Volume 63

AUTHOR INDEX

ALLAN, R.N. 373-380
ALLEN, A. 187-195
ALON, U. 59-64
ANDREWS, P.L.R. 169-173
ATKINS, G.L. 405-414
BALLARD, F.J. 421-427
BARER, G.R. 497-503
BARNES, J.L.C. 461-472
BARNES, N.D. 461-472
BARNES, P. 401-404
BARNETT, D.B. 97-105
BARTHOLOMEW, T.C. 65-73
BARTTER, F.C. 397-400
BAYLEY, S. 33-42
BECK, D. 447-453
BECKAGE, M. 393-396
BENNETT, E.D. 361-366
BENNETT, T. 301-310
BERANT, M. 59-64
BETTER, O.S. 59-64
BILLING, B.H. 65-73
BING, R.F. 121-125
BISHOP, H. 373-380
BROWN, J.J. 257-270
BROWN, W.B. 271-274
BROWN, W.B. 271-274
BROWN, W.B. 271-274
BROWN, W.B. 271-274
BROYER, M. 339-354
BROWN, M. 381-385
BULL, H.J. 197-203
BURDON, J.G.W. 11-15
BURGOWYNE, J.L. 421-427
BYLUND-FELLENIUS, A.-C. 293-299
CALVERLEY, P.M.A. 17-22
CAMPBELL, E.J.M. 11-15
CAMPBELL, E.J.M. 11-15
CAPACI, M.T. 455-460
CATANZARO, O.L. 217-218
CICARELLI, M. 285-292
CLARKE, B.F. 17-22
CLARKSON, E.M. 415-420
CLIFTON-BLIGH, P. 367-372
COLTART, D.J. 197-203
CONN, M.L. 127-135
CORNET, F. 145-152
COUILL, A. 573-576
COUNSILMAN, A.C. 429-435
COURN-WITMER, G. 539-548
CROSS, S.M.C. 429-435
CUMMING, A.M.M. 257-270
CUNDY, T. 145-152
CURRY, S.H. 75-80
DAHLENBURG, G.W. 421-427
DAVIE, M.W.J. 461-472
DAVIES, D.L. 257-270
DAVIS, M. 75-80
DEEG, M. 447-453
DE JONG-VAN DEN BERG, L.T.W. 53-58
DE ZEEUW, D. 53-58
DEEJ, M. 447-453
DE JONG, P.E. 53-58
DE JONG-VAN DEN BERG, L.T.W. 53-58
DE WARDENER, H.E. 415-420
DEEN, T. 539-548
DEOB, R.J. 33-42
DOBBOY, A. 421-427
DONKER, A.J.M. 53-58
DORHOUT MEES, E.J. 47-51
DORNAN, T.L. 211-216
DOUGLAS, N.J. 137-143
DULFANO, M.J. 393-396
EAST, B.W. 257-270
EDMUNDS, A.T. 107-113
EDWARDS, R.H.T. 161-167, 519-523
EMBERSON, C. 461-472
EMMERS, B.T. 429-435
ENDEMANN, H.J. 47-51
EPSTEIN, M. 555-563, 565-571
ESLER, M. 321-323
EVANS, S. 437-440
EWING, D.J. 17-22
FARIS, I.B. 115-119
FAVRE, H. 317-319
FRITZGON-D, A. 421-427
FLENNLEY, D.C. 17-22
FRASER, D.R. 311-316
FRASER, R. 257-270
FRUTTERO, B. 381-385
FUJIMOTO, S. 251-255
FUKUCHI, S. 331-332
GALE, E.A.M. 301-310
GANTEN, D. 349-354
GARDNER, M.L.G. 405-414
GARNEY, A. 187-195
GATT, A. 387-392
GIBBS, G.P. 175-185
GILL, G.W. 497-503
GILMORE, I.T. 197-203
GODFREY, S. 107-113
GORDON, R.B. 429-435
GOLOH, M. 331-332
GOURJON, M. 317-319
GREEN, J.H. 301-310
GREEN, J.R. 153-160
GRIFFIN, G.E. 1-10
GROSS, F. 349-354, 447-453
GULAK, P.V. 43-45
GÜLLNER, H.G. 397-400
HABIB, B. 539-548
HAIGH, J.W. 437-440
HALLIDAY, D. 485-496, 519-523
HANNA, M. 275-279
HANSKY, J. 321-323
HANSON, M.A. 505-511
HASHMONAI, M. 59-64
HAYES, P.A. 127-135
HEADING, R.C. 231-235
HESP, R. 153-160
HEYDEN, G. 145-152
HIGGS, C.M.B. 513-517
HILLON, P. 29-32
HODGES, J.R. 339-347
HOWELL, S. 161-167
HUGHES, M. 219-221
HUGHES, R.D. 237-242
HULLIN, R.P. 549-554
HUMME, P. 153-160
HURWITZ, M.L. 573-576
IDSTRÖM, J.-P. 293-299
ITO, K. 251-255
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAMIESON, G.G.</td>
<td>115–119</td>
</tr>
<tr>
<td>Jarvis, A.</td>
<td>573–576</td>
</tr>
<tr>
<td>Johnston, D.G.</td>
<td>437–440</td>
</tr>
<tr>
<td>Jones, A.W.</td>
<td>441–445</td>
</tr>
<tr>
<td>Jones, D.A.</td>
<td>161–167</td>
</tr>
<tr>
<td>Jones, N.L.</td>
<td>87–92</td>
</tr>
<tr>
<td>KAI, H.</td>
<td>251–255</td>
</tr>
<tr>
<td>Kang, E.S.</td>
<td>455–460</td>
</tr>
<tr>
