AUTHOR INDEX

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abe, M.</td>
<td>599-603</td>
</tr>
<tr>
<td>Adler, A.J.</td>
<td>605-610</td>
</tr>
<tr>
<td>Adrian, T.E.</td>
<td>653-656</td>
</tr>
<tr>
<td>Al-Duajili, E.A.S.</td>
<td>201-206</td>
</tr>
<tr>
<td>Alfrey, A.C.</td>
<td>621-626</td>
</tr>
<tr>
<td>Allison, D.J.</td>
<td>585-590</td>
</tr>
<tr>
<td>Allsup, J.</td>
<td>757-764</td>
</tr>
<tr>
<td>Ambrosioni, E.</td>
<td>181-186</td>
</tr>
<tr>
<td>Amorena, C.</td>
<td>115-118</td>
</tr>
<tr>
<td>Anderson, D.J.</td>
<td>585-590</td>
</tr>
<tr>
<td>Anderson, W.P.</td>
<td>663-670</td>
</tr>
<tr>
<td>Angus, J.A.</td>
<td>663-670</td>
</tr>
<tr>
<td>Anthonisen, N.R.</td>
<td>781-784</td>
</tr>
<tr>
<td>Arias, I.M.</td>
<td>123-125</td>
</tr>
<tr>
<td>Åström, H.</td>
<td>299-305</td>
</tr>
<tr>
<td>Balasubramanian, S.</td>
<td>615-619</td>
</tr>
<tr>
<td>Ball, S.G.</td>
<td>417-422</td>
</tr>
<tr>
<td>Ballard, F.J.</td>
<td>737-741</td>
</tr>
<tr>
<td>Banks, R.A.</td>
<td>97-105</td>
</tr>
<tr>
<td>Barbieri, C.</td>
<td>187-190</td>
</tr>
<tr>
<td>Barer, G.R.</td>
<td>569-580</td>
</tr>
<tr>
<td>Barnes, A.J.</td>
<td>653-656</td>
</tr>
<tr>
<td>Barnes, P.J.</td>
<td>159-162</td>
</tr>
<tr>
<td>Barrett, J.D.</td>
<td>671-678</td>
</tr>
<tr>
<td>Barton, R.N.</td>
<td>399-405</td>
</tr>
<tr>
<td>Batholomew, T.C.</td>
<td>773-780</td>
</tr>
<tr>
<td>Beck, D.</td>
<td>47-51</td>
</tr>
<tr>
<td>Bee, D.</td>
<td>569-580</td>
</tr>
<tr>
<td>Belin, L.J.</td>
<td>97-105</td>
</tr>
<tr>
<td>Beins, D.M.</td>
<td>615-619</td>
</tr>
<tr>
<td>Bellini, G.</td>
<td>685-691</td>
</tr>
<tr>
<td>Bengtsson, C.</td>
<td>299-305</td>
</tr>
<tr>
<td>Bennett, T.</td>
<td>463-469, 511-519</td>
</tr>
<tr>
<td>Bergert, J.H.</td>
<td>487-491</td>
</tr>
<tr>
<td>Berlyne, G.M.</td>
<td>605-610</td>
</tr>
<tr>
<td>Better, O.S.</td>
<td>535-539</td>
</tr>
<tr>
<td>Betts, A.K.</td>
<td>743-749</td>
</tr>
<tr>
<td>Bianchi, M.</td>
<td>685-691</td>
</tr>
<tr>
<td>Bianchini, C.</td>
<td>505-509</td>
</tr>
<tr>
<td>Billing, B.H.</td>
<td>773-780</td>
</tr>
<tr>
<td>Bing, R.F.</td>
<td>287-293</td>
</tr>
<tr>
<td>Blake, D.R.</td>
<td>483-486</td>
</tr>
<tr>
<td>Blendis, L.M.</td>
<td>451-455</td>
</tr>
<tr>
<td>Bloom, S.R.</td>
<td>653-656</td>
</tr>
<tr>
<td>Bodard, H.</td>
<td>273-279</td>
</tr>
<tr>
<td>Bonjour, J.-P.</td>
<td>471-476</td>
</tr>
<tr>
<td>Bönner, G.</td>
<td>47-51</td>
</tr>
<tr>
<td>Boobis, S.</td>
<td>445-449</td>
</tr>
<tr>
<td>Boomsma, F.</td>
<td>169-174</td>
</tr>
<tr>
<td>Brajkovich, I.E.</td>
<td>119-121</td>
</tr>
<tr>
<td>Breuer, N.F.</td>
<td>641-648</td>
</tr>
<tr>
<td>Brewer, D.B.</td>
<td>751-756</td>
</tr>
<tr>
<td>Brindley, D.N.</td>
<td>129-133</td>
</tr>
<tr>
<td>Britton, K.E.</td>
<td>385-389</td>
</tr>
<tr>
<td>Brown, C.</td>
<td>605-610</td>
</tr>
<tr>
<td>Brown, M.J.</td>
<td>159-162, 585-590, 591-598</td>
</tr>
<tr>
<td>Brown, M.R.</td>
<td>653-656</td>
</tr>
<tr>
<td>Bull, J.</td>
<td>441-444</td>
</tr>
<tr>
<td>Burkinshaw, L.</td>
<td>457-462</td>
</tr>
<tr>
<td>Butkus, A.</td>
<td>111-113</td>
</tr>
<tr>
<td>Butler, D.G.</td>
<td>29-34</td>
</tr>
<tr>
<td>Caldara, R.</td>
<td>187-190</td>
</tr>
<tr>
<td>Campbell, I.W.</td>
<td>581-584</td>
</tr>
<tr>
<td>Catto, G.R.D.</td>
<td>723-727</td>
</tr>
<tr>
<td>Charles, T.J.</td>
<td>151-157</td>
</tr>
<tr>
<td>Childers, J.W.</td>
<td>191-199</td>
</tr>
<tr>
<td>Clamp, J.R.</td>
<td>229-234</td>
</tr>
<tr>
<td>Clark, T.J.H.</td>
<td>85-90</td>
</tr>
<tr>
<td>Clarke, B.F.</td>
<td>581-584</td>
</tr>
<tr>
<td>Cochrane, G.M.</td>
<td>693-702</td>
</tr>
<tr>
<td>Coqlan, J.P.</td>
<td>111-113</td>
