CLINICAL SCIENCE
Guidance for Authors

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Policy of the Journal</td>
<td></td>
</tr>
<tr>
<td>1.1. Scope</td>
<td>i</td>
</tr>
<tr>
<td>1.2. The Editorial Board</td>
<td>i</td>
</tr>
<tr>
<td>1.3. The editorial process</td>
<td>i</td>
</tr>
<tr>
<td>1.4. Ethics of investigations on human subjects</td>
<td>ii</td>
</tr>
<tr>
<td>1.5. Originality of papers</td>
<td>ii</td>
</tr>
<tr>
<td>2. Submission of Manuscripts: General Information and Format</td>
<td></td>
</tr>
<tr>
<td>2.1. General</td>
<td></td>
</tr>
<tr>
<td>2.2. Full papers</td>
<td>ii</td>
</tr>
<tr>
<td>2.3. Short Communications</td>
<td>iii</td>
</tr>
<tr>
<td>2.4. Correspondence</td>
<td>iii</td>
</tr>
<tr>
<td>2.5. Arrangements for large amounts of information</td>
<td>iii</td>
</tr>
<tr>
<td>2.6. Proof corrections</td>
<td>iii</td>
</tr>
<tr>
<td>2.7. Offprints</td>
<td>iii</td>
</tr>
<tr>
<td>2.8. Availability on MEDLINE</td>
<td>iii</td>
</tr>
<tr>
<td>3. Miscellaneous Notes</td>
<td></td>
</tr>
<tr>
<td>3.1. Abbreviations</td>
<td>iv</td>
</tr>
<tr>
<td>3.2. Anatomical nomenclature</td>
<td>iv</td>
</tr>
<tr>
<td>3.3. Animals, plants and microorganisms</td>
<td>iv</td>
</tr>
<tr>
<td>3.4. Buffers and salts</td>
<td>iv</td>
</tr>
<tr>
<td>3.5. Computer modelling</td>
<td>vi</td>
</tr>
<tr>
<td>3.6. Doses</td>
<td>iv</td>
</tr>
<tr>
<td>3.7. Enzymes</td>
<td>iv</td>
</tr>
<tr>
<td>3.8. Evaluation of measurement procedures</td>
<td>iv</td>
</tr>
<tr>
<td>3.9. Figures and Tables</td>
<td>iv</td>
</tr>
<tr>
<td>3.10. Footnotes</td>
<td>v</td>
</tr>
<tr>
<td>3.11. Isotope measurements</td>
<td>v</td>
</tr>
<tr>
<td>3.12. Radionuclide applications in man</td>
<td>v</td>
</tr>
<tr>
<td>3.13. Methods</td>
<td>v</td>
</tr>
<tr>
<td>3.14. Nomenclature of disease</td>
<td>v</td>
</tr>
<tr>
<td>3.15. Powers in Tables and Figures</td>
<td>v</td>
</tr>
<tr>
<td>3.16. References</td>
<td>v</td>
</tr>
<tr>
<td>3.17. Solutions</td>
<td>vi</td>
</tr>
<tr>
<td>3.18. Spectrophotometric data</td>
<td>vi</td>
</tr>
<tr>
<td>3.19. Spelling</td>
<td>vi</td>
</tr>
<tr>
<td>3.20. Statistics</td>
<td>vi</td>
</tr>
<tr>
<td>3.21. Trade names</td>
<td>vi</td>
</tr>
<tr>
<td>4. Units: The SI System</td>
<td>vi</td>
</tr>
<tr>
<td>5. Abbreviations, Conventions etc.</td>
<td>vii</td>
</tr>
</tbody>
</table>

1. POLICY OF THE JOURNAL

1.1. Scope

Clinical Science publishes papers in the field of clinical investigation, provided they are of a suitable standard and contribute to the advancement of knowledge in this field. The term 'clinical investigation' is used in its broad sense to include studies in animals and the whole range of biochemical, physiological, immunological and other approaches that may have relevance to disease in man. Studies which are confined to normal subjects, or animals, or are purely methodological in nature may be acceptable. The material presented should permit conclusions to be drawn and should not be only of a preliminary nature. The journal publishes four types of manuscript, namely invited Editorial Reviews, Full Papers, Short Communications and Correspondence. In addition, Clinical Science publishes abstracts of the proceedings of the Medical Research Society and also that Society's Annual Guest Lecture.

1.2. The Editorial Board

The Board comprises Editors for the Medical Research Society and the Biochemical Society and a Chairman and two Deputy Chairmen who are drawn alternately from the two Societies. Members of the Board retire after a maximum of 5 years; the Chairman serves in his capacity for 2 years. The membership of the Board is designed to cover as wide a range of interests as possible.

The main function of the Board is to decide on the acceptability of submitted papers, but it also deals with general matters of editorial policy. Financial policy is dealt with separately by the Committee of Management.

1.3. The editorial process

A submitted paper is first read by the Chairman or one of the Deputy Chairmen of the Editorial Board who then sends it to an Editor. The latter considers the paper in detail and sends it to one or more referees (who remain anonymous) from outside the membership of the Board. The Editor returns it with his recommendation to the Chairman who then writes formally to the authors. The ultimate responsibility of acceptance for publication
lies with the Chairman. If the Chairman is for any reason unavailable, a Deputy Chairman assumes this function.

1.4. Ethics of investigations on human subjects

Authors must state in the text of their paper the manner in which they have complied, where necessary, with the recommendations on human investigations published in the Medical Research Council report of 1962/63 [British Medical Journal (1964) ii, 178–180]. Consent must be obtained from each patient or subject after full explanation of the purpose, nature and risks of all procedures used and the fact that such consent has been given should be recorded in the paper. Papers should also state that the Ethical Committee of the Institution in which the work was performed has given approval to the protocol. The Editorial Board will not accept papers the ethical aspects of which are, in the Board's opinion, open to doubt.

1.5. Originality of papers

Submission of a paper to the Editorial Board is taken to imply that it reports work that has not been published in either the same or a substantially similar form, that it is not under consideration for publication elsewhere and that, if accepted for publication by Clinical Science, it will not be published elsewhere in the same form, either in English or in any other language, without the consent of the Editorial Board. This does not usually apply to previous publication of oral communications in brief abstract form. In such cases authors should enclose copies of the abstracts or previous publications. The author, or in the case of multiple authorship the authors, will be asked to sign a statement vesting the copyright in the publishers. Requests for consent for reproduction of material published in Clinical Science should be addressed to the Editorial Manager.

2. SUBMISSION OF MANUSCRIPTS: GENERAL INFORMATION AND FORMAT

2.1. General

Papers submitted for publication should be sent to the Editorial Manager, Clinical Science, 7 Warwick Court, London WC1R 5DP.

The submission should contain four copies (of which three may be photocopies) of the typescript, Tables, Figures etc. The authors should retain one copy of the paper. The Editorial Board does not accept responsibility for damage or loss of papers submitted, although great care is taken to ensure safety and confidentiality of the typescript during the editorial process. In the case of multiple authorship, the covering letter should indicate that the approval of all co-authors has been obtained.

Papers should be presented so that they are intelligible to the non-specialist reader of the journal. This is particularly important in highly specialized fields and a very brief résumé of the current state of knowledge is usually helpful. Certain types of material, e.g. mathematical formulations requiring more than trivial derivations, should be given in a separate Appendix.