<td>Kanis, J.A.</td>
<td>145–152</td>
</tr>
<tr>
<td>Kawabe, H.</td>
<td>275–279</td>
</tr>
<tr>
<td>Keeling, P.W.N.</td>
<td>223–224</td>
</tr>
<tr>
<td>Kerss, S.</td>
<td>187–195</td>
</tr>
<tr>
<td>Killian, K.J.</td>
<td>11–15</td>
</tr>
<tr>
<td>Kitis, G.</td>
<td>373–380</td>
</tr>
<tr>
<td>Kleinkecht, C.</td>
<td>539–548</td>
</tr>
<tr>
<td>Klimuk, P.S.</td>
<td>577–580</td>
</tr>
<tr>
<td>Kondo, K.</td>
<td>275–279</td>
</tr>
<tr>
<td>Korones, D.N.</td>
<td>455–460</td>
</tr>
<tr>
<td>Kurasaki, M.</td>
<td>251–255</td>
</tr>
<tr>
<td>Laker, M.F.</td>
<td>437–440</td>
</tr>
<tr>
<td>Laouari, D.</td>
<td>539–548</td>
</tr>
<tr>
<td>Laszlo, G.</td>
<td>513–517</td>
</tr>
<tr>
<td>Lawson, A.M.</td>
<td>65–73</td>
</tr>
<tr>
<td>Lawson, D.E.M.</td>
<td>461–472</td>
</tr>
<tr>
<td>Laycock, J.F.</td>
<td>525–532</td>
</tr>
<tr>
<td>Lebrec, D.</td>
<td>29–32</td>
</tr>
<tr>
<td>Lee, V.Y.</td>
<td>219–221</td>
</tr>
<tr>
<td>Lever, A.F.</td>
<td>257–270</td>
</tr>
<tr>
<td>Lifschitz, M.</td>
<td>555–563</td>
</tr>
<tr>
<td>Linari, F.</td>
<td>381–385</td>
</tr>
<tr>
<td>Link, L.</td>
<td>325–328</td>
</tr>
<tr>
<td>Litvinov, I.S.</td>
<td>43–45</td>
</tr>
<tr>
<td>Lucas, M.L.</td>
<td>373–380</td>
</tr>
<tr>
<td>Ludbrook, J.</td>
<td>115–119</td>
</tr>
<tr>
<td>Luk, C.K.</td>
<td>393–396</td>
</tr>
<tr>
<td>Lund, P.</td>
<td>225–230</td>
</tr>
<tr>
<td>MacDonald, I.A.</td>
<td>301–310</td>
</tr>
<tr>
<td>MacLennan, A.H.</td>
<td>421–427</td>
</tr>
<tr>
<td>MacNee, W.</td>
<td>137–143</td>
</tr>
<tr>
<td>Maggiore, Q.</td>
<td>285–292</td>
</tr>
<tr>
<td>Mansell, M.A.</td>
<td>223–224</td>
</tr>
<tr>
<td>Marangella, M.</td>
<td>381–385</td>
</tr>
<tr>
<td>Marigold, J.H.</td>
<td>197–203</td>
</tr>
<tr>
<td>Marin-Grez, M.</td>
<td>349–354, 447–453</td>
</tr>
<tr>
<td>Mathews, D.E.</td>
<td>519–523</td>
</tr>
<tr>
<td>Mawer, E.B.</td>
<td>577–580</td>
</tr>
<tr>
<td>McAarevey, D.</td>
<td>271–274</td>
</tr>
<tr>
<td>McConnell, J.B.</td>
<td>75–80</td>
</tr>
<tr>
<td>McCulloch, A.J.</td>
<td>437–440</td>
</tr>
<tr>
<td>McGrath, B.P.</td>
<td>321–323</td>
</tr>
<tr>
<td>McNicol, G.P.</td>
<td>205–209</td>
</tr>
<tr>
<td>Melamed, J.R.</td>
<td>573–576</td>
</tr>
<tr>
<td>Merkel, C.</td>
<td>387–392</td>
</tr>
<tr>
<td>Milani, L.</td>
<td>387–392</td>
</tr>
<tr>
<td>Millward, D.J.</td>
<td>519–523</td>
</tr>
<tr>
<td>Mizuno, K.</td>
<td>331–332</td>
</tr>
<tr>
<td>Mohammed, F.H.</td>
<td>497–503</td>
</tr>
<tr>
<td>Mordechovitz, D.</td>
<td>59–64</td>
</tr>
<tr>
<td>Morgan, D.B.</td>
<td>549–554</td>
</tr>
<tr>
<td>Morris, B.J.</td>
<td>367–372</td>
</tr>
<tr>
<td>Morrison, J.B.</td>
<td>127–135</td>
</tr>
<tr>
<td>Morton, J.J.</td>
<td>325–328</td>
</tr>
<tr>
<td>Mounier, F.</td>
<td>539–548</td>
</tr>
<tr>
<td>Mullins, R.</td>
<td>211–216</td>
</tr>
<tr>
<td>Nahorski, S.R.</td>
<td>97–105</td>
</tr>
<tr>
<td>Nicholson, W.E.</td>
<td>397–400</td>
</tr>
<tr>
<td>Nye, P.C.G.</td>
<td>505–511</td>
</tr>
<tr>
<td>Obika, L.F.O.</td>
<td>93–96</td>
</tr>
<tr>
<td>Oel, H.Y.</td>
<td>47–51</td>
</tr>
<tr>
<td>Orde-Peckar, C.</td>
<td>211–216</td>
</tr>
<tr>
<td>Orlov, S.N.</td>
<td>43–45, 281–284</td>
</tr>
<tr>
<td>Orth, D.N.</td>
<td>397–400</td>
</tr>
<tr>