</tr>
<tr>
<td>Collis, M.G.</td>
<td>281-286</td>
</tr>
<tr>
<td>Comin, E.J.</td>
<td>765-771</td>
</tr>
<tr>
<td>Coop, G.F.</td>
<td>423-428</td>
</tr>
<tr>
<td>Corbett, C.L.</td>
<td>773-780</td>
</tr>
<tr>
<td>Corral, R.J.M.</td>
<td>245-247</td>
</tr>
<tr>
<td>Costa, F.V.</td>
<td>181-186</td>
</tr>
<tr>
<td>Crossignani, R.M.</td>
<td>187-190</td>
</tr>
<tr>
<td>Crozatto, H.R.</td>
<td>241-243</td>
</tr>
<tr>
<td>Cudworth, A.G.</td>
<td>1-5</td>
</tr>
<tr>
<td>Cunningham, J.</td>
<td>69-73</td>
</tr>
<tr>
<td>Davies, C.T.M.</td>
<td>627-639</td>
</tr>
<tr>
<td>Dawson-Hughes, B.F.</td>
<td>527-534</td>
</tr>
<tr>
<td>Deeg, M.</td>
<td>47-51</td>
</tr>
<tr>
<td>Delon, R.S.</td>
<td>119-112</td>
</tr>
<tr>
<td>Denton, D.A.</td>
<td>111-113</td>
</tr>
<tr>
<td>Denton, R.M.</td>
<td>135-140</td>
</tr>
<tr>
<td>Dériaz, O.</td>
<td>345-347</td>
</tr>
<tr>
<td>Derkx, F.H.M.</td>
<td>15-21</td>
</tr>
<tr>
<td>Desgranges, F.</td>
<td>207-215</td>
</tr>
<tr>
<td>Dhingra, S.</td>
<td>781-784</td>
</tr>
<tr>
<td>Dluhy, R.G.</td>
<td>527-534</td>
</tr>
<tr>
<td>Dollery, C.T.</td>
<td>585-590</td>
</tr>
<tr>
<td>Douglas, N.J.</td>
<td>581-584</td>
</tr>
<tr>
<td>Dowling, R.H.</td>
<td>641-648</td>
</tr>
<tr>
<td>Düsing, R.</td>
<td>61-67</td>
</tr>
<tr>
<td>Edmonds, C.J.</td>
<td>257-263</td>
</tr>
<tr>
<td>Edward, N.</td>
<td>723-727</td>
</tr>
<tr>
<td>Edwards, C.R.W.</td>
<td>201-206</td>
</tr>
<tr>
<td>Edwards, R.H.T.</td>
<td>627-639</td>
</tr>
<tr>
<td>Eggena, P.</td>
<td>671-678</td>
</tr>
<tr>
<td>Eisman, J.A.</td>
<td>53-59, 471-476</td>
</tr>
<tr>
<td>Elias, M.M.</td>
<td>765-771</td>
</tr>
<tr>
<td>Elliott, H.</td>
<td>729-735</td>
</tr>
<tr>
<td>Emery, C.J.</td>
<td>569-580</td>
</tr>
<tr>
<td>Ewing, D.J.</td>
<td>581-584</td>
</tr>
<tr>
<td>Fairney, A.</td>
<td>649-651</td>
</tr>
<tr>
<td>Feig, P.U.</td>
<td>23-28</td>
</tr>
<tr>
<td>Feinfeld, D.A.</td>
<td>123-125</td>
</tr>
<tr>
<td>Feinroth, M.</td>
<td>605-610</td>
</tr>
<tr>
<td>Feinroth, M.V.</td>
<td>605-610</td>
</tr>
<tr>
<td>Fellenius, E.</td>
<td>299-305</td>
</tr>
<tr>
<td>Fern, E.B.</td>
<td>217-228</td>
</tr>
<tr>
<td>Fernandes, M.</td>
<td>685-691</td>
</tr>
<tr>
<td>Ferrini, A.</td>
<td>505-509</td>
</tr>
<tr>
<td>Ferrini, C.</td>
<td>187-190</td>
</tr>
<tr>
<td>Finkberg, J.P.M.</td>
<td>535-539</td>
</tr>
<tr>
<td>Fittinghoff, D.B.</td>
<td>107-110</td>
</tr>
<tr>
<td>Fleisch, H.</td>
<td>471-476</td>
</tr>
<tr>
<td>Fleischner, G.M.</td>
<td>123-125</td>
</tr>
<tr>
<td>Flenley, D.C.</td>
<td>581-584</td>
</tr>
<tr>
<td>Forsling, M.L.</td>
<td>407-415</td>
</tr>
<tr>
<td>Fraser, G.</td>
<td>229-234</td>
</tr>
<tr>
<td>Fraser, R.</td>
<td>417-422</td>
</tr>
<tr>
<td>Frayn, K.N.</td>
<td>789-791</td>
</tr>
<tr>
<td>Frearson, N.</td>
<td>141-149</td>
</tr>
<tr>
<td>Friedman, E.A.</td>
<td>605-610</td>
</tr>
<tr>
<td>Frier, B.M.</td>
<td>245-247</td>
</tr>
<tr>
<td>Friggi, A.</td>
<td>273-279</td>
</tr>
<tr>
<td>Fukuchi, S.</td>
<td>249-251</td>
</tr>
<tr>
<td>Gale, E.A.M.</td>
<td>463-469</td>
</tr>
<tr>
<td>Galeazzi, S.</td>
<td>765-771</td>
</tr>
<tr>
<td>Gall, D.G.</td>
<td>29-34</td>
</tr>
<tr>
<td>Gamble, S.A.</td>
<td>429-439</td>
</tr>
<tr>
<td>Gamlen, T.R.</td>
<td>235-240</td>
</tr>
<tr>
<td>Garay, E.A.R.</td>
<td>765-771</td>
</tr>
<tr>
<td>Gardiner, S.M.</td>
<td>511-519</td>
</tr>
<tr>
<td>Gardiner, M.L.G.</td>
<td>717-722</td>
</tr>
<tr>
<td>Garlick, P.J.</td>
<td>217-228</td>
</tr>
<tr>
<td>Gelman, J.S.</td>
<td>521-526</td>
</tr>
<tr>
<td>Ghatel, M.A.</td>
<td>653-656</td>
</tr>
<tr>
<td>Gilmore, I.T.</td>
<td>325-330</td>
</tr>
</tbody>
</table>
Author Index

