1. POLICY OF THE JOURNAL

1.1. Scope

Clinical Science publishes papers in the field of clinical investigation, provided they are of a suitable standard and contribute to the advancement of knowledge in this field. The term 'clinical investigation' is used in its broad sense to include studies in animals and the whole range of biochemical, physiological, immunological and other approaches that may have relevance to disease in man. Studies which are confined to normal subjects, or animals, or are purely methodological in nature may be acceptable. The material presented should permit conclusions to be drawn and should not be only of a preliminary nature. The journal publishes four types of manuscript, namely invited Editorial Reviews, Full Papers, Short Communications and Correspondence. In addition, Clinical Science publishes abstracts of the proceedings of the Medical Research Society and also that Society's Annual Guest Lecture.

1.2. The Editorial Board

The Board comprises Editors for the Medical Research Society and the Biochemical Society and a Chairman and Deputy Chairman who are drawn alternately from the two Societies. Members of the Board retire after a maximum of 5 years; the Chairman serves in his capacity for 2 years. The membership of the Board is designed to cover as wide a range of interests as possible.

The main function of the Board is to decide on the acceptability of submitted papers, but it also deals with general matters of editorial policy. Financial policy is dealt with separately by the Committee of Management.

1.3. The editorial process

A submitted paper is first read by the Chairman of the Editorial Board who then sends it to an Editor. The latter considers the paper in detail and sends it to one or more referees (who remain anonymous) from outside the membership of the Board. The Editor returns it with his recommendation to the Chairman who then writes formally to...
the authors. The ultimate responsibility of acceptance for publication lies with the Chairman. If the Chairman is for any reason unavailable, the Deputy Chairman assumes this function.

1.4. Ethics of investigations on human subjects
Authors must state in the text of their paper the manner in which they have complied, where necessary, with the recommendations on human investigations published in the Medical Research Council report of 1962/63 [British Medical Journal (1964) ii, 178–180]. Consent must be obtained from each patient or subject after full explanation of the purpose, nature and risks of all procedures used and the fact that such consent has been given should be recorded in the paper. Papers should also state that the Ethical Committee of the Institution in which the work was performed has given approval to the protocol. The Editorial Board will not accept papers the ethical aspects of which are, in the Board's opinion, open to doubt.

1.5. Originality of papers
Submission of a paper to the Editorial Board is taken to imply that it reports unpublished work, that it is not under consideration for publication elsewhere and that, if accepted for publication by Clinical Science, it will not be published elsewhere in the same form, either in English or in any other language, without the consent of the Editorial Board. This does not usually apply to previous publication of oral communications in brief abstract form. In such cases authors should enclose copies of the abstracts. When a paper has been accepted for publication the author, or in the case of multiple authorship the author with whom correspondence has taken place, will be asked to sign a statement vesting the copyright in the Editorial Board. Requests for consent for reproduction of material published in Clinical Science should be addressed to the Editorial Manager.

2. SUBMISSION OF MANUSCRIPTS:
GENERAL INFORMATION AND FORMAT

2.1. General
Papers submitted for publication should be sent to the Editorial Manager, Clinical Science, 7 Warwick Court, London WC1R 5DP.

The submission should contain four copies (of which three may be photocopies) of the typescript, Tables, Figures etc. The authors should retain one copy of the paper. The Editorial Board does not accept responsibility for damage or loss of papers submitted, although great care is taken to ensure safety and confidentiality of the typescript during the editorial process. In the case of multiple authorship, the covering letter should indicate that the approval of all co-authors has been obtained.

Papers should be presented so that they are intelligible to the non-specialist reader of the journal. This is particularly important in highly specialized fields and a very brief résumé of the current state of knowledge is usually helpful. Certain types of material, e.g. mathematical formulations requiring more than trivial derivations, should be given in a separate Appendix.

Where the reader is referred to previous works by the same author(s) for important details relevant to the present work, it often speeds up assessment if reprints are enclosed with the typescript. This is of particular importance in relation to methodology.