<td>Pack, R.J.</td>
<td>23–28</td>
</tr>
<tr>
<td>Padfield, P.L.</td>
<td>257–270</td>
</tr>
<tr>
<td>Pasternak, C.A.</td>
<td>1–10</td>
</tr>
<tr>
<td>Paterson, A.</td>
<td>145–152</td>
</tr>
<tr>
<td>Paton, R.C.</td>
<td>205–209</td>
</tr>
<tr>
<td>Pell, J.</td>
<td>23–28</td>
</tr>
<tr>
<td>Penney, M.D.</td>
<td>549–554</td>
</tr>
<tr>
<td>Peters, D.K.</td>
<td>175–185</td>
</tr>
<tr>
<td>Phipps, R.J.</td>
<td>23–28</td>
</tr>
<tr>
<td>Pocon, P.Y.W.</td>
<td>211–216</td>
</tr>
<tr>
<td>Posen, S.</td>
<td>367–372</td>
</tr>
<tr>
<td>Postnov, Y.V.</td>
<td>43–45, 281–284</td>
</tr>
<tr>
<td>Poston, L.</td>
<td>237–242, 243–249</td>
</tr>
<tr>
<td>Prenen, J.A.C.</td>
<td>47–51</td>
</tr>
<tr>
<td>Pride, N.B.</td>
<td>401–404</td>
</tr>
<tr>
<td>Pusell, B.</td>
<td>175–185</td>
</tr>
<tr>
<td>Ramachandran, M.</td>
<td>555–563</td>
</tr>
<tr>
<td>Rappaport, K.</td>
<td>555–563, 565–571</td>
</tr>
<tr>
<td>Rawlins, M.D.</td>
<td>81–85</td>
</tr>
<tr>
<td>Record, C.O.</td>
<td>81–85</td>
</tr>
<tr>
<td>Reeve, J.</td>
<td>153–160, 175–185</td>
</tr>
<tr>
<td>Rennie, M.J.</td>
<td>485–496, 519–523</td>
</tr>
<tr>
<td>Richardson, P.S.</td>
<td>23–28</td>
</tr>
<tr>
<td>Richardson, R.B.</td>
<td>513–517</td>
</tr>
<tr>
<td>Roberts, G.E.</td>
<td>461–472</td>
</tr>
<tr>
<td>Robertson, J.I.S.</td>
<td>257–270, 271–274</td>
</tr>
<tr>
<td>Robinson, B.F.</td>
<td>33–42</td>
</tr>
<tr>
<td>Robinson, B.G.</td>
<td>367–372</td>
</tr>
<tr>
<td>Rosendorff, C.</td>
<td>573–576</td>
</tr>
<tr>
<td>Roussos, C.</td>
<td>161–167</td>
</tr>
<tr>
<td>Ruol, A.</td>
<td>387–392</td>
</tr>
<tr>
<td>Russell, R.G.G.</td>
<td>145–152</td>
</tr>
<tr>
<td>Ruse, W.</td>
<td>223–224</td>
</tr>
<tr>
<td>Sackner, M.A.</td>
<td>473–483</td>
</tr>
<tr>
<td>Saito, K.</td>
<td>251–255</td>
</tr>
<tr>
<td>Saito, T.</td>
<td>251–255</td>
</tr>
<tr>
<td>Sandhu, J.S.</td>
<td>311–316</td>
</tr>
<tr>
<td>Sandle, G.I.</td>
<td>81–85</td>
</tr>
<tr>
<td>Sargent, A.</td>
<td>373–380</td>
</tr>
<tr>
<td>Saruta, T.</td>
<td>275–279</td>
</tr>
<tr>
<td>Schaechelin, G.</td>
<td>349–354</td>
</tr>
<tr>
<td>Schersten, T.</td>
<td>293–299</td>
</tr>
<tr>
<td>Schneider, A.W.</td>
<td>473–483</td>
</tr>
<tr>
<td>Schneider, E.G.</td>
<td>93–96</td>
</tr>
<tr>
<td>Schneider, R.E.</td>
<td>373–380</td>
</tr>
<tr>
<td>Schouten, H.</td>
<td>53–58</td>
</tr>
<tr>
<td>Seale, J.P.</td>
<td>219–221</td>
</tr>
<tr>
<td>Seebor, A.M.</td>
<td>217–218</td>
</tr>
<tr>
<td>Semple, P.F.</td>
<td>257–270</td>
</tr>
<tr>
<td>Setchell, K.D.R.</td>
<td>65–73</td>
</tr>
<tr>
<td>Sewell, R.B.</td>
<td>237–242, 243–249</td>
</tr>
<tr>
<td>Shirley, D.G.</td>
<td>525–532, 533–538</td>
</tr>
<tr>
<td>Skinner, J.</td>
<td>525–532</td>
</tr>
<tr>
<td>Speck, G.</td>
<td>349–354</td>
</tr>
<tr>
<td>Spoor, S.M.</td>
<td>47–51</td>
</tr>
<tr>
<td>Srinivasan, D.P.</td>
<td>549–554</td>
</tr>
<tr>
<td>Statius Van Eps,</td>
<td>53–58</td>
</tr>
<tr>
<td>Stephens, W.P.</td>
<td>577–580</td>
</tr>
<tr>
<td>Stern, A.I.</td>
<td>321–323</td>
</tr>
<tr>
<td>Stradling, J.R.</td>
<td>401–404</td>
</tr>
<tr>
<td>Sudlow, M.F.</td>
<td>137–143</td>
</tr>
<tr>
<td>Suggett, A.J.</td>
<td>497–503</td>
</tr>
<tr>
<td>Summerfield, J.A.</td>
<td>65–73</td>
</tr>