Where the reader is referred to previous works by the same author(s) for important details relevant to the present work, copies or reprints of the publication should be sent with the typescript. This is of particular importance in relation to methodology.

The dates of receipt and acceptance of the paper will be published. If the paper has to be returned to the authors for revision and is not resubmitted within 1 month, the date of receipt will be revised accordingly. Papers returned by authors later than 12 months after the original submission date will be treated as new papers. For Short Communications the published date will always be that of receipt of the final version. It is emphasized that badly presented or unduly long papers will be returned for revision and delays in publication will be inevitable. Similar delays will be incurred if the typescript is not prepared strictly in accordance with the instructions detailed below.

2.2. Full papers

The authors should refer to a current issue of Clinical Science to make themselves familiar with the general layout. Concise presentation is very important for rising costs are a severe constraint on space. The length of manuscript and the number of Figures and Tables must be kept to a minimum. Extensive Tables of data can be deposited with the Royal Society of Medicine (see 2.5). Guidance for Authors is usually published in the January issue of the journal and revised periodically.

Typescripts should be, in general, arranged as follows:

(a) Title page. Title: this should be as informative as possible, since titles of papers are being increasingly used in indexing and coding for information storage and retrieval. The title should indicate the species in which the observations reported have been made. The numbering of parts in a series of papers is not permitted.
List of authors' names (degrees and appoint-
ments are not required).

Laboratory or Institute of origin.

Key words: for indexing the subject of the paper;
they should, if possible, be selected from the current
issues of 'Medical Subject Headings' (MeSH),
produced by the Index Medicus.

Short title: for use as a running heading in the
printed text; it should not exceed forty-five charac-
ters and spaces.

Author for correspondence: the name and
address of the author to whom queries and requests
for reprints should be sent.

(b) Summary. This should be a brief statement
arranged in numbered paragraphs of what was
done, what was found and what was concluded and
should rarely exceed 250 words. Abbreviations
should be avoided as far as possible and must
be defined. Statistical and methodological details
including exact doses should also be avoided unless
they are essential to the understanding of the
summary.

c) Introduction. This should contain a clear
statement of the reason for doing the work, but
should not include either the findings or the
conclusions.

d) Methods. The aim should be to give sufficient
information in the text or by reference to permit the
work to be repeated without the need to communic-
ate with the author.

e) Results. This section should not include
material appropriate to the Discussion section.

(f) Discussion. This should not contain results
and should be pertinent to the data presented.

(g) Acknowledgments. These should be as brief
as possible.

(h) References. See p. v for the correct format.

(i) Figures and Tables. See p. iv.

2.3. Short Communications

The Short Communication should describe
completed work, and should not be merely a
preliminary communication. The format of Short
Communications should be similar to that of Full
Papers, but should not exceed 1200 words of text.
One Figure or Table is allowed, but if neither is
included the text may be expanded to 1400 words.
The passage of Short Communications through the
editorial process can frequently be expedited and
contributors are encouraged to take advantage of
these facilities when rapid publication is of import-
ance and the material can be presented concisely.
The paper should appear in print within 3 months
of acceptance. When submitting Short Communi-
cations, authors should make it quite clear that the
work is intended to be treated as a Short
Communication.

2.4. Correspondence

Letters containing original observations or
critical assessments of material published in Clinical
Science, including Editorial Reviews, will be con-
sidered for the Correspondence section of the
journal. Letters should be no longer than 750
words, with one Figure or Table and up to six
references, or 1000 words maximum without a
Figure or Table. Letters relating to material
previously published in Clinical Science should be
submitted within 6 months of the appearance of the
article concerned. They will be sent to the authors
for comment and both the letter and any reply by
the author will be published together. Further
correspondence arising therefrom will also be
considered for publication. Consideration will also
be given to publication of letters on ethical matters.

2.5. Arrangements for large amounts of informa-
tion

It is impracticable to publish very large sets of
individual values or very large numbers of
diagrams, and under these circumstances a sum-
mary of the information only should be included in
the paper. The information from which the sum-
mary was derived should be submitted with the
typescript and, if the latter is accepted, the Editors
may ask for a copy of the full information and
diagrams to be deposited with the Librarian, the
Royal Society of Medicine, 1 Wimpole Street,
London W1M 8AE, who will issue copies on
request. Experience has shown that such requests
are frequently received.

2.6. Proof corrections

These are expensive and corrections of other
than printers' errors may have to be charged to the
author.

2.7. Offprints

Fifty offprints are supplied free and additional
copies may be obtained at terms, based upon the
cost of production, that will be given with the
proofs. All offprints should be ordered when the
proofs are returned.

2.8. Availability on MEDLINE

Summaries of papers in Clinical Science are
available on-line on teleprinters participating in the
MEDLINE system run by the National Library of Medicine, National Institutes of Health, Bethesda, Maryland, U.S.A.

3. MISCELLANEOUS NOTES

3.1. Abbreviations
Abbreviations should be avoided; if used they must be defined at the first mention; new abbreviations should be coined only for unwieldy names which occur frequently. Abbreviations should not appear in the title nor, if possible, in the Summary. A list of accepted abbreviations is on p. vi. Numbers, not initials, should be used for patients and subjects.

3.2. Anatomical nomenclature
This should follow the recommendations of the International Anatomical Nomenclature Committee (1966) Nomina Anatomica, 3rd edn, Excerpta Medica Foundation, Amsterdam.

3.3. Animals, plants and micro-organisms
The full binomial specific names should be given at first mention for all experimental animals other than common laboratory animals. The strain and, if possible, the source of laboratory animals should be stated. Thereafter in the text, single letter abbreviations may be given for the genus; if two genera with the same initial letter are studied, abbreviations such as Staph. and Strep. should be used.

3.4. Buffers and salts
The acidic and basic components should be given, together with the pH. Alternatively, a reference to the composition of the buffer should be given. Further details are provided in the Biochemical Journal (1978) 169, 9.

When describing solutions containing organic anions and their parent acids, the salt designator (e.g. lactate, urate, oxalate) should be used in preference to the name of the acid (lactic, uric, oxalic) unless it is certain that virtually all of the acid is in the undissociated form.

The composition of incubation media should be described, or a reference to the composition should be given.

3.5. Computer modelling
Papers concerned primarily with computer modelling techniques are acceptable provided that use of such techniques leads to a clear choice between two or more alternative hypotheses, or to the formulation of a new hypothesis amenable to experimental challenge or verification, or provides some new insight into the behaviour of a particular physiological system. Extensive technical details of hardware and software should not be given.

3.6. Doses
Doses of drugs should be expressed in mass terms, e.g. milligrams (mg) or grams (g), and also (in parentheses) in molar terms, e.g. mmol, mol, where this appears to be relevant. Molecular weights of many drugs may be found in The Merck Index, 8th edn, Merck and Co. Inc., N.J., U.S.A.

3.7. Enzymes
Nomenclature should follow that given in Enzyme Nomenclature (1978), Academic Press, London and New York, and the Enzyme Commission (EC) number should be quoted at the first mention. Where an enzyme has a commonly used informal name, this may be employed after the first formal identification. A unit of enzyme activity should preferably be expressed as that amount of material which will catalyse transformation of 1 μmol of the substrate/min; under defined conditions, including temperature and pH. Alternatively, or when the natural substrate has not been fully defined, activity should be expressed in terms of units of activity relative to that of a recognized reference preparation, assayed under identical conditions. Activities of enzymes should normally be expressed as units/ml or units/mg of protein.