GLÄNZER, K. 61–67
GODDARD, B.A. 339–343
GOLUB, M.S. 107–110
GOODWIN, F.J. 69–73
GORDON, D. 407–415
GREEN, J.H. 463–469
GREKIN, R.J. 493–496
GRIMBY, G. 35–42
GRIMES, A.J. 43–46
GROSS, F. 47–51, 295–298
GRUENEWALD, S.M. 385–389
GUINDI, G. 163–167
GULLNER, H.-G. 785–787
GUPTA, V.J. 743–749
GUTTERIDGE, J.M.C. 483–486
GUZZO, J. 23–28
GVOZDANOVIC, D. 723–727
GVOZDANOVIC, S. 723–727
HAINES, A.P. 317–324
HALL, N.D. 483–486
HALLIDAY, D. 627–639
HALLIWELL, B. 483–486
HAMILTON, J.R. 29–34
HANCOCK, K.W. 423–428
HANDA, M. 175–180
HARRIS, V. 785–787
HARTLEY, J.P.R. 151–157
HATA, S. 249–251
HAYES, R.J. 611–613
HILL, N. 717–722
HIGENBOTTAM, T. 163–167
HILTON, P.J. 307–312, 313–316
HOLT, R.J. 339–343
HULLIN, R.P. 793–795
HULTÉN, B. 35–42
HUSTON, G. 201–206
IBELS, L.S. 621–626
INGLIS, G.C. 417–422
JAMES, V.H.T. 407–415, 649–651
JEEVANANDAM, M. 349–350
JENNER, D.A. 585–590, 591–598
JENNINGS, G.L. 521–526
JOHNSTON, C.I. 75–83, 663–670
JONES, N.F. 43–46, 331–338
JONES, R.B. 307–312, 313–316
KAGEYAMA, S. 599–603
KEDDIE, J.R. 281–286
KIM, K.E. 685–691
KONDO, K. 175–180
KORNER, P.I. 521–526
KRAMER, H.J. 61–67
LARKINS, R.G. 53–59
LAWRENCE, G.M. 751–756
LAYWARD, E. 235–240
LEE, K.E. 487–491
LEE, M.R. 423–428
LEE, S.P. 253–256
LEONETTI, G. 505–509
LEWIS, B. 649–651
LEWIS, J.A. 429–439
LIAI, J.F. 345–347
LONG, R.G. 653–656
LUCK, P. 559–567
MACDONALD, I.A. 463–469
MAGNANI, B. 181–186
MANN, G. 505–509
MANSELL, M.A. 43–46, 757–764
MARIGOLD, J.H. 325–330
MARIN-GREZ, M. 47–51
MARSH, M.N. 497–503
MARSHALL, D.H. 477–481
MARTIN, V.I. 201–206
MATHNER, K. 119–121
MARSHALL, D.H. 477–481
MARTIN, V.I. 201–206
MATHNER, K. 119–121
MASON, M. 207–215
MATTHEWS, P.G. 75–83
MCCORMACK, J.G. 135–140
McDOUGALL, J.G. 111–113, 541–551
McGRATH, B.P. 75–83
McGUIRE, M.B. 703–710, 711–716
McNICOL, G.P. 91–95
MCNURLAN, M.A. 217–228
MCTAGGART, F. 235–240
MILLAR, J.A. 75–83
MILLER, N.E. 649–651
MILLWARD, D.J. 627–639
MILMER, K.E. 511–519
MIR, M.A. 391–397
MIZUNO, K. 249–251
MONCADA, S. 369–372
MONE, R.D.H. 151–157
MONTEBIGNOLI, L. 181–186
MOORE, T.J. 527–534
MORGAN, D.B. 457–462, 793–795
Morton, J.J. 417–422
MOSS, S. 407–415
MUHHEAD, N. 723–727
MÜLLER, A. 115–118
MÜLLER, D.P.R. 235–240
MUNDAY, K.A. 679–684
MURPHY, G. 703–710, 711–716
MURRAY, C.E. 737–741
NAGAI, T. 509–603
Nawaz, M.K. 385–389
NIMMON, C.C. 385–389
NOBLE, A.R. 679–684
NORDIN, B.E.C. 477–481
NORTH, M.E. 757–764
ÖSTMAN-SMITH, I. 265–272
OVERLACK, A. 61–67
PADFIELD, P.L. 493–496
PAPAGEORGIOU, A. 207–215
PARATI, G. 505–509
PASSINGHAM, B.J. 399–405
PATRICK, J. 307–312, 313–316
PAYNE, J. 163–167
PEARL, W.S. 407–415
PEDERSSEN, E.B. 373–378
PENCHARZ, P.B. 207–215
PENNEY, M.D. 793–795
PERDUE, M. 29–34
PERKINS, C.M. 423–428
PERRY, S.V. 141–149
PLUMB, J.A. 717–722
PONCE, J. 115–118
POULSEN, K. 373–378
PRIOR, J.G. 693–702
PRITCHARD, J.L. 245–247
Volume 61

