437–442</td>
</tr>
<tr>
<td><strong>Membrane abnormalities</strong></td>
</tr>
<tr>
<td>calcium regulation, hypertension 415–423*</td>
</tr>
<tr>
<td><strong>Membrane attack complex</strong></td>
</tr>
<tr>
<td>biocompatibility, haemodialysis 471–476</td>
</tr>
<tr>
<td><strong>Metabolism</strong></td>
</tr>
<tr>
<td>skeletal muscle, chronic heart failure 583–589</td>
</tr>
<tr>
<td><strong>Microcirculation</strong></td>
</tr>
<tr>
<td>hypertension 5–8</td>
</tr>
<tr>
<td><strong>N-Monomethyl-L-arginine</strong></td>
</tr>
<tr>
<td>endothelium-dependent relaxation, resistance arteries 273–278</td>
</tr>
<tr>
<td><strong>Mucus</strong></td>
</tr>
<tr>
<td>gastric mucosa, epidermal growth factor 425–427</td>
</tr>
<tr>
<td><strong>Muscarinic activity</strong></td>
</tr>
<tr>
<td>pineal gland, hypertension 437–442</td>
</tr>
<tr>
<td><strong>Muscle</strong></td>
</tr>
<tr>
<td>amino acids, dietary protein 331–337</td>
</tr>
<tr>
<td>blood flow, chronic renal failure 239–245</td>
</tr>
<tr>
<td>glutamine metabolism, glucocorticoids 139–147</td>
</tr>
<tr>
<td>zinc, gastrointestinal neoplasms 247–252</td>
</tr>
<tr>
<td><strong>Myocardial wall stress</strong></td>
</tr>
<tr>
<td>ventricular arrhythmia, working heart model 499–504</td>
</tr>
<tr>
<td><strong>Nephrolithiasis</strong></td>
</tr>
<tr>
<td>oxalate, glycosaminoglycans 113–116</td>
</tr>
<tr>
<td><strong>Nephrotic syndrome</strong></td>
</tr>
<tr>
<td>glomerulotubular balance, sodium excretion 123–129</td>
</tr>
<tr>
<td>polycations, isolated perfused kidney 591–598</td>
</tr>
<tr>
<td>sodium handling, isolated perfused kidney 559–574</td>
</tr>
<tr>
<td><strong>Neutrophils</strong></td>
</tr>
<tr>
<td>kinetics, lung 97–107*</td>
</tr>
<tr>
<td><strong>Nicardipine</strong></td>
</tr>
<tr>
<td>isolated perfused heart, endothelin 221–226</td>
</tr>
<tr>
<td><strong>Nifedipine</strong></td>
</tr>
<tr>
<td>renal haemodynamics, cyclosporin A 259–266</td>
</tr>
<tr>
<td><strong>Nitrogen</strong></td>
</tr>
<tr>
<td>urea hydrolysis, functioning and defunctioned colon 253–258</td>
</tr>
</tbody>
</table>
Non-esterified fatty acids
  forearm metabolism, insulin sensitivity 167–174

Noradrenaline
  congestive heart failure 429–435
  oxygen 155–159
  sodium handling, nephrotic syndrome 559–574
  substrate utilization, chronic heart failure 89–95

Nuclear magnetic resonance spectroscopy
  intracellular pH, human brain in vivo 1–3
  skeletal muscle, metabolism 583–589
  sodium–proton antiport, skeletal muscle 491–497