3.8. Evaluation of measurement procedures
When a new measuring procedure has been used, or when an established procedure has been applied in a novel fashion, an estimate of the precision of the procedure should be given. This should, as far as possible, indicate what sources of variation have been included in this estimate, e.g. variation of immediate replication, variation within different times of day, or from day to day etc.

If the precision of measurement varies in proportion to the magnitude of the values obtained, it can best be expressed as the coefficient of variation; otherwise it should be expressed by an estimate of the (constant) standard error of a single observation, or by estimates at several points within the range of observed values.

When recovery experiments are described the approximate ratio of the amount added to the amount already present and the stage of the procedure at which the addition was made should be stated.

3.9. Figures and Tables
These are expensive to print and their number should be kept to a minimum. Their appropriate
position in the paper should be indicated in the margin of the text. References to Figures and Tables should be in Arabic numerals, e.g. Fig. 3, and they should be numbered in order of appearance. In general, the same data should not be presented in both a Figure and a Table.

Figures, with captions attached, should be supplied as original drawings or matt photographs together with photocopies. All Figures should have their number and the authors’ names written in pencil on the back; the top of the Figure should be indicated with a pencilled arrow. Acceptable symbols for experimental points are *, △, ■, ○, △, □. The symbols × or + must be avoided. The same symbols must not be used for two curves where the points might be confused. For scatter diagrams, solid symbols are preferred. When a variable appears in more than one Figure, the same symbol should be used for it throughout, if possible.

Curves should not be drawn beyond the experimental points, nor should axes extend appreciably beyond the data. Only essential information that cannot readily be included in the legend should be written within the Figure.

Figures for half-tone reproduction should be submitted as glossy prints. They are particularly expensive to print and their use should be avoided as far as possible.

Tables should be typed separately from the text. They should have an underlined title followed by any legend.

Captions for the Figures, and titles and legends for the Tables, should make them readily understandable without reference to the text. Adequate statistical information, including that on regression lines, should be included in Figure captions where appropriate.

3.10. Footnotes
These should be avoided as far as possible but where they are used in Tables they should be identified by the symbols * † ‡ § ¶ in that order.

3.11. Isotope measurements
The information given should include (a) conditions of radioactivity counting, e.g. infinitely thick, infinitely thin; (b) the nature of the phosphor used in liquid-scintillation counting; (c) details of corrections made to the observed count rate, e.g. for ‘quenching’ or ‘cross-over’; (d) standard deviation of the results or a statement of the minimum total counts above background collected and the background value.

In general the specific radioactivity of the starting materials should be given, preferably in terms of radioactivity per unit weight or, for stable isotopes, as atoms % excess.

Pending the general introduction of SI units radioactivity should continue to be expressed in terms of the curie (Ci) followed by the corresponding figure in terms of the becquerel (Bq: disintegrations/s), in parentheses, and suitably rounded.

3.12. Radionuclide applications in man
If new or modified radionuclide applications in man are described, an estimate of the maximal possible radiation dose to the body and critical organs should be given.

For the time being this can continue to be expressed in rems, but with the corresponding figure in sieverts (Sv) given in parentheses after it.

3.13. Methods
In describing certain techniques, namely centrifugation (when the conditions are critical), chromatography and electrophoresis, authors should follow the recommendations published by the Biochemical Society (currently, Biochemical Journal (1981) 193, 1–21).

This should follow the International Classification of Disease (8th revision, World Health Organization, Geneva, 1969) as far as possible.

3.15. Powers in Tables and Figures
Care is needed where powers are used in Table headings and in Figures to avoid numbers with an inconvenient number of digits. For example: (i) an entry ‘2’ under the heading 10^2 means that the value of k is 0-002; an entry ‘2’ under the heading 10^{-2} means that the value of k is 2000. (ii) A concentration 0-00015 mol/l may be expressed as 0-15 under the heading ‘concn. (mmol/l)’ or as 150 under the heading ‘concn. (μmol/l)’ or as 15 under the heading ‘concn. (mol/l)’, but not as 15 under the heading ‘concn. (mol/l × 10^{-2})’.

3.16. References
The numerical citation system is now used; references in the text are numbered consecutively in the order in which they are first mentioned, the numerals being given in brackets, e.g. [22]. References cited in Figure legends or Tables only should be numbered in a sequence determined by the position of the first mention in the text of the Figure or Table. References should be listed in
numerical order and the names of all authors of a paper should be given, with the full title of the paper and the source details in full including the first and last page numbers, e.g.

When the quotation is from a book, the following format should be used, giving the relevant page or chapter number:

References to ‘personal communications’ and ‘unpublished work’ should appear in the text only and not in the list of references. The name and initials of the source of information should be given. When the reference is to material that has been accepted for publication but has not yet been published, this should be indicated in the list of references by ‘In press’ together with the name of the relevant journal and, if possible, the expected date of publication. If such a citation is of major relevance to the manuscript submitted for publication authors are advised that the editorial process might be expedited by the inclusion of a copy of such work. In the case of quotations from personal communications the authors should state in the covering letter that permission for quotation has been obtained.

3.17. Solutions
Concentration of solutions should be described where possible in molar terms (mol/l and subunits thereof), stating the molecular particle weight if necessary. Values should not be expressed in terms of normality or equivalents. Mass concentration should be expressed as g/l or subunits thereof, for example mg/l or μg/l. For solutions of salts, molar concentration is always preferred to avoid ambiguity as to whether anhydrous or hydrated compounds are used. Concentrations of aqueous solutions should be given as mol/l or mol/kg (g/l or g/kg if not expressed in molar terms) rather than % (w/v) or % (w/w). It should always be made clear whether concentrations of components in a reaction mixture are final concentrations or the concentrations in solutions added.

3.18. Spectrophotometric data
The term ‘absorbance’ [log (I/I_o)] should be used rather than ‘optical density’ or ‘extinction’. The solvent, if other than water, should be specified. Symbols used are: A, absorbance; a, specific absorption coefficient (litre g⁻¹ cm⁻¹) (alternatively use A [cm]; ε, molar absorption coefficient (the absorbance of a molar solution in a 1 cm light-path) (litre mol⁻¹ cm⁻¹, not cm² mol⁻¹).

3.19. Spelling
Clinical Science uses as standards for spelling the Concise or Shorter Oxford Dictionary of Current English (Clarendon Press, Oxford) and Butterworth’s Medical Dictionary (Butterworths, London).

3.20. Statistics
Papers are frequently returned for revision (and their publication consequently delayed) because the authors use inappropriate statistical methods. Two common errors are the use of means, standard deviations and standard errors in the description and interpretation of grossly non-normally distributed data and the application of t-tests for the significance of difference between means in similar circumstances, or when the variances of the two groups are non-homogeneous. In some circumstances it may be more appropriate to provide a ‘scattergram’ than a statistical summary.

A reference should be given for all methods used to assess the probability of a result being due to chance. The format for expressing mean values and standard deviations or standard errors of the mean is, for example: mean cardiac output 10·4 l/min (SD 1·2; n = 11). Degrees of freedom should be indicated where appropriate. Levels of significance are expressed in the form P < 0·01.