SUBJECT INDEX

First and last page numbers of papers to which entries refer are given. Page numbers marked with an asterisk refer to Editorial Reviews.

Absorption, intestinal
bile salt effects 641–648
calcium 477–481, 723–727
water 717–722
Absorption, renal, unconjugated bilirubin 765–771
Accidental injury
plasma cortisol 399–405
substrate oxidation 789–791
Activation analysis, total body nitrogen 457–462
Adenosine 3':5'-cyclic monophosphate, adrenal response 541–551
Adenosine 5'-pyrophosphate, muscle glycolysis 331–338
Adenosine 5'-triphosphate
leucocyte 43–46
muscle glycolysis 331–338
Adolescence, essential hypertension 169–174
Adrenal cells, calcium and steroid output 541–551
Adrenal cortex
calcium and steroids 541–551
hormones 399–405
Adrenal medulla, catecholamine assay 585–590
Adrenalectomy, isolation-induced hypertension 511–519
Adrenaline, assay 585–590, 591–598
α-Adrenoceptor, liver cell metabolism 135–140*
β-Adrenoceptor
adaptive cardiac hypertrophy 265–272*
exercise and metabolism 299–305
heart muscle metabolism 135–140*
Adrenocorticotropic hormone
aldosterone response 107–110
essential hypertension 107–110
superfused rat adrenal 541–551
Age, asthma and plasma histamine 151–157
Aggression-provoked renin 373–378
Airflow obstruction, vocal cord activity 163–167
Airways obstruction
arterial pH and Pco₂ 693–702
laryngeal function 163–167
Albumin
accidental injury 399–405
hyperprolactinaemia 119–121
Alcoholic cirrhosis, zinc 441–444
Aldosterone
central nervous system control 187–190
essential hypertension 107–110
18-hydroxycorticosterone 201–206
renin kallikrein 47–51, 241–243
sodium depletion 111–113, 191–199, 407–415
superfused adrenal cells 541–551
water and electrolytes 407–415
Amino acids, renal transplant recipients 743–749
Ammonia, excretion 217–228
Amyloid cells, sulphamidase 725–739
Anaerobic threshold, exercise 7–13*
Angiotensin
bile-duct ligation 535–539
captopril 75–83, 281–286
renal blood flow 553–557
Angiotensin II
aldosterone 107–110, 111–113
brain 175–180
sodium intake 527–534
superfused adrenal 541–551
Angiotensin-converting enzyme
aorta 249–251
captopril 75–83, 97–105
meclomenenate 97–105
phenolamine 97–105
Anorexia nervosa, cutaneous vasoreactivity 559–567
Antithrombin III, cod-liver oil supplement 317–324
Aorta
clonidine 273–279
renin 671–678
Aortic stenosis 265–272*
Arachidonic acid 369–372*
Arginine vasopressin
plasma lithium 793–795
renal prostaglandins 61–67
spontaneous hypertension 295–298
Arterial baroreceptors, renin 505–509
Arterial calcification 621–626
Ascorbic acid, rheumatism 483–486
Asthma
exercise-induced 151–157
hyperventilation-induced 159–162
Atherosclerosis 129–133*
Atopy, exercise-induced asthma 151–157
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rampton, D.S.</td>
<td>641–648</td>
</tr>
<tr>
<td>Rascher, W.</td>
<td>295–298</td>
</tr>
<tr>
<td>Read, A.E.</td>
<td>229–234</td>
</tr>
<tr>
<td>Recchia, M.</td>
<td>187–190</td>
</tr>
<tr>
<td>Rees, P.J.</td>
<td>85–90</td>
</tr>
<tr>
<td>Rennie, M.J.</td>
<td>627–639</td>
</tr>
<tr>
<td>Renström, P.</td>
<td>35–42</td>
</tr>
<tr>
<td>Reynolds, J.J.</td>
<td>703–710</td>
</tr>
<tr>
<td>Richards, H.K.</td>
<td>679–684</td>
</tr>
<tr>
<td>Rivier, J.F.</td>
<td>653–656</td>
</tr>
<tr>
<td>Roblero, J.S.</td>
<td>241–243</td>
</tr>
<tr>
<td>Roddis, S.A.</td>
<td>407–415</td>
</tr>
<tr>
<td>Roelandt, J.T.R.C.</td>
<td>169–174</td>
</tr>
<tr>
<td>Ruse, W.</td>
<td>441–444</td>
</tr>
<tr>
<td>Russell, R.G.G.</td>
<td>703–710</td>
</tr>
<tr>
<td>Sakai, T.</td>
<td>599–603</td>
</tr>
<tr>
<td>Sambhi, M.P.</td>
<td>671–678</td>
</tr>
<tr>
<td>Sanders, T.A.B.</td>
<td>317–324</td>
</tr>
<tr>
<td>Sarson, D.I.</td>
<td>653–656</td>
</tr>
<tr>
<td>Saruta, T.</td>
<td>175–180</td>
</tr>
<tr>
<td>Savoy, J.</td>
<td>781–784</td>
</tr>
<tr>
<td>Schalekamp, M.A.D.H.</td>
<td>15–21, 169–174</td>
</tr>
<tr>
<td>Schneider, E.G.</td>
<td>191–199</td>
</tr>
<tr>
<td>Schouen, J.</td>
<td>345–347</td>
</tr>
<tr>
<td>Scoffins, B.A.</td>
<td>111–113</td>
</tr>
<tr>
<td>Seaton, A.</td>
<td>151–157</td>
</tr>
<tr>
<td>Sever, P.S.</td>
<td>245–247</td>