The dates of receipt and acceptance of the paper will be published. If the paper has to be returned to the authors for revision and is not resubmitted within 1 month, the date of receipt will be revised accordingly. For Short Communications the published date will always be that of receipt of the final version. It is emphasized that badly presented or unduly long papers will be returned for revision and delays in publication will be inevitable. Similar delays will be incurred if the typescript is not prepared strictly in accordance with the instructions detailed below.

2.2. Full papers
The authors should refer to a current issue of Clinical Science to make themselves familiar with the general layout. Concise presentation is very important for rising costs are a severe constraint on space. The length of manuscript and the number of Figures and Tables must be kept to a minimum. Extensive Tables of data can be deposited with the Royal Society of Medicine (see 2.5). Guidance for Authors is usually published in the January issue of the journal, and revised periodically.

Typescripts should be, in general, arranged as follows:

(a) Title page. Title: this should be as informative as possible, since titles of papers are being increasingly used in indexing and coding for information storage and retrieval. The title should indicate the species in which the observations reported have been made. The numbering of parts in a series of papers is not permitted.
List of authors’ names (degrees and appointments are not required).

Laboratory or Institute of origin.

Key words: for indexing the subject of the paper; they should, if possible, be selected from the current issues of ‘Medical Subject Headings’ (MeSH), produced by the Index Medicus.

Short title: for use as a running heading in the printed text; it should not exceed forty-five characters and spaces.

Author for correspondence: the name and address of the author to whom queries and requests for reprints should be sent.

(b) Summary. This should be a brief statement arranged in numbered paragraphs of what was done, what was found and what was concluded and should rarely exceed 250 words. Contributors from non-English speaking countries are invited to include a translation of the summary in their own language. Abbreviations should be avoided as far as possible and must be defined. Statistical and methodological details including exact doses should also be avoided unless they are essential to the understanding of the summary.

c) Introduction. This should contain a clear statement of the reason for doing the work, but should not include either the findings or the conclusions.

(d) Methods. The aim should be to give sufficient information in the text or by reference to permit the work to be repeated without the need to communicate with the author.

(e) Results. This section should not include material appropriate to the Discussion section.

(f) Discussion. This should not contain results and should be pertinent to the data presented.

(g) Acknowledgments. These should be as brief as possible.

(h) References. See p. v for the correct format.

(i) Figures and Tables. See p. iv.

2.3. Short Communications

The Short Communication should describe completed work, and should not be merely a preliminary communication. The format of Short Communications should be similar to that of Full Papers, but should not exceed 1200 words of text. One Figure or Table is allowed, but if neither is included the text may be expanded to 1400 words. The passage of Short Communications through the editorial process can frequently be expedited and contributors are encouraged to take advantage of these facilities when rapid publication is of importance and the material can be presented concisely. The paper should appear in print within 3 months of acceptance. When submitting Short Communications, authors should make it quite clear that the work is intended to be treated as a Short Communication.

2.4. Correspondence

Letters containing critical assessments of material published in Clinical Science, including Editorial Reviews, will be considered for the Correspondence section of the journal. Such letters should be sent to the Editorial Manager, Clinical Science, within 6 months of the appearance of the article concerned. They will be sent to the authors for comment and both the letter and any reply by the author will be published together. Further correspondence arising therefrom will also be considered for publication. Consideration will also be given to publication of letters on ethical matters.

2.5. Arrangements for large amounts of information

It is impracticable to publish very large sets of individual values or very large numbers of diagrams, and under these circumstances a summary of the information only should be included in the paper. The information from which the summary was derived should be submitted with the typescript and, if the latter is accepted, the Editors may ask for a copy of the full information and diagrams to be deposited with the Librarian, the Royal Society of Medicine, 1 Wimpole Street, London W1M 8AE, who will issue copies on request. Experience has shown that such requests are frequently received.

2.6. Proof corrections

These are expensive and corrections of other than printers’ errors may have to be charged to the author.

2.7. Offprints

Fifty offprints are supplied free and additional copies may be obtained at terms, based upon the cost of production, that will be given with the proofs. All offprints should be ordered when the proofs are returned.