3.21. Trade names
The name and address of the supplier of special apparatus and of biochemicals should be given. In the case of drugs, approved names should always be given with trade names and manufacturers in parentheses.

4. UNITS: THE SI SYSTEM
The recommended Système International (SI) units [see Quantities, Units and Symbols, 2nd edn (1975) The Royal Society, London] are used by Clinical Science . All papers submitted should use these units except for blood pressure values, which should be expressed in mmHg, or gas tensions, where values at the author’s discretion may be given as mmHg (with kPa in parentheses) or as kPa (with mmHg in parentheses) in the text and either as mmHg or as kPa in Figures, which (if practicable) should have scales in both units. Airways pressure should be expressed in kPa. Where molecular weight is known, the amount of a chemical or drug should be expressed in mol or in
Guidance for Authors

an appropriate subunit, e.g. mmol. Energy should be expressed in joules (J).

The basic SI units and their symbols are as follows:

<table>
<thead>
<tr>
<th>Physical quantity</th>
<th>Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>metre</td>
<td>m</td>
</tr>
<tr>
<td>mass</td>
<td>kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>time</td>
<td>second</td>
<td>s</td>
</tr>
<tr>
<td>electric current</td>
<td>ampere</td>
<td>A</td>
</tr>
<tr>
<td>thermodynamic temperature</td>
<td>kelvin</td>
<td>K</td>
</tr>
<tr>
<td>luminous intensity</td>
<td>candela</td>
<td>cd</td>
</tr>
<tr>
<td>amounts of substance</td>
<td>mole</td>
<td>mol</td>
</tr>
</tbody>
</table>

The following are examples of derived SI units:

<table>
<thead>
<tr>
<th>Physical quantity</th>
<th>Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>energy</td>
<td>joule</td>
<td>J</td>
</tr>
<tr>
<td>force</td>
<td>newton</td>
<td>N</td>
</tr>
<tr>
<td>power</td>
<td>watt</td>
<td>W</td>
</tr>
<tr>
<td>pressure</td>
<td>pascal</td>
<td>Pa</td>
</tr>
<tr>
<td>electric charge</td>
<td>coulomb</td>
<td>C</td>
</tr>
<tr>
<td>electric potential</td>
<td>volt</td>
<td>V</td>
</tr>
<tr>
<td>difference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>electric resistance</td>
<td>ohm</td>
<td>Ω</td>
</tr>
<tr>
<td>electric conductance</td>
<td>Siemens</td>
<td>S</td>
</tr>
<tr>
<td>capacitance</td>
<td>farad</td>
<td>F</td>
</tr>
<tr>
<td>frequency</td>
<td>hertz</td>
<td>Hz</td>
</tr>
<tr>
<td>volume</td>
<td>litre</td>
<td>l</td>
</tr>
</tbody>
</table>

The word ‘litre’ has been accepted as a special name for cubic decimetre (1 litre = 1 dm³).

Both the basic and derived SI units, including the symbols of derived units that have special names, may be preceded by prefixes to indicate multiples and submultiples. The prefixes should be as follows:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Multiple</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁶</td>
<td>mega</td>
<td>10⁻³</td>
<td>milli</td>
<td>m</td>
</tr>
<tr>
<td>10³</td>
<td>kilo</td>
<td>10⁻⁴</td>
<td>micro</td>
<td>μ</td>
</tr>
<tr>
<td>10²</td>
<td>hecto</td>
<td>10⁻⁹</td>
<td>nano</td>
<td>n</td>
</tr>
<tr>
<td>10⁻¹</td>
<td>deca</td>
<td>10⁻¹²</td>
<td>pico</td>
<td>p</td>
</tr>
<tr>
<td>10⁻²</td>
<td>deci</td>
<td>10⁻₁⁵</td>
<td>femto</td>
<td>f</td>
</tr>
</tbody>
</table>

Note: *To be avoided where possible (except for cm).

Compound prefixes should not be used, e.g. 10⁻⁹ m should be represented by 1 nm, not 1 μm.

5. ABBREVIATIONS, CONVENTIONS, DEFINITIONS, SYMBOLS AND SPECIAL COMMENTS

As well as standard symbols and abbreviations that have been accepted by international bodies, and which can be used without definition, this list shows selected abbreviations in the form of groups of capital letters (e.g. ALA, ECF, MCHC) which when used must be defined in the text as indicated on p. iv. The standard abbreviations for amino acids are only for use in Figures and Tables or for peptide sequences.

e.g. mmol/l is acceptable, but ml/min/kg is not, and should be replaced by ml min⁻¹ kg⁻¹.

Notes:

(i) Full stops are not used after symbols.

(ii) Minutes (min), hours (h), days and years will continue to be used in addition to the SI unit of time [the second (s)].

(iii) The solubility may be used in a unit as long as it does not have to be employed more than once,
null
injection routes:
- intra-arterial
- intramuscular
- intraperitoneal
- intravenous
- subcutaneous
- international unit

isotopically labelled compounds
- I
- Cl
- 15O
- 14C
- 131I
- for simple molecules:
 - I
- C
- 14C
- glucose,
- [1-14C]-acetate;
- use 131I-labelled albumin, not
- [131I]albumin
- for complex molecules:
 - 15O
- CO2
- 3H2O

logarithm (base 10)
- log
- ln
- LH
- Lys
- max.
- MCH; express in pg
- MCHC; express in g/dl
- MCV; express in fL (1
 mm3 = 1 fL)

mean corpuscular haemoglobin
- mean corpuscular haemoglobin concentration
- mean corpuscular haemoglobin volume

median lethal dose
- meta-
- melting point
- methanol, methanolic
- methionine
- metre
- Michaelis constant
- micromole
- micron (10^-6 m)
- milliequivalent

millilitre

mmHg; for blood pressure and, at authors' discretion, for gas tensions: see p. vi (1 mmHg = 0.133 kPa)

millimolar (concentration)

millimole

minimum

minute (60 s)

molal

molar (concentration)

molar absorption coefficient

mole

molecular weight

nicotinamide–adenine dinucleotide

nicotinamide–adenine dinucleotide phosphate

normal

normal temperature and pressure

nuclear magnetic resonance

number (in enumerations)

observed

ohm

ornithine

orthophosphate (inorganic)

osmolality

oxygen uptake per minute

packed cell volume

page, pages

para-

partial pressure

per cent

phenylalanine

plasma renin activity

plasma volume

poise

pascal

per gram

per litre

per millilitre

per mmol

per os

not used; give amount in

mol

mmol

mmol/l; not mm

mmol

min

mol/kg

mol/l; not m

n.(in Tables only)

obs. (in Tables only)

n.m.r.