</tr>
<tr>
<td>Shahid, S.U.</td>
<td>339–343</td>
</tr>
<tr>
<td>Shames, D.M.</td>
<td>611–613</td>
</tr>
<tr>
<td>Shepherd, R.W.</td>
<td>29–34</td>
</tr>
<tr>
<td>Sigurdsson, G.</td>
<td>611–613</td>
</tr>
<tr>
<td>Silverton, N.P.</td>
<td>457–462</td>
</tr>
<tr>
<td>Simmonds, R.J.</td>
<td>757–764</td>
</tr>
<tr>
<td>Simons, L.A.</td>
<td>615–619</td>
</tr>
<tr>
<td>Sladen, G.E.</td>
<td>641–648</td>
</tr>
<tr>
<td>Smith, A.J.</td>
<td>287–293</td>
</tr>
<tr>
<td>Smith, S.A.</td>
<td>379–383</td>
</tr>
<tr>
<td>Smith, S.E.</td>
<td>379–383</td>
</tr>
<tr>
<td>Smith, U.</td>
<td>299–305</td>
</tr>
<tr>
<td>Srinivasan, D.P.</td>
<td>793–795</td>
</tr>
<tr>
<td>Stark, R.D.</td>
<td>429–439</td>
</tr>
<tr>
<td>Sterns, R.H.</td>
<td>23–28</td>
</tr>
<tr>
<td>Stockigt, J.R.</td>
<td>521–526</td>
</tr>
<tr>
<td>Stoner, H.B.</td>
<td>789–791</td>
</tr>
<tr>
<td>Summerfield, J.A.</td>
<td>773–780</td>
</tr>
<tr>
<td>Sutton, J.</td>
<td>605–610</td>
</tr>
<tr>
<td>Sutton, J.R.</td>
<td>331–338</td>
</tr>
<tr>
<td>Suzuki, H.</td>
<td>175–180</td>
</tr>
<tr>
<td>Svensson, L.</td>
<td>299–305</td>
</tr>
<tr>
<td>Swan, A.V.</td>
<td>649–651</td>
</tr>
<tr>
<td>Swartz, C.</td>
<td>685–691</td>
</tr>
<tr>
<td>Syrop, H.A.</td>
<td>535–539</td>
</tr>
<tr>
<td>Tait, J.F.</td>
<td>541–551</td>
</tr>
<tr>
<td>Tait, S.A.S.</td>
<td>541–551</td>
</tr>
<tr>
<td>Taniguchi, I.</td>
<td>599–603</td>
</tr>
<tr>
<td>Taquini, A.C.</td>
<td>115–118</td>
</tr>
<tr>
<td>Tartagni, F.</td>
<td>181–186</td>
</tr>
<tr>
<td>Taylor, C.M.</td>
<td>471–476</td>
</tr>
<tr>
<td>Taylor, R.D.</td>
<td>141–149</td>
</tr>
<tr>
<td>Taylor, W.H.</td>
<td>151–157</td>
</tr>
<tr>
<td>Telch, J.</td>
<td>29–34</td>
</tr>
<tr>
<td>Terzoll, L.</td>
<td>505–509</td>
</tr>
<tr>
<td>Thomas, R.D.</td>
<td>457–462</td>
</tr>
<tr>
<td>Thompson, R.P.H.</td>
<td>325–330,</td>
</tr>
<tr>
<td></td>
<td>441–444</td>
</tr>
<tr>
<td>Tindall, H.</td>
<td>91–95</td>
</tr>
<tr>
<td>Toews, C.J.</td>
<td>331–338</td>
</tr>
<tr>
<td>Tomas, F.M.</td>
<td>737–741</td>
</tr>
<tr>
<td>Tooke, J.E.</td>
<td>91–95</td>
</tr>
<tr>
<td>Treby, D.A.</td>
<td>483–486</td>
</tr>
<tr>
<td>Trechsel, U.</td>
<td>471–476</td>
</tr>
<tr>
<td>Tree, M.</td>
<td>417–422</td>
</tr>
<tr>
<td>Tschopp, M.</td>
<td>345–347</td>
</tr>
<tr>
<td>Tuck, M.L.</td>
<td>107–110</td>
</tr>
<tr>
<td>Unger, R.H.</td>
<td>785–787</td>
</tr>
<tr>
<td>Vaja, S.G.</td>
<td>641–648</td>
</tr>
<tr>
<td>Vale, W.</td>
<td>653–656</td>
</tr>
<tr>
<td>Valkenburg, H.A.</td>
<td>169–174</td>
</tr>
<tr>
<td>Vandenbroucke, M.J.</td>
<td>69–73</td>
</tr>
<tr>
<td>Vane, J.R.</td>
<td>369–372</td>
</tr>
<tr>
<td>Vermeulen, A.</td>
<td>649–651</td>
</tr>
<tr>
<td>Vetters, H.</td>
<td>61–67</td>
</tr>
<tr>
<td>Vickers, M.</td>
<td>317–324</td>
</tr>
<tr>
<td>Villamil, M.F.</td>
<td>115–118</td>
</tr>
<tr>
<td>Vio, C.P.</td>
<td>241–243</td>
</tr>
<tr>
<td>Von Schenck, H.</td>
<td>299–305</td>
</tr>
<tr>
<td>Wakeling, A.</td>
<td>559–567</td>
</tr>
<tr>
<td>Wardle, E.N.</td>
<td>127</td>
</tr>
<tr>
<td>Wark, J.D.</td>
<td>53–59</td>
</tr>
<tr>
<td>Warnes, D.M.</td>
<td>737–741</td>
</tr>
<tr>
<td>Wasserman, K.</td>
<td>7–13</td>
</tr>
<tr>
<td>Waterlow, J.C.</td>
<td>217–228,</td>
</tr>
<tr>
<td></td>
<td>627–639</td>
</tr>
<tr>
<td>Watts, R.W.E.</td>
<td>757–764</td>
</tr>
<tr>
<td>Weidmann, E.</td>
<td>295–298</td>
</tr>
<tr>
<td>Werness, P.G.</td>
<td>487–491</td>
</tr>
<tr>
<td>Westwood, A.</td>
<td>151–157</td>
</tr>
<tr>
<td>Wilcken, D.E.L.</td>
<td>743–749</td>
</tr>
<tr>
<td>Williams, B.C.</td>
<td>541–551</td>
</tr>
<tr>
<td>Williams, G.H.</td>
<td>527–534</td>
</tr>
<tr>
<td>Williams, J.D.</td>
<td>151–157</td>
</tr>
<tr>
<td>Wilson, K.R.</td>
<td>53–59</td>
</tr>
<tr>
<td>Wolf, E.</td>
<td>1–5</td>
</tr>
<tr>
<td>Wolff, C.B.</td>
<td>693–702</td>
</tr>
<tr>
<td>Wong, P.C.</td>
<td>553–557</td>
</tr>
<tr>
<td>Wright, R.D.</td>
<td>111–113</td>
</tr>
<tr>
<td>Zanchetti, A.</td>
<td>505–509</td>
</tr>
<tr>
<td>Zimmermann, B.G.</td>
<td>553–557</td>
</tr>
</tbody>
</table>
Atrophy, leg injury 35–42
Autonomic function 379–383