Orthostatic hypotension
  postural changes, ageing 73–79

Osteoporosis
  parathyroid hormone, fluoride 233–238

Ouabain
  airway smooth muscle contractility 315–323

Oxalate
  glycosaminoglycans, nephrolithiasis 113–116

Oxygen
  catecholamines 155–159

Oxygen consumption
  dopamine infusion 605–611

Parathyroid hormone
  osteoporosis, fluoride 233–238

Pearson product–moment correlation
  limitations 287

Peptide hydrolyses
  intestinal mucosa, uraemia 663–668

Peptides
  kinetics of influx, jejunum 267–272

Pharmacokinetics
  tobramycin, essential fatty acid deficiency 299–305

Pineal gland
  muscarinic activity, hypertension 437–442

Plasma
  amino acids, dietary protein 331–337

Plasminogen activator inhibitor-1
  insulin, triacylglycerol 513–516

Platelet activity
  inheritance and environmental factors 639–645

Platelet aggregation
  aspirin infusions, thromboxane 37–42

Platelet membrane glycoproteins
  angiotensin II, pregnancy 403–408

Platelet-activation factor
  acute renal failure, glycerol 551–558

Platelets
  cytosolic free calcium concentration, shear stress 613–618

Polycycles
  isolated perfused kidney, nephrotic syndrome 591–598

Poly-L-lysine
  isolated perfused kidney, nephrotic syndrome 591–598

Polyoxyethylated derivatives
  endothelium-derived relaxing factor 149–154

Polyethylene glycol

Postprandial blood pressure
  autonomic function, insulin 517–522

Posture
  orthostatic hypotension, ageing 73–79
  sodium excretion, atrial natriuretic peptide 371–376

Potassium
  ventricular arrhythmia, blood pressure 499–504
  potassium-activated p-nitrophenylphosphatase lead, endogenous sodium–potassium adenosine triphosphatase inhibitor 185–192

Pregnancy
  platelet angiotensin II binding, renin–angiotensin system 403–408
  sodium pump, erythrocytes 631–638

Pregnancy-induced hypertension
  renin 505–511

Primed infusion
  glucose, bias 201–213

Prostacyclin
  inheritance and environmental factors 639–645

Prostaglandin E₂
  tumour necrosis factor-α, dietary fats 657–662

Protamine
  isolated perfused rat kidney, nephrotic syndrome 591–598

Protein degradation
  uraemia 537–542

Protein intake
  muscle and plasma amino acids 331–337

Protein synthesis
  uraemia 537–542

Proteinuria
  dietary protein restriction, xanthine oxidase 647–656

Proteolysis
  skeletal muscle, branched-chain amino acids 457–466

Protons
  skeletal muscle, hypertension 491–497

Pruritus
  histamine, haemodialysis 477–482

Pseudo-vitamin D deficiency rickets type I
  calcitriol receptor 409–414

Purine nucleoside phosphorylase
  dietary protein restriction, adriamycin nephrosis 647–656

Puromycin aminonucleoside
  sodium handling, isolated perfused rat kidney 559–574