Pa

PaO2

Paco2

Pcapo2

PV

PCV

p.

p-

PAH

P1; express in either kPa

or mmHg (see p. vi)

Paco2

PaO2

Ph

Phe

express as pmol of

angiotensin I h^-1

ml^-1

PV

1 poise = 10^-1 N s

m^-2
Guidance for Authors

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>potential difference</td>
<td>P</td>
</tr>
<tr>
<td>power output</td>
<td>W (1 W = 0.1635 kpm/min)</td>
</tr>
<tr>
<td>precipitate</td>
<td>ppt.</td>
</tr>
<tr>
<td>pressure</td>
<td>P; express in kPa (except for blood pressures and gas tensions: see p. 6); 1 kPa = 7.5 mm Hg</td>
</tr>
<tr>
<td>probability of an event being due to chance alone</td>
<td>P</td>
</tr>
<tr>
<td>proline</td>
<td>Pro</td>
</tr>
<tr>
<td>protein-bound iodine (plasma)</td>
<td>PBI</td>
</tr>
<tr>
<td>pulmonary capillary blood flow</td>
<td>Qc</td>
</tr>
<tr>
<td>pyrophosphate (inorganic)</td>
<td>PPi</td>
</tr>
<tr>
<td>rad (radiation dose; 10⁻³ J absorbed/g of material)</td>
<td>not abbreviated (100 rads = 1 Gy)</td>
</tr>
<tr>
<td>red blood cell</td>
<td>use erythrocyte; express counts as 10¹² cells/l</td>
</tr>
<tr>
<td>relative band speed (partition chromatography)</td>
<td>Rf</td>
</tr>
<tr>
<td>rem</td>
<td>100 ergs/g x quality factor</td>
</tr>
<tr>
<td>renin</td>
<td>see plasma renin activity</td>
</tr>
<tr>
<td>residual volume</td>
<td>RV</td>
</tr>
<tr>
<td>resistance (rheological)</td>
<td>R; express in kPa l⁻¹ s</td>
</tr>
<tr>
<td>respiratory exchange ratio (pulmonary)</td>
<td>R</td>
</tr>
<tr>
<td>respiratory quotient (metabolic)</td>
<td>RQ</td>
</tr>
<tr>
<td>revolutions</td>
<td>rev.</td>
</tr>
<tr>
<td>rev./min</td>
<td>not r.p.m.; use g if possible (see p. viii)</td>
</tr>
<tr>
<td>ribonucleic acid</td>
<td>RNA</td>
</tr>
<tr>
<td>röntgen</td>
<td>R</td>
</tr>
<tr>
<td>saline</td>
<td>define at first mention (e.g. NaCl solution (154 mmol/l))</td>
</tr>
<tr>
<td>saturation</td>
<td>S, e.g. Sao₂, for arterial oxygen saturation (see partial pressure for other analogous abbreviations)</td>
</tr>
<tr>
<td>second (time)</td>
<td>s</td>
</tr>
<tr>
<td>serine</td>
<td>Ser</td>
</tr>
<tr>
<td>sievert</td>
<td>Sv (1 J/kg x quality factor)</td>
</tr>
<tr>
<td>solvent systems</td>
<td>e.g. butanol/acetic acid/water (4:1:1, by vol.), butanol/acetic acid (4:1, v/v)</td>
</tr>
<tr>
<td>species</td>
<td>sp., plural spp.</td>
</tr>
<tr>
<td>specific activity</td>
<td>sp. act. Confusion must be avoided between e.g. specific radioactivity and the specific activity of an enzyme</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Author Index

HOPKINS, W.M. 49–53
HOWELL, J.B.L. 417–421
HUTTON, R. 239–241
INSEL, P.A. 265–272
IMeson, J.D. 273–280
IQBAL, M.J. 307–314
JÄPPINEN, P. 187–191
JOHN, M. 161–165
JOHNSON, R.H. 587–591
JOHNSTON, D.G. 41–47
JOHNSTON, H.H. 349–354
JONES, P.B.B. 387–394, 395–398

KARLSTRÖM, B. 399–405
KAUFMAN, A.M. 565–572
KEELING, P.W.N. 207–212
Kellen, J.A. 303–306
KHAN, T. 565–572
KHOKHER, M. 239–241
KOOMANS, H.A. 153–160
KROBLNER, B. 537–540, 541–546
KRÜCK, F. 505–510
LAMBLE, D.G. 587–591
LANE, D.J. 213–222
LAZAROWITZ, V.C. 573–580
LEACH, W. 573–580
LENNOX, E.S. 655–659
LEWIS, C.M. 289–293
LEWIS, S.F. 593–599
LINDBLAD, B.S. 433–439
LITHELL, H. 399–405
LIVESAY, G. 517–526
LUJNAGHALL, S. 399–405
LOFTS, F.J. 63–68
LUK, C.K. 449–451
LUNDHOLM, K. 243–246

MAC-MOUNE, F.L. 565–572
MADEDDU, P. 137–140
MARCER, D. 417–421
MARIGOLD, J.H. 207–212
MARTIN, V.I. 295–301
MATTHEWS, D.M. 433–439
MAURY, C.P. J. 453–454
MCCULLOCH, A.J. 41–47
MCFARLANE, B.M. 113–116
MCFARLANE, I.G. 113–116, 127–135
MEADE, T.W. 273–280
MELONI, F. 137–140
MILLAR, J.G.B. 623–627
MILLS, K.R. 55–62
MILLS, P.R. 527–535
MILLWARD, D.J. 243–246
MIR, M.A. 79–83
MOLDAWER, L.L. 321–331
MOORE, P.K. 63–68
MORGAN, W.K.C. 69–78
MORTON, J.J. 359–370
MOTULSKY, H.J. 265–272
MOXHAM, J. 547–550
MOXLEY, R.T. 601–609
MURACA, M. 85–90
MURRAY, D.J. 341–347

NARBED, P.G. 417–421
NELSON, L.M. 527–535
NESTEL, P.J. 511–516
NEWHAM, D.J. 55–62
NEWHAM, D.J. 547–550
NIELSEN, T.T. 33–40
NOLAN, C. 511–516
NOSADINI, R. 41–47
NOWOTNY, P. 383–386
O’CONNOR, D.T. 265–272
OLBE, L. 423–431
O’MALLEY, B.P. 617–622
ÖSTMAN, J. 235–237
PALMER, K.T. 587–591
PALOMBO, J.D. 321–331
PAPAGEORGIOU, A. 611–616
PARK, R. 573–580
PATERSON, J.L. 109–111
PEARCT, W.S. 273–280
PENZAR, P.B. 611–616
PENFOLD, J.L. 315–320
PERNET, A. 41–47
PETERS, T.J. 341–347
PETTINGER, W.A. 593–599
PEVELEER, R.C. 455–461
PINIEWSKA, M. 41–47
POCIDALO, J.-J. 497–504
POLAK, A. 623–627
POLU, J.M. 25–31
PORS NIELSEN, S. 541–546
PRETSCHNER, P. 141–152
PRIDE, N.B. 487–495
QUIGLEY, B.M. 55–62
RAPPILLI, A. 137–140
REES, A. 559–563
RENNER, I.G. 193–205
RENNIE, M.J. 243–246
RENTHAL, R.D. 481–486

RIONDEL, A. 407–415
ROBINSON, B.J. 587–591
ROBINSON, J.L. 455–461
ROOS, J.C. 153–160
ROSENTHAL, F.D. 617–622
ROSHANAI, F. 91–99
ROTHWELL, N.J. 19–23
ROWLEY, D.A. 649–653
RUBYTHON, E.J. 177–182, 441–447
RUSSELL, R.I. 527–535