Baroreceptor reflex
arterial renin 505–509
vasopressin 345–347

Bile acids
 clearance 325–330
 renal tubular secretion 773–780
Bile-duct ligation, dogs 535–539
Bile salts,
 changes in colon 641–648
Bilirubin, kidney cell membranes 765–771

Blood flow
 hand, anorexia nervosa 559–567
 renal 385–389, 553–557

Blood pressure
 adolescence 169–174
 bile-duct ligation 535–539
 brain iso-renin–angiotensin system 175–180

Blood volume, hypertension 685–691
Body composition, nitrogen 457–462
Body fluid volumes, hypertension
Body temperature, anorexia nervosa 559–567

Bradykinin
 captopril 75–83, 281–286
 radioimmunoassay 241–243

Brain, iso-renin–angiotensin system 175–180

Breathing
 control 693–702, 781–784
 pattern, cigarette smoking 85–90
 pulmonary fibrosis 781–784
Breathlessness, assessment 429–439

Bronchitis, arterial PCO₂ and pH 693–702

Caeruloplasmin, rheumatism 483–486
Calcium
 absorption 477–481, 723–727
 metabolism 541–551
 mitochondrial metabolism 135–140*
 vitamin D 471–476
Calcium oxalate monohydrate, urinary 487–491

Calorimetry, indirect 789–791
γ-Camera technique, intrarenal blood flow 385–389

Capillary pressure, oral contraceptive pill 91–95

Captopril
 adrenergic vasoconstriction 281–286
 brain iso-renin–angiotensin system 175–180
 organ blood flow 97–105
 sodium nitroprusside 521–526
Carbodiop, plasma renin activity 187–190
Carbohydrate metabolism 299–305
Carbon dioxide
 breathlessness 429–439
 diabetic neuropathy 599–603
 respiratory oscillations 693–702
 retention 693–702
Cardiac hypertrophy 265–272*
Cardiac index, adolescence 169–174
Cardiac output 663–670
Cardiopulmonary receptors 505–509
Carotid sinus reflex 505–509
Cartilage, collagenase 711–716
Catalase, caeruloplasmin 483–486
Catecholamines
 adrenal assay 583–590
 brain 187–190
 exercise and metabolism 299–305
 radioenzymatic assay 591–598
 renal transplantation 69–73
Charcoal, irritant response 85–90
Chemosensitivity, diabetic neuropathy 599–603
Chloride transfer, intestinal 257–263*
Cholestasis, bile acid excretion 773–780
Cholesterol
 hepatic fibrogenesis 253–256
 synthesis 615–619
Cholesterol 7α-mono-oxygenase 615–619
Cigarette smoke, breathing pattern 85–90
Circulation, exercise 7–13*
Cirrhosis, liver 535–539
Clonidine, aorta 273–279
Clotting factors, cod-liver oil supplementation 317–324
Coarctation 265–272*
Cold, cutaneous vasoreactivity 559–567
Collagen, hepatic fibrogenesis 253–256
Collagenase 703–710, 711–716
Collagenase inhibitor (TIMP) 703–710, 711–716
Colonic
 bile-salt induced changes 641–648
 disease 257–263*, 229–234
 water and ion transfer 257–263*
 converting-enzyme inhibition 281–286, 527–534, 553–557
Coronary heart disease 307–324
Cortisol, superfused adrenal cells 541–551
Creatine phosphate, muscle glycolysis 331–338
Creatinine excretion
 dystrophy 737–741
 pregnancy 423–428
Crohn's disease 229–234
Cross-correlation 385–389
Crystal growth, inhibitors 487–491
Curve subtraction 385–389
Cysteine–homocysteine mixed disulphide, renal
 transplant recipients 743–749

Subject Index
Subject Index

Cystine, renal transplant recipients 743–749
Cytotoxicity, 5-fluorouracil 712–722

Deconvolution 385–389
Dehydrogenases, mitochondrial 135–140*
Deoxycholic acid 641–648
Deoxycorticosterone–salt hypertension 115–118
Deoxyribonucleic acid, intestinal mucosa 717–722
Desamino-arginine vasopressin 61–67
Dexamethasone, kidney release 241–243
Diabetes insipidus, prostaglandins and water balance 61–67
Diabetes mellitus
 autonomic neuropathy 581–584, 599–603
 lipid metabolism 129–133*
Diarrhoea, prostaglandins and bile salts
Diazepam, breathlessness 429–439
Diet
 cod-liver oil supplement 317–324
 salt-free 407–415
1,25-Dihydroxycholecalciferol
 calcium absorption 723–727
 diphosphonate 471–476
 renal tubule production 53–59
24,25-Dihydroxycholecalciferol, calcium absorption 723–727
1,25-Dihydroxy-vitamin D, see 1,25-Dihydroxycholecalciferol
Diphosphonate see Ethane-1-hydroxy-1,1-diphosphonate
Disaccharide, sulphamidase assay 729–735
Diuresis
 ileostomy 407–415
 osmotic 47–51
L-Dopa, plasma renin 187–190
Dopamine
 plasma 417–422
 urinary, pregnancy 423–428
Double-isotope assay, catecholamines 591–598
Duchenne muscular dystrophy 141–149
Dyspnoea 429–439
Dystrophic mice, creatinine excretion 737–741

Elastic loads, respiratory 339–343
Electrolyte disturbances 391–397, 407–415
Electromyography, laryngeal intrinsic muscles 163–167
Emphysema 693–702
Enzymuria, nephrotoxicity 123–125
Erythrocytes
 leukaemic 391–397
 lipids 317–324
 purine metabolism 757–764

Essential fatty acids, coronary heart disease 317–324
Essential hypertension
 aldosterone 107–110
 body fluid volumes 287–293
 propranolol therapy 107–110
Ethane-1-hydroxy-1,1-diphosphonate
 1,25-dihydroxycholecalciferol 471–476
 extra-osseous calcification 621–626
Ethynioestraadiol, activity 127
Exercise
 β-adrenoceptor blockade 299–305
 breathlessness 429–439
 histamine 151–157, 159–162
 muscle glycogen 35–42
 protein turnover 627–639
 ventilation 7–13*
Exertional dyspnoea 7–13*
Exogenous prorenin activators 15–21*
Expiration, forced, vagal tone 581–584
Extracellular potassium 307–312
Extracellular volume, hypertension 685–691
Extrasystoles 379–383
Extravascular low-density lipoprotein
Extrinsic prorenin activators
 611–614
Extrinsic prorenin activators 15–21*
Fat oxidation, trauma 789–791
Feeding pattern, intestinal DNA
 hormones 653–656
 immunity 497–503*
Gentamicin, induced nephrotoxicity 123–125
Glucocorticoids, triacylglycerol and lipoprotein regulation 129–133*
Glucose transport, intestinal 29–34
Glutathione-S-transferase, gentamicin-induced nephrotoxicity 123–125
Gluten sensitivity 497–503*
[15N]Glycine, protein turnover 217–228
Glycocholic acid, clearance 325–330
Glycogen, muscle exercise 331–338
Glycolysis, muscle exercise 331–338
Glucocorticoids, triacylglycerol and lipoprotein regulation 129–133*
Glycoprotein, Crohn's disease 229–234
Goldblatt hypertension 663–670
Growth hormone
 prolactin 119–121
 somatostatin 653–656
Subject Index