Quality of life
  asthma, distress 17–21

Raffinose excretion
  intestinal permeability, lactase deficiency 175–183

Rate constant
  sodium pump, erythrocytes 625–630

Regional haemodynamics
  adenosine 131–138
  angiotensin-converting enzyme inhibitors 393–401
Renal blood flow
  platelet-activating factor, acute renal failure 551–558
Renal gluconeogenesis
  maximal enzyme activities, sepsis 483–490
Renal haemodynamics
  nifedipine, cyclosporin A 259–266
  sodium excretion, nephrotic syndrome 123–129
Renal tubular acidification
  kinetics, lithium 23–27
Renal tubules
  regulation of gluconeogenesis, sepsis 483–490
Renin
  hypertrophy, hypertension 523–530
  pregnancy-induced hypertension 505–511
  sodium excretion, atrial natriuretic peptide 371–376
Renin–angiotensin system
  atrial natriuretic peptide, sodium depletion 57–65
  platelet angiotensin II binding, pregnancy 403–408
Resistance arteries
  endothelium-dependent relaxation Nω-monomonoarginine 273–278
Restriction fragment length polymorphism
  cholesteryl ester transfer protein, high-density lipoprotein cholesterol 575–581
Salt intake
  essential hypertension, kidney 193–200*, 289–297*
Sepsis
  regulation of renal gluconeogenesis 483–490
Shear rate
  platelet cytosolic free calcium concentration, hypertension 613–618
Shear stress
  platelet cytosolic free calcium concentration, hypertension 613–618
Skeletal muscle
  blood flow, chronic renal failure 239–245
  glutamine metabolism, glucocorticoids 139–147
  metabolism, chronic heart failure 583–589
  proteolysis, branched-chain amino acids 457–466
  sodium–proton antiport, hypertension 491–497
Skin blood flow
  emotional stress, laser Doppler flowmetry 43–50
Small intestine
  enzymes, uraemia 663–668
Sodium
  skeletal muscle, hypertension 491–497
  sodium–lithium countertransport, essential hypertension 365–369
Sodium depletion
  renin–angiotensin system, atrial natriuretic peptide 57–65
Sodium excretion
  diurnal variation, atrial natriuretic peptide 371–376
  glomerulotubular balance, nephrotic syndrome 123–129
Sodium handling
  nephrotic syndrome, isolated perfused kidney 559–574
Sodium intake
  lithium-marker technique, population studies 227–231
Sodium–lithium countertransport
  sodium affinity, essential hypertension 365–369
  sodium–potassium-activated adenosine triphosphatase lead, endogenous sodium–potassium adenosine triphosphatase inhibitor 185–192
Sodium–proton antiporter
  kinetics, lymphocyte 531–536
  leucocytes, autologous serum 357–364
  skeletal muscle, hypertension 491–497
Sodium pump
  affinity constant, maximum velocity, rate constant 625–630, 631–638
Sodium resorption
  lithium, renal tubular acidification 23–27
Sodium restriction
  tubular lithium reabsorption, water loading 109–112
Sodium retention
  cirrhosis, atrial natriuretic peptide 67–71
  Sodium–transport inhibitors
    airway smooth muscle contractility 315–323
Somatostatin receptors
  brain, ethanol 451–456
Specific airway conductance
  atrial natriuretic peptide 51–55
Steele equation
  primed infusion, bias 201–213
Strain-gauge plethysmography
  leg blood flow 81–87
Stress
  skin blood flow, laser Doppler flowmetry 43–50
Substrate oxidation
  non-esterified fatty acids 167–174
Substrate utilization
  exercise, chronic heart failure 89–95
Surgery
  insulin resistance, glucose clamp 443–450
  interleukin-6, C-reactive protein 161–165
  leucocyte and muscle zinc, alkaline phosphatase 247–252
Susceptibility determinants
  idiopathic nephrotic syndrome, linkage disequilibrium 669–670
Terminal complement complex
  haemodialysis 471–476
Thermal conductivity
  cold challenge, asthma 307–313
Thermogenesis
  hypoglycaemia, glucose-clamp technique 279–285
Thermoregulation
  skin blood flow, laser Doppler flowmetry 43–50
Thromboxane
  inheritance and environmental factors 639–645
  platelet aggregation, aspirin infusions 37–42
Tobramycin
  pharmacokinetics, essential fatty acid deficiency 299–305
subject_index

Triacylglycerol
  forearm muscle, adipose tissue 339–348
  plasminogen activator inhibitor-1 513–516

Tubular lithium reabsorption
  sodium restriction, water loading 109–112

Tumour necrosis factor-α
  Gram-negative bacteraemia, endothelin 619–623
  prostaglandin E₂, dietary fats 657–662

Uraemia
  protein turnover 537–542
  small intestine, enzymes 663–668

Uraemic pruritus
  haemodialysis, histamine 477–482

Urate
  calcium oxalate crystallization 9–15
  essential fatty acid deficiency, cystic fibrosis 299–305

Urea hydrolysis
  functioning and defunctioned colon 253–258

Urea metabolism
  functioning and defunctioned colon 253–258

Urinary excretion
  lithium, discretionary salt intake 227–231

Urine
  calcium oxalate crystallization, urate 9–15
  kallikrein, desamino-o-arginine-vasopressin 117–121

Urolithiasis
  hyperuricosuria 9–15

Vascular conductance
  angiotensin-converting enzyme inhibitors 393–401

Vascular reactivity
  cold challenge, asthma 307–313

Vasodilatation
  isolated kidney, amino acids 381–386

Vasopressin
  kallikrein, urine 117–121

Ventricular arrhythmia
  blood pressure, working heart model 499–504

Verapamil
  isolated perfused heart, endothelin 221–226

Water loading
  tubular lithium reabsorption, sodium restriction 109–112

Working heart model
  ventricular arrhythmia, blood pressure 499–504

Xanthine oxidase
  dietary protein restriction, adriamycin nephrosis 647–656

Zinc
  gastrointestinal neoplasms, surgery 247–252