SADOL, P. 25–31
SAKAMOTO, A. 321–331
SANDERS, T.A.B. 91–99
SAVOLAINEN, H. 187–191
SAWERS, R.S. 307–314
SCHLEBUSCH, H. 505–510
SEID, J.M. 387–394
SEMBLE, P.D.A. 117–118
SHERLOCK, S. 643–648
SIMMONDS, R.J. 333–340
SLEIGHT, P. 455–461
SOLTYS, J. 471–474
SORGER, M. 505–510
SOWERS, J. 183–186
SOWERS, J.R. 295–301
SPENCER, E. 417–421
STERN, N. 183–186
STEWART, R.I. 289–293
STIEL, D. 341–347
STOCK, M.J. 19–23
STOCKLEY, R.A. 119–126, 223–230
STOCKS, J. 559–563
STRADLING, J.R. 213–222

TAKATA, Y. 463–470
TAYLOR, W.F. 593–599
TENHUNEN, R. 187–191
TEPPO, A.-M. 453–454
THOMAS, H.C. 643–648
THOMASSSEN, A.R. 33–40
THOMPSON, R.P.H. 207–212
TINSON, L. 617–622
TOBIN, G. 7–18
TOFT, B. 537–540, 541–546
TOMAS, T.M. 315–320
TONDEVOLD, E. 541–546
TONOLO, G. 137–140
TONUTTI, L. 259–263
TRAYNOR, C. 109–111
TRUELOVE, S.C. 349–354
<table>
<thead>
<tr>
<th>Author Name</th>
<th>Pages</th>
<th>Author Name</th>
<th>Pages</th>
<th>Author Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinitski, S.</td>
<td>69–78</td>
<td>Wegelius, O.</td>
<td>453–454</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Absorption, intestinal 433–439, 527–535
Acetylsalicylic acid, 6-ketoprostaglandin $F_1\alpha$ excretion 395–398
Acid activation, renin 481–486
Acid excretion, renal 565–572
Acid secretion, isolated oxyntic glands 423–431
Acylglycerol metabolism, adipose tissue 235–237
Adductor pollicis, aminophylline 547–550
Adenosine diphosphate, placenta 239–241
Adenosine 3',5'-phosphate parathyroid hormone 623–627 vascular, renal hypertension 355–358
Adenosine triphosphatase
Adipose tissue brown 7–18, 19–23 nicotinic acid 235–237
Adrenalectomy, baroreflexes 371–376
Adrenaline, exercise 475–479, 593–599
α_1-Adrenergic receptors, platelets 265–272
Adrenocorticotropic hormone, dietary sodium 295–301
Airflow, intravenous ethanol 555–557
Airflow obstruction, chronic 487–495
Airway conductance, adrenaline 475–479
Alanine myocardial exchange 33–40 protein metabolism 517–526
Albumin, sex hormone binding 307–314
Alcoholic cirrhosis, zinc metabolism 527–535
Alcohol dehydrogenase, hepatic zinc 527–535
Alkaline phosphatase, duodenal mucosa 341–347
Alkalosis frusemide 565–572 potassium depletion 497–504
Almitrine, pulmonary haemodynamics 25–31
p-Aminobenzoic acid, 24 h urine collections 629–625
δ-Aminolaevulinic acid dehydratase 187–191
δ-Aminolaevulinic acid synthase 187–191
Aminophylline, adductor pollicis fatigue 547–550
Ammonia excretion 101–108 hepatic encephalopathy 247–252*
Amniotic fluid, renin activation 481–486
Amyloidosis, secondary 453–454
Amyotrophic lateral sclerosis, glucose tolerance 601–609
Angiotensin II dietary sodium 295–301 experimental hypertension 359–370 insulin 383–386
Antigens, tissue 113–116
α_7-Antitrypsin cigarette smoke 223–230 reactive systemic amyloidosis 453–454
Apolipoproteins 559–563*
Arrhythmias, digitalis intoxication 253–258*
Arterial hypertrophy, renal hypertension 355–358
Arterio–coronary sinus differences 33–40
Artery
ADP degradation 239–241 distensibility 455–461
Ascorbate oxidase, synovial fluid 551–553
Ascorbate, rheumatoid disease 649–653
Asialoglycoproteins, hepatic clearance 127–135*
Aspirin see Acetylsalicylic acid
Asthma, intravenous ethanol 555–557
Athymic mice, human hepatocellular carcinoma 643–648
Atrial pacing 33–40
Atropine, static and dynamic handgrip 593–599
Autoimmunity 113–116
Autonomic nervous system failure 587–591 hypoglycaemia 49–53
Autonomic neuropathy, heart rate 581–585
Azo reductase, tissue activity 349–354
Baroreceptors, arterial 455–461
Subject Index

Baroreflexes
- essential hypertension 259–263
 post-adrenalectomy hypertension 371–376
Bicarbonate, duodenal secretion 341–347
[14C]bicarbonate, respiratory 14CO$_2$ 231–233
Biliary cirrhosis 113–116
Bilirubin
 biliary excretion 85–90
 hepatic conjugation 85–90
Bilirubin UDP-glucuronosyltransferase 85–90
Blood flow
 cerebral 161–165
 coronary 33–40
 meclofenamate 471–474
Blood pressure
 adrenaline 475–479
 autonomic blockade 593–599
 autonomic failure 587–591
 insulin 383–386
 plasma renin 273–280
 post-adrenalectomy 371–376
Blood vessels
 ADP degradation 239–241
 collagen 355–358
 coronary artery disease 33–40
 distensibility 455–461
 meclofenamate 471–474
Blood volume
 regulation 281–287
 renal disease 141–152
Body fluids, distribution 153–160
Body temperature, nerve conduction 617–622
Body mineral content
 bed rest 537–540
 physical exercise 541–546
Brain, blood flow 161–165
Braking effect, diuretics 565–572
Branch-chain amino acids
 metabolic fate 517–526
 protein kinetics 321–331
Brattleboro rats, short-term isolation 377–382
Bronchodilatation, intravenous ethanol 555–557
Brown adipose tissue 7–18, 19–23
Brush border, duodenal mucosal enzymes 341–347
Caeruloplasmin, synovial fluid 551–553
Captopril, renal hypertension 463–470
Carbon dioxide
 almitrine 25–31
 [14C]bicarbonate infusion 231–233
 cardiac output rebreathing technique 289–293
 ventilatory response 487–495
Carbonic anhydrase, duodenal mucosa 341–347
Cardiac output
 determination 289–293
 static and dynamic handgrip 593–599
Carotid sinus radius, phenylephrine 455–461
Catecholamines
 exercise 475–479
 orthostatic hypotension 587–591
Cell population kinetics, hepatocellular carcinoma 643–648
Chest cage restriction, resistive load detection 417–421
Cholesterol, plasma 91–99, 637–642
Chronic obstructive pulmonary disease 213–222
Cigarette smoke, α_1-antitrypsin 223–230
Cilia, beating frequency 449–451
Cirrhosis, hepatic conjugation 85–90
Cirrhosis, bilirubin biliary excretion 85–90
Citrate, myocardial exchange 33–40
Cobalamin, pancreatic juice 193–205
Coeliac disease, gliadins radioimmunoassay 655–659
Collagen, vascular, renal hypertension 355–358
Converting enzyme inhibition 359–370
Coproporphyrinogen oxidase 187–191
Cor pulmonale 117–118
Creatinine
 24 h urine collection 629–635
 hypopituitary children 315–320
Cyclic AMP see Adenosine 3',5'-phosphate
Cysteamine, duodenal ulcers 341–347
Cytosol, duodenal mucosal enzymes 341–347
Deoxyribonucleic acid, vascular, renal hypertension 355–358
Diabetic autonomic neuropathy 581–585
Diet-induced thermogenesis 7–18, 19–23
Diiunisal, diuretics 407–415
Digitalis intoxication 253–258*
Diuretics
 diisunisal 407–415
 essential hypertension 259–263
 frusemide 565–572
 renal prostaglandins 407–415
'Down-regulation', α_1-adrenergic receptors 265–272
Duodenal ulcer, mucosal enzymes 341–347
Dyspnoea, resistive load detection 417–421
Elastase
 α_1-antitrypsin 223–230
 inhibitory activity 453–454
 lung diseases 119–126*
Subject Index ix