2.8. Availability on Medline

Summaries of papers in Clinical Science are available on-line on teleprinters participating in the Medline system run by the National Library of Medicine, National Institutes of Health, Bethesda, Maryland, U.S.A.
3. MISCELLANEOUS NOTES

3.1. Abbreviations
Abbreviations should be avoided; if used they must be defined at the first mention; new abbreviations should be coined only for unwieldy names which occur frequently. Abbreviations should not appear in the title nor, if possible, in the Summary. A list of accepted abbreviations is on p. vi. Numbers, not initials, should be used for patients and subjects.

3.2. Anatomical nomenclature
This should follow the recommendations of the International Anatomical Nomenclature Committee (1966) *Nomina Anatomica*, 3rd edn, Excerpta Medica Foundation, Amsterdam.

3.3. Animals, plants and micro-organisms
The full binomial specific names should be given at first mention for all experimental animals other than common laboratory animals. The strain and, if possible, the source of laboratory animals should be stated. Thereafter in the text, single letter abbreviations may be given for the genus; if two genera with the same initial letter are studied, abbreviations such as *Staph.* and *Strep.* should be used.

3.4. Buffers and salts
The acidic and basic components should be given, together with the pH. Alternatively, a reference to the composition of the buffer should be given. Further details are provided in the *Biochemical Journal* (1978) 169, 9.

When describing solutions containing organic anions and their parent acids, the salt designator (e.g. lactate, urate, oxalate) should be used in preference to the name of the acid (lactic, uric, oxalic) unless it is certain that virtually all of the acid is in the undissociated form.

The composition of incubation media should be described, or a reference to the composition should be given.

3.5. Computer modelling
Papers concerned primarily with computer modelling techniques are acceptable provided that use of such techniques leads to a clear choice between two or more alternative hypotheses, or to the formulation of a new hypothesis amenable to experimental challenge or verification, or provides some new insight into the behaviour of a particular physiological system. Extensive technical details of hardware and software should not be given.

3.6. Doses
Doses of drugs should be expressed in mass terms, e.g. milligrams (mg) or grams (g), and also (in parentheses) in molar terms, e.g. mmol, mol, where this appears to be relevant. Molecular weights of many drugs may be found in *The Merck Index*, 8th edn, Merck and Co. Inc., N.J., U.S.A.

3.7. Enzymes
Nomenclature should follow that given in *Enzyme Nomenclature* (1978), Academic Press, London and New York, and Enzyme Commission (EC) number should be quoted at the first mention. Where an enzyme has a commonly used informal name, this may be employed after the first formal identification. A unit of enzyme activity should preferably be expressed as that amount of material which will catalyse transformation of 1 μmol of the substrate/min under defined conditions, including temperature and pH. Alternatively, or when the natural substrate has not been fully defined, activity should be expressed in terms of units of activity relative to that of a recognized reference preparation, assayed under identical conditions. Activities of enzymes should normally be expressed as units/ml or units/mg of protein.

3.8. Evaluation of measurement procedures
When a new measuring procedure has been used, or when an established procedure has been applied in a novel fashion, an estimate of the precision of the procedure should be given. This should, as far as possible, indicate what sources of variation have been included in this estimate, e.g. variation of immediate replication, variation within different times of day, or from day to day etc.

If the precision of measurement varies in proportion to the magnitude of the values obtained, it can best be expressed as the coefficient of variation; otherwise it should be expressed by an estimate of the (constant) standard error of a single observation, or by estimates at several points within the range of observed values.

When recovery experiments are described the approximate ratio of the amount added to the amount already present and the stage of the procedure at which the addition was made should be stated.

3.9. Figures and Tables
These are expensive to print and their number should be kept to a minimum. Their appropriate position in the paper should be indicated in the margin of the text. References to Figures and
Guidance for Authors

Tables should be in Arabic numerals, e.g. Fig. 3, and they should be numbered in order of appearance. In general, the same data should not be presented in both a Figure and a Table.