<tr>
<td>Sutton, J.R.</td>
<td>87–92</td>
</tr>
<tr>
<td>Suzuki, H.</td>
<td>275–279</td>
</tr>
<tr>
<td>Swales, J.D.</td>
<td>121–125</td>
</tr>
<tr>
<td>Swart, S.</td>
<td>121–125</td>
</tr>
<tr>
<td>Taylor, J.L.</td>
<td>577–580</td>
</tr>
<tr>
<td>Taylor, T.V.</td>
<td>169–173</td>
</tr>
<tr>
<td>Tekade, N.</td>
<td>455–460</td>
</tr>
<tr>
<td>Temple, D.M.</td>
<td>219–221</td>
</tr>
<tr>
<td>Thomas, T.H.</td>
<td>549–554</td>
</tr>
<tr>
<td>Thompson, R.P.H.</td>
<td>197–203, 223–224</td>
</tr>
<tr>
<td>Thurston, H.</td>
<td>121–125</td>
</tr>
<tr>
<td>Tighe, D.</td>
<td>361–366</td>
</tr>
<tr>
<td>Author</td>
<td>Pages</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Tindall, H.</td>
<td>205–209</td>
</tr>
<tr>
<td>Tobin, M.J.</td>
<td>473–483</td>
</tr>
<tr>
<td>Toews, C.J.</td>
<td>87–92</td>
</tr>
<tr>
<td>Tomas, F.M.</td>
<td>421–427</td>
</tr>
<tr>
<td>Tooley, M.</td>
<td>107–113</td>
</tr>
<tr>
<td>Torrance, R.W.</td>
<td>505–511</td>
</tr>
<tr>
<td>Torini, G.A.</td>
<td>333–338</td>
</tr>
<tr>
<td>Turner, R.C.</td>
<td>211–216</td>
</tr>
<tr>
<td>Vila, S.B.</td>
<td>217–218</td>
</tr>
<tr>
<td>Walford, S.</td>
<td>301–310</td>
</tr>
<tr>
<td>Walker, P.M.</td>
<td>293–299</td>
</tr>
<tr>
<td>Walter, S.J.</td>
<td>525–532, 533–538</td>
</tr>
<tr>
<td>Ward, A.</td>
<td>81–85</td>
</tr>
<tr>
<td>Ward, G.R.</td>
<td>87–92</td>
</tr>
<tr>
<td>Warrington, S.</td>
<td>577–580</td>
</tr>
<tr>
<td>Wegg, W.</td>
<td>361–366</td>
</tr>
<tr>
<td>Weidmann, P.</td>
<td>257–270, 325–328</td>
</tr>
<tr>
<td>Welby, J.</td>
<td>437–440</td>
</tr>
<tr>
<td>Wilkinson, S.P.</td>
<td>243–249</td>
</tr>
<tr>
<td>Williams, E.D.</td>
<td>257–270</td>
</tr>
<tr>
<td>Williams, I.P.</td>
<td>23–28</td>
</tr>
<tr>
<td>Williams, R.</td>
<td>75–80, 237–242, 243–249</td>
</tr>
<tr>
<td>Wilson, M.G.</td>
<td>397–400</td>
</tr>
<tr>
<td>Wolman, S.L.</td>
<td>519–523</td>
</tr>
<tr>
<td>Wong, P.C.</td>
<td>355–360</td>
</tr>
<tr>
<td>Wooten, O.</td>
<td>393–396</td>
</tr>
<tr>
<td>Wraith, P.K.</td>
<td>17–22</td>
</tr>
<tr>
<td>Wright, N.</td>
<td>23–28</td>
</tr>
<tr>
<td>Wright, R.</td>
<td>339–347</td>
</tr>
<tr>
<td>Zimmerman, B.G.</td>
<td>355–360</td>
</tr>
<tr>
<td>Zoccali, C.</td>
<td>285–292</td>
</tr>
</tbody>
</table>
Absorption, intestinal
- [3H]Cellobiotol 311–316
- folic acid 373–380
- [14C]mannitol 311–316
- oxalate 381–385
- propranolol 81–85, 373–380
- rate constants 373–380
N-Acetylcysteine, gastric mucus 187–195
Activation analysis 257–270
Adenosine di- and tri-phosphate, muscle 87–92
Adenosine triphosphate, natriuresis 415–420*
Adenylate cyclase 97–105*
Adrenaline, biosynthesis in hypertension 573–576
Adrenergic resistance, airway responses 513–517
α-Adrenoceptor
- bronchial secretion 23–28
- function and regulation 97–105*
β-Adrenoceptor
- agonists 137–143
- bronchial secretion 23–28
- function and regulation 97–105*
Airways
- resistance 137–143, 513–517
- salbutamol 513–517
- secretion 23–28
Aldosterone
- angiotensin II 325–328
- congestive heart failure 333–338*
Amniocentesis, protein breakdown 421–427
Angiotensin II
- aldosterone 325–328
- intraventricular injection 275–279
Angiotensin-converting enzyme 331–332
Anticonvulsant drugs, skin vitamin D 461–472