Electrolytes
 balance 377–382
 leukaemic plasma 79–83
Endopeptidases, lung diseases 119–126*
Endoplasmic reticulum, liver 303–306
Endothelial cells, prostacyclin 387–394, 395–398
Energy balance, thermogenesis 7–18, 19–23
Energy metabolism, preterm infants 611–616
Erythrocyte
 hyperthyroidism 441–447
 potassium 167–176, 177–182
 purine 333–340
 rubidium 183–186
Ethanol, asthma 555–557
Exercise
 catecholamines 475–479
 plasma adrenaline 475–479
 purine transport and metabolism 333–340
 vertebral bone loss 541–546
Extracellular fluid volume 153–160
False neurotransmitters 247–252*
Fatigue, muscle
 aminophylline 547–550
 low-frequency 55–62
Fatty acids
 essential 91–99
 myocardial exchange 33–40
Ferroxidase, synovial fluid 551–553
Fick method, indirect 289–293
Fluid balance, short-term isolation 377–382
α-Foetoprotein, tumour secretion 643–648
Fractures, bone mineral 541–546
Furosemide
 chloride 565–572
 erythrocyte sodium transport 79–83
 sodium 565–572
Gastric glands, acid secretion 423–431
Gastroscopic biopsy, isolated oxyntic glands 423–431
Globulin, sex hormone binding 307–314
Glucose
 adrenaline 475–479
 myocardial exchange 33–40
 tolerance test 601–609
 triglyceride metabolism 511–516
 turnover, thyroid failure 41–47
Glutamate, myocardial exchange 33–40
Glutamine, protein metabolism 517–526
Glycine, colorectal tumours 101–108
Glycogen, abdominal surgery 109–111
Goldblatt hypertension, renin–angiotensin system 359–370
Gonadotrophin-releasing hormone 1–6*
Graft vs host disease 113–116
Growth hormone, myofibrillar protein 315–320
Growth retardation 161–165
Gluten, dietary content 655–659
Glycoproteins, hepatic clearance 127–135*
Haemodynamics
 pulmonary 25–31
 renal disease 141–152
Haemostasis
 acetylsalicylic acid 395–398
 polyunsaturated fatty acids 91–99
 Haem synthesis, sulphides 187–191
Handgrip
 haemodynamic responses 593–599
 heart rate 581–585
Heart
 cardiac output 289–293, 593–599
 digitalis intoxication 253–258*
 failure 573–580
 ischaemic disease 273–280
Heart failure, lactic acidosis 573–580
Heart rate
 adrenaline 475–479
 autonomic neuropathy 581–585
 muscle activity 581–585, 593–599
 Hepatectomy, cardiovascular function 573–580
 Hepatic encephalopathy 247–252*
 Hepatic endoplasmic reticulum 303–306
 Hepatocellular carcinoma, growth characteristics in athymic mice 643–645
Hydrochlorothiazide, renal prostaglandins 407–415
Hydrogen peroxide, hydroxyl radicals 649–653
Hydroxy radicals, rheumatoid disease 649–653
18-Hydroxycorticosterone, circadian rhythm 295–301
Hypercapnia, almitrine infusion 25–31
Hypercholesterolaemia, plasma exchange 637–642
Hyperlipidaemia, lipoprotein variants 559–563*
Hypertension
 α2-adrenergic receptors 265–272
 baroreflexes 259–263
 experimental 359–370, 463–470
 Goldblatt 359–370
 plasma renin 273–280
 renal 141–152, 355–358, 463–470
 vasopressin 377–382
Hyperthyroidism
 erythrocyte sodium pumps 441–447
 glucose turnover 41–47
Hypoglycaemia, autonomic reaction 49–53
Hypopituitarism, myofibrillar protein 315–320
Hypotension
 orthostatic 587–591
 post-adrenalectomy 371–376
Subject Index

Hypothyroidism
 glucose turnover 41–47
 nerve conduction 617–622

Immersion, sympathectomy responses 281–287
Immobilization, bone mineral content 537–540
Indocyanine green, hepatic extraction 207–212
Indomethacin, renal prostaglandins 407–415
Infant, preterm, protein turnover 611–616
Injury, protein kinetics 321–331
Inspiratory muscle function 487–495
Insulin
 blood pressure 383–386
 triglyceride metabolism 511–516
Intestinal absorption, peptides 433–439
Intrapleural pressure gradient 69–78
Ionic strength, cilia beating frequency 449–451
Iron, caeruloplasmin 551–553
Iron salts, hydroxyl radicals 649–653
Isolation, cardiovascular and renal effects 377–382

Kaliuresis, frusemide 565–572
6-Ketoprostaglandin F1α, acetylsalicylic acid 395–398

Kidney
 body fluid distribution 153–160
 hypertension 141–152, 355–358, 463–470
 renal stone 399–405
 renin 463–470

Lactate, myocardial exchange 33–40
Lactic acidosis, cardiovascular system 573–580
Leucine, protein metabolism 231–233, 517–526
Leucocytes
 potassium 505–510
 purine concentrations 333–340
Lipid transport 559–563*
Lipogenesis, nicotinic acid 235–237
Lipolysis, nicotinic acid 235–237
Lipoprotein
 cholesterol 91–99
 hypercholesterolaemia 637–642
 molecular variants 559–563*
 plasma exchange 637–642
Lithium therapy, parathyroid hormone 623–627
Liver
 acidaemia 573–580
 circulation 207–212
 glycogen in abdominal surgery 109–111
 glycoprotein clearance 127–135*
 hepatectomy 573–580
 indocyanine green extraction 207–212
 progesterone binding 303–306
 Liver disease
 alcoholic cirrhosis 527–535
 biliary cirrhosis 113–116
 cirrhosis, 3-methylhistidine 243–246
 hepatic encephalopathy 247–252*
 hepatocellular carcinoma 643–648
 Loaded breathing 417–421
 Lung
 haemodynamics 25–31
 hypoxaemia 213–222
 regional deposition of particles 69–78
 Lung disease
 cardiac output determination 289–293
 chronic airflow obstruction 487–495
 obstructive, hypoxaemia 213–222
 proteinase inhibitors 119–126*
 Lysosomes, duodenal mucosal enzymes 341–347
 Luxuskonsumption 7–18, 19–23