Figures, with captions attached, should be supplied as original drawings or matt photographs together with photocopies. All Figures should have their number and the authors’ names written in pencil on the back; the top of the Figure should be indicated with a pencilled arrow. Acceptable symbols for experimental points are •, △, □, ○, ○, ○. The symbols × or + must be avoided. The same symbols must not be used for two curves where the points might be confused. For scatter diagrams, solid symbols are preferred. When a particular variable appears in more than one Figure, the same symbol should be used for it throughout, if possible.

Curves should not be drawn beyond the experimental points, nor should axes extend appreciably beyond the data. Only essential information that cannot readily be included in the legend should be written within the Figure.

Figures for half-tone reproduction should be submitted as glossy prints. They are particularly expensive to print and their use should be avoided as far as possible.

Tables should be typed separately from the text. They should have an underlined title followed by any legend.

Captions for the Figures, and titles and legends for the Tables, should make them readily understandable without reference to the text. Adequate statistical information, including that on regression lines, should be included in Figure captions where appropriate.

3.10. Footnotes

These should be avoided as far as possible but where they are used in Tables they should be identified by the symbols * † ‡ § ¶, in that order.

3.11. Isotope measurements

The information given should include (a) conditions of radioactivity counting, e.g. infinitely thick, infinitely thin; (b) the nature of the phosphor used in liquid-scintillation counting; (c) details of corrections made to the observed count rate, e.g. for ‘quenching’ or ‘cross-over’; (d) standard deviation of the results or a statement of the minimum total counts above background collected and the background value.

In general the specific radioactivity of the starting materials should be given, preferably in terms of radioactivity per unit weight or, for stable isotopes, as atoms % excess.

Pending the general introduction of SI units radioactivity should continue to be expressed in terms of the curie (Ci) followed by the corresponding figure in terms of the becquerel (Bq: disintegrations/s), in parentheses, and suitably rounded.

3.12. Radionuclide applications in man

If new or modified radionuclide applications in man are described, an estimate of the maximal possible radiation dose to the body and critical organs should be given.

For the time being this can continue to be expressed in rems, but with the corresponding figure in sieverts (Sv) given in parentheses after it.

3.13. Methods

In describing certain techniques, namely centrifugation (when the conditions are critical), chromatography and electrophoresis, authors should follow the recommendations published by the Biochemical Society (currently, Biochemical Journal (1981) 193, 1–21).

This should follow the International Classification of Disease (8th revision, World Health Organization, Geneva, 1969) as far as possible.

3.15. Powers in Tables and Figures

Care is needed where powers are used in Table headings and in Figures to avoid numbers with an inconvenient number of digits. For example: (i) an entry ‘2’ under the heading 10^3k means that the value of k is 0.002; an entry ‘2’ under the heading $10^{-3}k$ means that the value of k is 2000. (ii) A concentration 0.00015 mol/l may be expressed as 0.15 under the heading ‘concn. (mmol/l)’ or as 150 under the heading ‘concn. (umol/l)’ or as 15 under the heading ‘$10^3 \times$ concn. (mol/l)’, but not as 15 under the heading ‘concn. (mol/l $\times 10^{-3}$)’.

3.16. References

The numerical citation system is now used: references in the text are numbered consecutively in the order in which they are first mentioned, the numerals being given in brackets, e.g. [22]. References cited in Figure legends or Tables only should be numbered in a sequence determined by the position of the first mention in the text of the Figure or Table. References should be listed in
Guidance for Authors

Numerical order and the names of all authors of a paper should be given, with the full title of the paper and the source details in full including the first and last page numbers, e.g.

When the quotation is from a book, the following format should be used, giving the relevant page or chapter number:

References to ‘personal communications’ and ‘unpublished work’ should appear in the text only and not in the list of references. The name and initials of the source of information should be given. When the reference is to material that has been accepted for publication but has not yet been published, this should be indicated in the list of references by ‘In press’ together with the name of the relevant journal and, if possible, the expected date of publication. If such a citation is of major relevance to the manuscript submitted for publication authors are advised that the editorial process might be expedited by the inclusion of a copy of such work. In the case of quotations from personal communications the authors should state in the covering letter that permission for quotation has been obtained.