Antidiuresis, hydrochlorothiazide 525–532, 533–538
Antiplatelet therapy 205–209
Arginine vasopressin, water deprivation 549–554
Arterioles
- primary hypertension 33–42
- sodium nitroprusside 33–42
- veramil 33–42
Asian immigrants, serum 25-hydroxyvitamin D 577–580
Aspirin, platelet survival 205–209
Asthma, ciliostasis 393–396
Autonomic dysfunction 285–292, 321–323
Baroreflex, exercise 115–119
Benoxaprofen, lung slow-reacting substances 219–221
Bile acids
- hepatic extraction 197–203
- serum and skin interstitial fluid 65–73
- sulphates 65–73
Blood flow
- hepatic 29–32
- rat hindlimb 293–299
- renal 355–360
Blood pressure
- exercise 115–119
- sodium and dopamine response 93–96
Bone formation 153–160
Breath, ethanol concentration 441–445
Breathing
- hypoxic drive 17–22
- loaded 1–9*
- pattern, cigarette smoking 473–483
Bromocriptine, vasopressin 367–372
Bronchi, secretion 23–28
Bronchodilatation 137–143
Calcitonin secretion rate 145–152
Calcium
- absorption 329–330
- bone formation 153–160
- erythrocyte membrane 281–284
- hyperoxaluria 381–385
- low phosphorus diet 539–548
- metabolism 325–328
Calcium stone disease, hyperoxaluria 381–385
Captopril
- congestive heart failure 333–338*
- renal renin 355–360
Carbon dioxide, cerebral vascular nociceptors 505–511
Cardiac output, transthoracic impedance cardiography 107–113
Cardiorespiratory arrest 17–22
Catecholamines, thermoregulation 301–310
Carotid sinus reflex 115–119
[3H]Cellobiotol, intestinal absorption 311–316
Cell surface and disease 1–9*
Cerebral arteries, nociceptors 505–511
Chemosensitivity 17–22
Chenodeoxycholic acid, hepatic extraction 197–203
Subject Index vii

Cholaemia, renal function and haemodynamics 59–64
Cholecalciferol, skin synthesis 461–472
Cholestasis 65–73
Cigarette smoking, breathing pattern 473–483
Cilia inhibition 393–396
Cirrhosis, liver
decompensated 555–563
diazepam 75–80
proteinuria 387–392
Clearance, oxalate 473–483
Coeliac disease
absorption 373–380
propranolol absorption 81–85
Coenzyme A esters, liver 455–460
Cold immersion 127–135
Compartmental analysis 175–185
Complement 175–185
Conduction velocity, vagus nerve 169–173
Congestive heart failure 333–338
Converting enzyme inhibitors 355–360
Corticotropin, pain 397–400
Cortisol, pain 397–400
Creatine, exercise 87–92
Creatinine
myofibrillar protein breakdown 421–427
urinary excretion 421–427
Crush fracture osteoporosis 153–160
Cystinuria, zinc 223–224
Deoxycorticosterone acetate, erythrocyte membrane 43–45
Diabetes insipidus, electrolyte balance 525–532, 533–538
Diabetes mellitus
blood viscosity 211–216
cardiorespiratory arrest 17–22
hydrochlorothiazide 525–532, 533–538
platelet survival 205–209
Dialysis, serum 237–242
Diazepam, chronic liver disease 75–80
16,16-Dimethylprostaglandin E2, gastric mucus 187–195
Dipyridamole, platelet survival 205–209
Disaccharide, intestinal absorption 311–316
Diuretics
hypertension 121–125
renin-kallikrein-kinin system 447–453
Dopamine
blockade 361–366
sodium and pressor effect 93–96
Drug absorption 373–380
Dysmyelinating diseases 1–9*
Electrolyte balance, diabetes insipidus 525–532, 533–538
β-Endorphin/β-lipotropin, pain 397–400
Enteropathy, experimental 311–316
Erythrocyte