Macaca fascicularis, blood volume homoeostasis 281–287
Mammary adenocarcinoma, experimental 303–306
Meclafenamate, peripheral vasculature 471–474
Mercaptans, hepatic encephalopathy 247–252*
Metabolic acidosis 573–580
Metabolic alkalosis, potassium depletion 497–504
3-Methylhistidine, cirrhosis 243–246
Methylhistidine, colorectal tumours 101–108
3-Methylhistidine, excretion in preterm infants 611–616
N-Methylhistidine, hypopituitary children 315–320
Metoprolol, static and dynamic handgrip 593–599
Milk, human 611–616
Mitochondria, duodenal mucosal enzymes 341–347
Muscle, skeletal
 aminophylline 547–550
 hypopituitarism 315–320
 low-frequency fatigue 55–62
 mass 315–320
 pain 55–62
 wasting, glucose tolerance 601–609
Muscle, smooth, arterial 455–461
Myeloid leukaemic blast cell, erythrocyte sodium efflux 79–83
Myotonic dystrophy, glucose tolerance 601–609
Naloxone, post-adrenalectomy hypotension 371–376
Natriuresis, frusemide 565–572
Neoplasm, protein turnover 101–108
Nerve conduction 617–622
Nicotinic acid, acylglycerol metabolism 235–237
Nitrogen metabolism 101–108
Nocturnal hypoxaemia 213–222
Noradrenaline
 exercise 475–479
 static and dynamic handgrip 593–599
Oedema, cor pulmonale 117–118
Oestradiol, binding to plasma proteins 307–314
Orthostatic hypotension 587–591
Osteoporosis
 bed rest 537–540
 physical exercise 541–546
Ouabain, erythrocyte 79–83, 183–186
6-Oxoprostaglandin E, platelet release 63–68
Oxygen saturation, obstructive pulmonary disease 213–222
Oxycytic glands, acid secretion 423–431
Pain, muscle contractions 55–62
Pancreatic juice, human 193–205
Parathyroid hormone, lithium therapy 623–627
Particles, inhalation and lung deposition 69–78
Peptides, small-intestinal absorption 433–439
pH, cilia beating frequency 449–451
Pharmacokinetic model 207–212
Phenformin, lactic acidosis 573–580
Phenols, hepatic encephalopathy 247–252
Phenytoine, carotid sinus radius 455–461
Plasma exchange, hypercholesterolaemia 637–642
Plasma membrane, duodenal mucosal enzymes 341–347
Plasma proteins, sex hormone binding 307–314
Platelets
 fatty acids 91–99
 6-oxoprostaglandin E, like substance 63–68
 plasma exchange in hypercholesterolaemia 637–642
 prostacyclin production 387–394
Posture
 heart rate 581–585
 lung particles 69–78
 vascular responses 661–662
Potassium
 depletion 497–504
 erythrocyte 167–176, 183–186
 frusemide 565–572
 hypokalaemia 167–176, 177–182
 insulin 383–386
 leucocyte 505–510
 total body 505–510
Progestrone binding, liver 303–306
Prostaglandins
 acetylsalicylic acid 395–398
 platelets 63–68, 91–99
 renal blood flow 471–474
 Prostaglandin El, diuretics 407–415
 Prostaglandin F2, diuretics 407–415
 Proteases, pancreatic juice 193–205
Protein
 biosynthesis 101–108
 kinetics 321–331
 purine-rich diet 399–405
 turnover 231–233, 611–616
 Proteinase inhibitors, lung diseases 119–126
 Proteolysis, lung diseases 119–126
 Pulmonary emphysema 119–126
 Pupil size, hypoglycaemia 49–53
Purine
 protein-rich diet 399–405
 transport and metabolism 333–340
R3230 AC rat mammary adenocarcinoma 303–306
Radioimmunoassay, α- and β-gliadins 655–659
Receptors, hormone 1–6
Rectum, tumours 101–108
Renal hypertension
 arterial cyclic AMP 355–358
 renin–angiotensin system 463–470
Renal stone disease, purine-rich protein diet 399–405
Renin
 acid activation 481–486
 diuretics 407–415
 epidemiology 273–280
 experimental hypertension 359–370
 inactiva 481–486
 renal hypertension 463–470
 trypsin-activatable 137–140
Renin–angiotensin system, renal hypertension 463–470
Respiratory compensation, metabolic alkalosis 497–504
Respiratory fuel selection 517–526
Rheumatoid arthritis 453–454, 551–553
Rheumatoid disease, hydroxyl radicals 649–653
Saline expansion 153–160
Salivation, hypoglycaemia 49–53
Sex differences
 bilirubin conjugation 85–90
 platelet prostaglandins 63–68
Subject Index

Sex hormone binding globulin 307–314
Signal Detection Theory, inspiratory loads 417–421
Skeletal muscle see Muscle, skeletal
Small intestine, peptide absorption 433–439
Smoking, plasma renin activity 273–280
Smooth muscle see Muscle, smooth
Sodium
- excretion 463–470
- frusemide 565–572
- 18-hydroxycorticosterone 295–301
Sodium–potassium pump, erythrocyte 183–186
Spine, bone loss 537–540, 541–546
Sputum, α1-antitrypsin 223–230
Standing, heart rate 581–585
Stomach, isolated oxyntic glands 423–431
Sulphapyridine, tissue and bacterial splitting 349–354
Sulphasalazine, tissue and bacterial splitting 349–354
Sulphides, haem synthesis 187–191
Superoxide, rheumatoid disease 649–653
Supersaturation, urolithiasis 399–405
Surgery, liver glycogen 109–111
Synovial fluid, caeruloplasmin 551–553
Sweating, hypoglycaemia 49–53
Sympathetic nervous system
- cardiopulmonary afferent nerves 281–287
- thermogenesis 7–18, 19–23
Synovial fluid, rheumatoid disease 649–653
Temperature, nerve conduction 617–622
Testosterone, binding to plasma proteins 307–314
Thermogenesis, diet-induced 7–18, 19–23
Thyroid gland, failure 41–47
Thyrotoxicosis
- glucose turnover 41–47
- nerve conduction 617–622
L-Thyroxine, nerve conduction 617–622
Tilt, heart rate 581–585
Transport
- erythrocyte sodium 177–182
- intestinal 433–439

Triamterine, renal prostaglandins 407–415
Triglyceride, insulin 511–516
Triglycerides, plasma 91–99
Trypsin-activatable renin 137–140
Tyrosine kinetics 321–331
Umbilical artery, ADP degeneration 239–241
Urate, renal stone disease 399–405
Urea, excretion 101–108
Ureteric ligation, experimental hypertension 463–470
Urinary
- 24 h collection 629–635
- purines 333–340
Urolithiasis, purine-rich protein diet 399–405
Uroporphyrinogen decarboxylase 187–191
Uroporphyrinogen synthase 187–191
Vagus nerve, heart rate control 581–585
Vascular endothelium, prostacyclin 387–394, 395–398
Vascular reactivity, essential hypertension 259–263
Vasopressin
- chronic lithium therapy 623–627
- isolation-induced hypertension 377–382
- renal prostaglandins 407–415
Ventilation
- carbon dioxide 487–495
- regional 69–78
Vertebrae, bone mineral 537–540, 541–546
Viscosity, cilia beating frequency 449–451
Visual evoked responses, thyroid dysfunction 617–622
Volume regulation, sympathetic nervous system 281–287
Wheat gliadin, radioimmunoassay 655–659
Whole-body radioactivity, zinc metabolism 527–535
Xenograft, hepatocellular carcinoma 643–648
Zinc, alcoholic cirrhosis 527–535