3.17. Solutions

Concentration of solutions should be described where possible in molar terms (mol/l and subunits thereof), stating the molecular particle weight if necessary. Values should not be expressed in terms of normality or equivalents. Mass concentration should be expressed as g/l or subunits thereof, for example mg/l or µg/l. For solutions of salts, molar concentration is always preferred to avoid ambiguity as to whether anhydrous or hydrated compounds are used. Concentrations of aqueous solutions should be given as mol/l or mol/kg (g/l or g/kg if not expressed in molar terms) rather than % (w/v) or % (w/w). It should always be made clear whether concentrations of components in a reaction mixture are final concentrations or the concentrations in solutions added.

3.18. Spectrophotometric data

The term ‘absorbance’ [log (I₀/I)] should be used rather than ‘optical density’ or ‘extinction’. The solvent, if other than water, should be specified. Symbols used are: A, absorbance; a, specific absorption coefficient (litre g⁻¹ cm⁻¹) (alternatively use A₁%₁); ε, molar absorption coefficient (the absorbance of a molar solution in a 1 cm light-path) (litre mol⁻¹ cm⁻¹, not cm² mol⁻¹).

3.19. Spelling

Clinical Science uses as standards for spelling the Concise or Shorter Oxford Dictionary of Current English (Clarendon Press, Oxford) and Butterworth’s Medical Dictionary (Butterworths, London).

3.20. Statistics

Papers are frequently returned for revision (and their publication consequently delayed) because the authors use inappropriate statistical methods. Two common errors are the use of means, standard deviations and standard errors in the description and interpretation of grossly non-normally distributed data and the application of t-tests for the significance of difference between means in similar circumstances, or when the variances of the two groups are non-homogeneous. In some circumstances it may be more appropriate to provide a ‘scattergram’ than a statistical summary.

A reference should be given for all methods used to assess the probability of a result being due to chance. The format for expressing mean values and standard deviations or standard errors of the mean is, for example: mean cardiac output 10·4 l/min (SD 1·2; n = 11). Degrees of freedom should be indicated where appropriate. Levels of significance are expressed in the form P < 0·01.

3.21. Trade names

The name and address of the supplier of special apparatus and of biochemicals should be given. In the case of drugs, approved names should always be given with trade names and manufacturers in parentheses.

4. UNITS: THE SI SYSTEM

The recommended Système International (SI) units [see Quantities, Units and Symbols, 2nd edn (1975) The Royal Society, London] are used by Clinical Science. All papers submitted should use these units except for blood pressure values, which should be expressed in mmHg, or gas tensions, where values at the author’s discretion may be given as mmHg (with kPa in parentheses) or as kPa (with mmHg in parentheses) in the text and either as mmHg or as kPa in Figures, which (if practicable) should have scales in both units. Airways pressure should be expressed in kPa. Where molecular weight is known, the amount of a chemical or drug should be expressed in mol or in
The following are examples of derived SI units: e.g. mmol/l is acceptable, but ml/min/kg is not, and should be replaced by ml min\(^{-1}\) kg\(^{-1}\).

5. ABBREVIATIONS, CONVENTIONS, DEFINITIONS, SYMBOLS AND SPECIAL COMMENTS

As well as standard symbols and abbreviations that have been accepted by international bodies, and which can be used without definition, this list shows selected abbreviations in the form of groups of capital letters (e.g. ALA, ECF, MCHC) which when used must be defined in the text as indicated on p. iv. The standard abbreviations for amino acids are only for use in Figures and Tables or for peptide sequences.

Notes:

(i) Full stops are not used after symbols.

(ii) Minutes (min), hours (h), days and years will continue to be used in addition to the SI unit of time [the second (s)].