calcium-binding in hypertension 281–284
membrane 43–45, 281–284
superoxide dismutase 251–255
Erythrocyte membrane
spontaneous hypertension 43–45
structure 281–284
Essential hypertension, electrolytes 257–270
Ethanol, exhaled 441–445
Exercise
aerobic and anaerobic 87–92
cardiac output 107–113, 115–119
muscle blood flow 293–299
Expiration, ethanol concentrations 441–445
Extracellular fluid
diabetes insipidus 525–532
thiazide diuretics 121–125
Fasting, muscle protein synthesis 519–523
Fatigue, muscle 161–167
Fatty acid emulsion, prostaglandin synthesis 565–571
Feeding
gastric mucus 187–195
muscle protein synthesis 519–523
Fibrinogen, diabetes mellitus 211–216
Fick method, indirect 107–113
Fluorescent probe, erythrocyte membrane structure 43–45
Folic acid, intestinal absorption 373–380
Forearm resistance vessels, primary hypertension 33–42
Frusemide, renal kallikrein-kinin system 447–453
Fulminant hepatic failure 237–242
Gas chromatography–mass spectrometry, bile acid profiles 65–73
Gastric emptying 231–235
Gastric mucus 187–195
Gastrocnemius muscle, blood flow 293–299
Glucose
kinetics 437–440
metabolism 437–440
turnover 437–440
[6,6-3H]Glucose turnover 437–440
Glycaemia, control 211–216
Glycogen, muscle 87–92
Glycoproteins, bronchial secretion 23–28
Goldblatt hypertension
adrenaline enzyme inhibitor 573–576
exchangeable sodium 271–274
Gout, lymphocyte purine synthesis 429–435
Gut, immune responses 339–347*
Haematocrit see Packed cell volume
Haemodialysis 237–242, 285–292
Haemodynamics, cholaemia 59–64
Haemoglobin, glycosylated 211–216
Headache, vascular nociceptors 505–511
Heart rate
exercise 115–119
haemodialysis 285–292
Heat storage 127–135
Heat transfer, respiratory 127–135
Hormones, congestive heart failure 333–338*
Hydrochlorothiazide, diabetes insipidus 525–532, 533–538
Hydroxycholecalciferol, Asian immigrants 577–580
Hypercholesterolaemia 1–9*
Hyperplasia 1–9*
Hypertension
diuretics 121–125
electrolytes 257–270
erythrocyte membrane 43–45
low-renin 257–270
phentolamine 33–42
phenylethanolamine N-methyltransferase 573–576
vascular smooth muscle 33–42
Hypertension, experimental
Goldblatt two kidney, one clip 271–274
portal 29–32
renal 349–354
Hypoglycaemia, insulin 301–310, 321–323
Hypotension
cholaemia 59–64
postural 321–323
Hypothermia 127–135
Hypothyroidism, myofibrillar protein breakdown 421–427
Hypoventilation, lung gas exchange 497–503
Hypoxia, transient 17–22
Hypoxic pulmonary vasoconstriction 497–503
Immune responses, gut and liver 339–347*
Immunoglobulin A, synthesis and transport 339–347*
Impedance cardiography 107–113
Inhalation rewarming 127–135
Indomethacin, water excretion in sickle cell anaemia 53–58
Inspiratory loads 11–15
Inhaled air, alcohol exhalation 441–445
Insulin, hypoglycaemia 301–310, 321–323
Intermittent claudication 293–299
Intestinal transport 405–414*
Intraventricular angiotensin II 275–279
Iodide, renal clearance 175–185
Ipratropium 137–143
Iproveratril, vascular smooth muscle in hypertension 33–42
Isotope analysis 485–496*
Ischaemic pain 397–400
Jaundice, renal function and haemodynamics 59–64
Jejunum
propranolol absorption 81–85
surface pH 373–380
Juxtaglomerular apparatus 121–125
Kallikrein, renal excretion 217–218