Haemodialysis, calcium absorption 723–727
Haemostasis, dietary cod-liver oil 317–324
Hand blood flow, anorexia nervosa 559–567
Heart
 adaptive hypertrophy 265–272*
 arteriovenous difference 585–590
 ischaemia 585–590
 noradrenaline release 585–590
Hepatic encephalopathy 451–455
Hepatic lipase, hyperlipidaemia 235–240
Hepatitis, zinc extraction 441–444
High-density lipoprotein cholesterol 317–324
 hyperlipidaemia 235–240
Hippuran, transit-time method 385–389
Histamine
 asthma 159–162
 postexercise asthma 151–157
HLA system 1–5*
Homocysteine, renal transplant recipients 743–749
Homocystinuria 743–749
Hormones
 gastrointestinal 257–263*, 653–656
 growth 119–121, 653–656
 insulin 23–28, 135–140*, 463–469
 sex 649–651
 thyroid 649–651
Human leucocyte system A (HLA) 1–5*
Hyaluronic acid, depolymerization 483–486
Hydrocortisone
 accidental injury 399–405
 collagenase production 703–710
Hydrogen peroxide, synovial fluid 483–486
Hydroxyapatite, seeded crystal growth 487–491
18-Hydroxycorticoicosterone, mineralocorticoid activity 201–206
Hydroxymethylglutaryl-CoA reductase 615–618
25-Hydroxy-vitamin D, diphosphonate 471–476
25-Hydroxy-vitamin D 1α-hydroxylase, regulation 53–59
Hyperalbuminaemic proteinuria 751–756
Hyperkalaemia, acute potassium load 23–28
Hyperkinetic phase, hypotensive teenagers 169–174
Hyperlipidaemia 235–240
Hypernatraemia, aldosterone 191–199
Hypertension
 adolescence 169–174
 aldosterone 107–110
 body fluid volumes 287–293
 brain iso-renin–angiotensin system 175–180
 cardiac hypertrophy 265–272*
 DOC-salt 115–118
 intralymphocytic sodium 181–186
 isolation-induced 511–519
 renovascular 505–509, 663–670
Hypertension, experimental
 body fluid volumes 685–691
 renal 663–670
Hypertrophy, cardiac 265–272*
Hyperventilation
 asthma 159–162
 inspiratory activity 163–167
Hypoglycaemia
 central body temperature 245–247
 sympathetomy 463–469
Hypothermia, hypoglycaemia 463–469
Hypoxia, perfused lungs 569–580
Hypozincæmia, pyrogen test 445–449
Ileostomy 407–415
Immunity, gastrointestinal cell-mediated 497–503*
Indocyanine green, clearance 325–330
Indomethacin
 angiotensin 535–539
 collagenase production 703–710
 colonic prostaglandins 641–648
 vasopressin-induced antidiuresis 493–495
Infant, protein turnover 207–215
Inhibitor, collagenase 703–710, 711–716
Injury
 atrophy 35–42
 plasma cortisol 399–405
 substrate oxidation 789–791
Insulin
 hypothermia 463–469
 mitochondrial metabolism 135–140*
 potassium 23–28
Interstitial fluid volume, essential hypertension 287–293
Intestinal absorption
 bile salt effects 641–648
 calcium 477–481, 723–727
 water 257–263*, 717–722
Intestine
 S-fluorouracil toxicity 717–722
 gluten sensitivity 497–503*
 local immunity 497–503*
 water and ionic transfer 257–263*
Intracellular sodium 313–316
Ischaemia, myocardial 657–662*
Subject Index

Isoelectric point, renin 671–678
Isolation-induced hypertension 511–519
Isoprenaline
 bile-duct ligation 535–539
 renin secretion 679–684
Iso-renin–angiotension system, brain 175–180

Kallikrein
 isolated kidney release 241–243
 prorenin activator 15–21*
 renal and urinary 47–51, 61–67
Kassinin, somatostatin release 785–787

Kidney
 arginine vasopressin, lithium 793–795
 blood flow 385–389, 553–557, 663–670
 cell membranes, bilirubin 765–771
 diabetes insipidus 61–67
 dopamine 417–422
 hyperalbuninaemic proteinuria 751–756
 kallikrein release 241–243
 noradrenaline release 585–590
 renin 671–678
 tubular secretion, bile acids 773–780
 water excretion 605–610
Kidney disease
 failure, purine metabolism 757–764
 nephrotic syndrome 605–610

Lactic acidosis, exercise 7–13*
Leucine, 3-methylbutanal metabolism 451–455
Leucocytes
 ATP, renal failure 43–46
 sulphanamidase 725–739
Leukaemia, myeloid 391–397
Ligandin, gentamicin-induced nephrotoxicity 123–125
Lipid metabolism 129–133*, 135–140*, 299–305
Lipoprotein lipase, hyperlipidaemia 129–133*, 235–240
Lipoproteins
 hepatic 129–133*
 sex and thyroid hormones 649–651
Lithium, arginine vasopressin 791–793
Liver
 blood flow 325–330
 glycocholic acid 325–330
 lipoprotein metabolism 129–133*
 low-density lipoproteins 611–614
 triacylglycerol synthesis 129–133*
Liver disease
 alcoholic cirrhosis 441–444
 cirrhosis 535–539
 fatty liver 129–133*
 fibrogenesis 253–256
 hepatic encephalopathy 451–455
 Low-density lipoprotein, extravascular pool 611–614
 Lung disease
 bronchitis 693–702
 pulmonary fibrosis 781–784
 Lymphocytes, sodium 181–186
 Mannitol, osmotic diuresis 47–51
 Mast-cell mediators 159–162
 Meclomenamate, organ blood flow 97–105
Metabolism
 accidental injury 789–790
 β-adrenoceptor blockade 299–305
 nitrogen 217–228, 627–639
 premature neonate 207–215
 protein 207–215, 217–228
 sodium 417–422
 Metalloprotease 711–716
 Methionine, renal transplant recipients 743–749
 3-Methylbutanal, metabolism 451–455
 3-Methylhistidine 627–639
 Microcirculation, oral contraceptive pill 91–95
 Microvascular permeability 685–691
 Mitochondrial metabolism 135–140*
 Mucopolysaccharidosis type IIIA 725–739
 Mucus
 colon damage 641–648
 Crohn’s disease 229–234
 glycoproteins 229–234
 Muscle
 fibre atrophy 35–42
 glycolysis 331–338
 myofibrillar protein 737–741
 posterior crico-arytenoid 163–167
 Muscle mass, creatinine excretion 737–741
 Myeloid leukaemia, plasma electrolytes 391–397
 Myocardium, ischaemia 657–662*
 Myofibrillar protein mass, creatinine excretion 737–741
 Neck-chamber technique 505–509
 Nephrotic syndrome, water immersion 605–610
 Nephrotoxicity, glutathione-S-transferase 123–125
 Neuropeptides, somatostatin release 785–787
 Nitrogen metabolism 627–639
 Nitroprusside, sodium hypotension 521–526
 Noradrenaline
 assay 585–590, 591–598
 bile-duct ligation 535–539
 captopril 281–286
 cardiac hypertrophy 265–272*
 hypertension 169–174
 hypoglycaemia 245–247
Subject Index

Obstructive jaundice 535–539
Oligosaccharide unit 229–234
Oncotic pressure, hyperprolactinaemia 119–121

Oral contraception, digital microvascular haemodynamics 91–95
dopamine 423–428
Organ blood flow, captopril, meclofenamate, phentolamine 97–105
Osteoarthritis, collagenase 703–710, 711–716
Ouabain, sodium efflux 391–397
Oxygen uptake 7–13*