(iii) The solidus may be used in a unit as long as it does not have to be employed more than once,
British Pharmacopoeia

calculated

‘Calorie’ (= 1000 cal)

carbon dioxide output (in respiratory physiology)

cardiac frequency

cardiac output

centimetre

clearance of x

coenzyme A and its acyl derivatives

compare

complement fractions

compliance (respiratory physiology)

centimetre

clearance of x

coenzyme A and its acyl derivatives

compare

complement fractions

compliance (respiratory physiology)

centimetre

clearance of x

coenzyme A and its acyl derivatives

conductance (respiratory physiology)

cumentre

clearance of x

coenzyme A and its acyl derivatives

concentration

cysteine

cysteine

dates

dead-space minute ventilation

dead-space volume

degrees, Celsius or centigrade

diethylaminoethylcellulose

differential of x with respect to time

1,25-dihydroxycholecalciferol dilute

2,3-diphosphoglycerate
direct current
disintegrations/min
disintegrations/s
dissociation constant

acetic

basic

apparent

minus log of
doses
dyne

elastance

electrocardiogram
electroencephalogram

electromotive force

electron spin resonance
electron volt

equation

equivalents (amount of a chemical)

erthrocyte count

erthrocyte sedimentation rate

ethanol, ethanolic

euchelaminetetraacetate exchangeable

Experiment (with reference numeral)

expired minute ventilation

extension

extracellular fluid

extracellular fluid volume

extracellular capacity

fractional concentration in dry gas

fractional disappearance rate

frequency of respiration

functional residual capacity

gas-liquid chromatography

glomerular filtration rate

glutamate

glutathione

glycine

gram(me)

gravitational field, unit of (9.81 m s⁻¹)

growth hormone

guery

haematocrit

haemoglobin

half-life

histidine

hour

human chorionic gonadotropin

human placental lactogen

hydrocortisone

hydrogen ion activity

minus log of

25-hydroxycholecalciferol

hydroxyproline

immunoglobulins
Guidance for Authors

injection routes: use abbreviations only in Figures

- intra-arterial i.a.
- intramuscular i.m.
- intraperitoneal i.p.
- intravenous i.v.
- subcutaneous s.c.
- international unit i.u. (definition and reference should be given for uncommon or ambiguous applications, e.g. enzymes)

- intracellular fluid
- intracellular fluid volume
- ionic strength
- isoleucine
- isotonic

isotopically labelled compounds

- joule
- kilogram (kg)
- kilopond
- lactate dehydrogenase
- leucine
- leucocyte count
- lipoproteins (serum)
- high density
- low density
- very low density
- litre

- logarithm (base 10)
- logarithm (base e)
- luteinizing hormone
- lysine
- maximum
- mean corpuscular
- haemoglobin
- mean corpuscular
- haemoglobin concentration
- mean corpuscular
- haemoglobin volume
- median lethal dose
- molar
- melting point
- methanol/methanolic
- methionine
- metre
- Michaelis constant
- micromole
- micron (10^-6 m)
- milli-equivalent
- millilitre
- millimetre of mercury
- millimolar (concentration)
- millimole
- minimum
- minute (60 s)
- molal
- molar (concentration)
- molar absorption coefficient
-
- mole
- molecular weight
- nicotinamide-adenine dinucleotide
- nicotinamide-adenine dinucleotide phosphate
- normal
- normal temperature and pressure
- nuclear magnetic resonance
- number (in enumerations)
- observed
- ohm
- ornithine
- ortho-
- orthophosphate (inorganic)
- osmolality
- oxygen uptake per minute
- packed cell volume
- page, pages
- para-
- para-aminohippurate
- partial pressure
- e.g. alveolar, of O2
- arterial, of CO2
- capillary, of O2
- mixed venous, of CO2
- pascal
- per
- per cent
- petroleum ether
- phenylalanine
- plasma renin activity
- plasma volume
- poise

- pressure
- litre
- not used
- not used; state not indicated
- not used; use light petroleum and give boiling range
- P;
- express in either kPa or mmHg (see p. vi)
- Pa, O2
- Pa, CO2
- Pco2
- PVO2
- Pa
- %
- not used; state use light petroleum and give boiling range
- P;
- express as pmol of angiotensin I h^-1 ml^-1

- litre
- not used
- not used; give amount in
- mmol

mmHg; for blood pressure and, at authors’ discretion, for gas tensions: see p. vi (1 mmHg = 0.133 kPa)

mmol/l; not mM

mmol

min.

mol/kg

mol/l; not M

(epsilon) the absorbance of a molar solution in a 1 cm light-path

mol

mol. wt.