Kallikrein–kinin system, renal hypertension 349–354
Kidney
blood flow 355–360
cholaemia 59–64
frusemide 447–453
hydrochlorothiazide 533–538
kallikrein 217–218, 349–354
[14C]oxalate clearance 47–51
phosphorus, dietary 539–548
prostaglandin E 555–563
renal nerves 275–279
renin 349–354
resistance 549–554
sodium 555–563
thiazides 533–538
water excretion 53–58
Kidney disease, nephrosis 317–319
Kinetic analysis of transport processes 405–414*
Kininogen 447–453
Krebs, Sir Hans 225–230
Lactate, muscle 87–92
Leucocyte
adrenoceptors 97–105*
sodium transport 237–242, 243–249
y-Lipotropin, pain 397–400
Linoleic acid, prostaglandin production 565–571
Lipoxygenase inhibitor 219–221
Lithium treatment, water deprivation 549–554
Liver
bile acid extraction 197–203
blood flow 29–32
cholaemia 59–64
coenzyme A esters 455–460
immune responses 339–347*
renal function 387–392
Liver disease
cirrhosis 75–80, 387–392
cirrhosis, decompensated 555–563
fulminant hepatic failure 237–242
Reye’s syndrome 455–460
Lower-body positive pressure, natriuresis 361–366
Subject Index

Lung
hypoxic vasoconstriction 497–503
slow-reacting substances 219–221
volumes 107–113
Lymphocytes, prime synthesis in gout 429–435

[14C]Mannitol, intestinal absorption 311–316
Mass spectrometry
bile acid profiles 65–73
glucose kinetics 437–440
stable isotopes 485–496*
Membrane
cell 1–9*
erythrocyte 43–45, 281–284
Meningeal blood vessels, carbon dioxide
Metabolic clearance rate 145–152
3-Methylhistidine, urinary excretion 421–427
Methyleneanthines, muscle fatigue 161–167
Metoprolol, body temperature 301–310
Mineralocorticoid escape 243–249
Mucus
bronchial secretion 23–28
gastric gel 187–195
Muscle, skeletal
exercise 293–299
low-frequency fatigue 161–167
protein synthesis, stable isotope techniques 519–523
pyruvate dehydrogenase 87–92
Natriuresis
frusemide 447–453
hormone 243–249, 317–319, 415–420*
lower-body positive pressure 361–366
Neoplasia 1–9*
Nephrotic syndrome 317–319
Nerve conduction velocities 169–173
Nifedipine, angiotensin II 325–328
Nitroprusside, vascular smooth muscle in hypertension 33–42
Noradrenaline, conversion in hypertension 573–576
Nutrition, uraemia 539–548
Osteomalacia 577–580
Osteoporosis 153–160
Oxalate
intestinal hyperabsorption 381–385
renal clearance 47–51
6-Oxoprostaglandin F$_{1a}$, linoleic acid 565–571
Packed cell volume, diabetes mellitus 211–216
Paget's disease 145–152
Pain, ischaemic, opioid peptides 397–400
Pancreatic polypeptide 321–323
Pepsin, gastric mucus 187–195
pH, jejunal surface 373–380
Phentolamine, primary hypertension 33–42
Phenyl diguanide, respiration 505–511
Phosphocreatine, muscle 87–92
Phosphorus, low intake and uraemia 539–548
Plasma membrane 1–9*
Plasma protein turnover 175–185
Plasma renin activity
congestive heart failure 333–338*
diuretics in hypertension 121–125
renal hypertension 349–354
Platelet survival, diabetes mellitus 205–209
Polydipsia, water deprivation 549–554
Polypeptide, pancreatic 321–323
Polyuria, water deprivation 549–554
Portal hypertension 29–32
Potassium, total body 257–270
Prematurity, myofibrillar protein breakdown 421–427
Pro-opiocortin, pain 397–400
Propranolol
body temperature 301–310
hepatic blood flow 29–32
intestinal absorption 81–85, 373–380