Peripheral vascular resistance 169–174
Peritubular cell membranes, kidney 765–771
pH renin 671–678
respiratory oscillations 693–702
Phentolamine, organ blood flow 97–105
\(\beta\)-Phenylethylamine, bile-duct ligation 535–539
Phosphate depletion, acute uraemia 621–626
L-\(\alpha\)-Phosphatidate phosphohydrolase 129–133*
Phosphonate, vitamin D 471–476
Physical exercise 299–305
Pituitary tumour, hyperprolactinaemia 119–121
Plasma renin activity see Renin
Plasma volume, essential hypertension 287–293
Plasmin, intrinsic prorenin activator 15–21*
Platelets
aggregation 317–324
function 317–324
prostacyclin 369–372*
Potassium
adrenal calcium and steroids 541–551
insulin 23–28
intestinal transfer 257–263*
thymocytes 307–312
Pregnancy, urinary dopamine 423–428
Probucol, plasma cholesterol 615–619
Prolactin, anabolic effects 119–121
Promethazine, breathlessness 429–439
Propranolol, aldosterone 107–110
Prorenin 15–21*
Prostacyclin activity 127, 369–372*
Prostaglandins
colon 257–263*, 641–648
diabetes insipidus 61–67
25-hydroxy-vitamin D\(_3\) metabolism 53–59
indomethacin 493–495
synthesis inhibition 97–105
Protein
hyperprolactinaemia 119–121
turnover 207–215, 217–228, 627–639
Proteinuria, hyperalbuminaemic 751–756

Pulmonary circulation, chronic hypoxia 569–580
Pulmonary fibrosis, vagal airway reflexes 781–784
Pulmonary vascular resistance, chronic hypoxia 569–580
Purine metabolism, renal failure 757–764
Pyridoxine, plasma homocysteine 743–749
Pyrogen, hypozincemia 445–449
Radioenzymatic assay, catecholamines 591–598
Radioimmunoassay, arginine vasopressin 295–298
Raynaud’s phenomenon 559–567
Rebreathing, ventilatory response 599–603
Renal artery stenosis, experimental 663–670
Renal failure
plasma homocysteine 743–749
purine metabolism 757–764
Renal transplantation 69–73
Renal tubules, 25-hydroxy-vitamin D-1\(\alpha\)-hydroxylase 53–59
Renin
aggression-provoked 373–378
central nervous system 187–190
hypertension 169–174, 663–670
ileostomy 407–415
isoprenaline 679–684
molecular weight 671–678
physical characteristics 671–678
prorenin 15–21
renal transplantation 69–73
sodium depletion 191–199
tilting 69–73
urine 407–415
Renin—angiotensin—aldosterone system 187–190
Renin—angiotensin system
hypertension 521–526
proteolysis 15–21*
Renovascular hypertension 505–509
Respiratory load detection 339–343
Rheumatoid arthritis, protective scavengers 483–486
Rheumatoid synovium, collagenase 703–710, 711–716
R–R interval, standard deviation 379–383
Sanfilippo syndrome see Mucopolysaccharidosis type IIIA
Saralasin, cerebral ventricle 175–180
Secretion, intestinal 257–263*
Seeded crystal growth 487–491
Serotonin, adrenal steroid output 541–551
Sex hormones 649–651
Subject Index

- **Shivering, hypoglycaemia** 463–469
- **Sinus arrhythmia** 379–383
- **Sodium**
 - angiotensin-converting enzyme 249–251
 - deoxycorticosterone–salt hypertension 115–118
 - depletion 75–83, 111–113, 191–199
 - dopamine 417–422
 - hypertension 181–186, 313–316
 - intestinal transfer 257–263*
 - intralymphocytic 181–186
 - ouabain 391–397
 - pregnancy 423–428
 - thymocytes 307–312
 - transport 257–263*, 313–316
 - urinary excretion 191–199
- **Somatostatin**
 - growth and gut hormones 653–656
 - kassinin and substance P 785–787
- **Specific airways conductance** 581–584
- **SQ 20 881, angiotensin-converting enzyme inhibitor** 553–557
- **Steatosis** 253–256
- **Subcellular distribution, angiotensin-converting enzyme** 249–251
- **Substance P, somatostatin release** 785–787
- **Sulphamidase, assay in mucopolysaccharidosis type IIIA** 725–739
- **Superoxide, scavenging** 483–486
- **Sympathetic nervous system**
 - adaptive cardiac hypertrophy 265–272*
 - noradrenaline 585–590
 - prostaglandins 97–105
 - renal denervation 69–73
- **Synovial fluid, scavengers in rheumatism** 483–486
- **Synovium, collagenase** 703–710, 711–716
- **Tachykinin, somatostatin release** 785–787
- **Thermoregulation**
 - anorexia nervosa 559–567
 - hypoglycaemia 463–469
- **Thrombosis** 369–372*
- **Thymocytes**
 - electrolyte transport 307–312
 - sodium transport 313–316
- **Thyroid hormones** 649–651
- **Tilting, venous–arterial renin** 505–509
- **Transcortin, accidental injury** 399–405
- **Transit time, nephron spectrum** 385–389
- **Transmissible gastroenteritis** 29–34
- **Transport**
 - electrolytes in thymocyte 307–312
 - intestinal 29–34, 257–263*
- **Transport—continued**
 - renal, organic anions 765–771
 - sodium in spontaneous hypertension 313–316
- **Trauma, substrate oxidation** 789–790
- **Triacylglycerols**
 - coronary heart disease 317–324
 - hepatic, glucocorticoid regulation 129–133*
 - Triglycerides, coronary heart disease 317–324; see also Triacylglycerols
- **Tubular secretion, kidney, bile acids** 773–780
- **Tyramine, bile-duct ligation** 535–539
- **Ulcerative colitis** 229–234
- **Uraemia**
 - acute 621–626
 - calcium absorption 723–727
 - reduced leucocyte ATP 43–46
- **Urea excretion** 217–228
- **Urinary composition**
 - ileostomy 407–415
 - nephrotic syndrome 605–610
 - protein 141–149
- **Vagal reflexes, pulmonary fibrosis** 781–784
- **Vagus, airways tone** 581–584
- **Valsalva manoeuvre** 379–383, 521–526
- **Vascular compliance** 569–580
- **Vascular disease, plasma homocysteine** 743–749
- **Vascular reactivity** 281–286, 521–526, 569–580
- **Vascular smooth muscle** 273–279
- **Vasopressin**
 - angiotensin II 175–180
 - antidiuresis 295–298, 493–495
 - hypertension 295–298
 - vertebral circulation 345–347
- **Venous occlusion plethysmography** 559–567
- **Ventilation**
 - breathlessness 429–439
 - diabetic neuropathy 599–603
 - pulmonary fibrosis 781–784
- **Viral enteritis** 29–34
- **Vitamin A, cod-liver oil supplement**
- **Vitamin D, diphosphonate** 471–476
- **Vitamin D, metabolites, calcium absorption** 723–727
- **Water immersion, nephrotic syndrome** 605–610
- **Water**
 - intestinal transport 257–263*
 - renal handling 605–610
- **Whole-body radioactivity counting** 457–462
- **Zinc, hepatointestinal extraction** 441–444