withdrawal syndrome 97–105*
Prostaglandin E
decompensated cirrhosis 555–563
linoleic acid 565–571
Prostaglandin, renal 53–58
Protein
breakdown in newborn infants 421–427
plasma turnover 175–185
synthesis, muscle 519–523
Proteinuria, liver cirrhosis 387–392
Pruritus, bile acids 65–73
Psychomotor tests, liver cirrhosis 75–80
Psychophysics, respiration 11–15
Pulmonary disease, ciliostasis by sputum 393–396
Purine synthesis, lymphocytes, in gout 429–435
Pyruvate dehydrogenase, muscle 87–92
Rate constants, absorption 373–380
Reaction time, respiratory loads 11–15
Renal concentrating capacity, sickle cell anaemia 53–58
Renal diluting capacity, sickle cell anaemia 53–58
Renal nerves, angiotensin II 275–279
Renal plasma flow, frusemide 447–453
Renal prostaglandin E 555–563
Renin
congestive heart failure 333–338*
renal 349–354
Renin–angiotensin system 355–360
Subject Index

Respiration, cerebral vascular nociceptors 505–511
Respiratory centre, smoking breathing pattern 473–483
Respiratory inductive plethysmography 473–483
Retinopathy, diabetes mellitus 205–209, 211–216
Reye’s syndrome, liver coenzyme A content 455–460
Rickets, Asian immigrants 577–580

Salbutamol
airway calibre, normal subjects 137–143
airway responsiveness 513–517

Saralasin, congestive heart failure 333–338*

Shivering 127–135
Sickle cell anaemia, water excretion 53–58
Skeletal muscle see Muscle, skeletal
Skin, vitamin D synthesis 461–472
Slow-reacting substances, lung 219–221
Smooth muscle, vascular 33–42
Sodium
balance, diabetes insipidus 525–532, 533–538
captopril 355–360
dopamine 93–96
exchangeable 257–270, 271–274
excretion 317–319
lower-body positive pressure 361–366
total body 257–270
transport, leucocyte 237–242, 243–249
Soleus muscle, blood flow 293–299
Specific enzyme activity, superoxide dismutase 251–255
Sputum, ciliostasis 393–396
Stomach
gastric emptying 231–235
mucus gel layer 187–195
Stress, opioid peptides 397–400
Strontium (85Sr), bone formation 153–160
Superoxide dismutase, erythrocyte 251–255

teprotide, congestive heart failure 333–338*
Thermogenesis 127–135
Thermoregulation, hypoglycaemia 301–310
Thiazide diuretics 121–125
Tracer kinetics, plasma protein turnover 175–185
Transport, intestinal 405–414*
Ultraviolet irradiation, skin vitamin D 461–472
Uraemia
autonomic lesion 285–292
low phosphorus diet 539–548
Urate, lymphocytes, gout 429–435
Urinary calculi 381–385
Ursodeoxycholic acid, hepatic extraction 197–203
Vagotomy 169–173
Vagus nerve, conduction velocities 169–173
Vascular nociceptors 505–511
Vascular resistance 115–119
Vasopressin
angiotensin II 275–279
bromocriptine 367–372
Ventilation, diabetic autonomic neuropathy 17–22
Ventilation/perfusion (V/Q) ratios 497–503
Viruses, cell surface 1–9*
Viscosity, blood, diabetes mellitus 211–216
Vitamin D
deficiency, diabetes mellitus 211–216
Vitamin D3, calcium absorption 329–330
Volume homoeostasis 555–563
Water
balance, diabetes insipidus 525–532, 533–538
deprivation, lithium-treated patients 549–554
excretion, sickle cell anaemia 53–58
vapour, expired air ethanol 441–445
Zinc, cystinuria 223–224

CORRECTION

Volume 62

page 532, Table 3, the value under ‘Non-haem Fe’ for patient no. 14 should read 0.096