NAD if oxidation state not indicated

NAD+ if oxidized

NADH if reduced

NADP if oxidation state not indicated

NADP+ if oxidized

NADPH if reduced

should not be used to denote the concentration or osmolarity of a solution

use standard temperature and pressure (STP)

n.m.r.

no. (in Tables only)

obs. (in Tables only)

V

O2; express in ml STP/min

PCV

p., pp.

P

PAH

P;

express in either kPa or mmHg (see p. vi)

P

A, O2

P

A, CO2

P

C, O2

P

V, CO2

P

a

V

1 poi = 10^-1 N s m^-1
Guidance for Authors

potential difference p.d.

power output

precipitate

pressure

probability of an event being due to chance alone

proline

protein-bound iodine (plasma)
pulmonary capillary blood flow

pyrophosphate (inorganic)
rad (radiation dose; 10^{-4} J absorbed/g of material)
red blood cell

red cell mass

relative band speed (partition chromatography)

rem

renin

residual volume

resistance (rheological)

respiratory exchange ratio (pulmonary)

respiratory quotient (metabolic)

revolutions

rev./min

ribonucleic acid

röntgen

saline

saturation

second (time)

serine

sievevert

solvent systems

species

specific activity

specific conductance of airways

standard deviation

standard error of the mean

standard temperature and pressure

steroid nomenclature

sulphhydril

sum

Svedberg unit

temperature (absolute)

(temperature, thermodynamic)
thin-layer chromatography

threonine

thyrotrophic hormone

thyrotrophin-releasing hormone

tidal volume

time (symbol)
time of day

torr

total lung capacity

tryptophan

tubular maximal reabsorptive capacity for x

tyrosine

ultraviolet

urinary concentration of x

valine

variance ratio

vascular resistance

velocity

venous admixture

veronal

viscosity, dynamic

viscosity, kinematic

vital capacity

volt

volume of blood (in cardio-respiratory physiology)
watt

wavelength

weight

white blood cell

sGaw; express in s^{-1} kPa^{-1}

may be used

without definition

STP

see Biochemical Journal (1969) 113, 5–28;

(1972) 127, 613–617

use thiol or SH

1 kPa = 7.5 mm Hg (1969)

113,5–28;

probability of an event being due to chance alone

sGaw; express in s^{-1} kPa^{-1}

may be used

without definition

STP

see Biochemical Journal (1969) 113, 5–28;

(1972) 127, 613–617

use thiol or SH

1 kPa = 7.5 mm Hg (1969)

113,5–28;

probability of an event being due to chance alone

sGaw; express in s^{-1} kPa^{-1}

may be used

without definition

STP

see Biochemical Journal (1969) 113, 5–28;

(1972) 127, 613–617

use thiol or SH

1 kPa = 7.5 mm Hg (1969)

113,5–28;

probability of an event being due to chance alone

sGaw; express in s^{-1} kPa^{-1}

may be used

without definition

STP

see Biochemical Journal (1969) 113, 5–28;

(1972) 127, 613–617

use thiol or SH

1 kPa = 7.5 mm Hg (1969)

113,5–28;

probability of an event being due to chance alone

sGaw; express in s^{-1} kPa^{-1}

may be used

without definition

STP

see Biochemical Journal (1969) 113, 5–28;

(1972) 127, 613–617

use thiol or SH

1 kPa = 7.5 mm Hg (1969)

113,5–28;

probability of an event being due to chance alone

sGaw; express in s^{-1} kPa^{-1}

may be used

without definition

STP

see Biochemical Journal (1969) 113, 5–28;

(1972) 127, 613–617

use thiol or SH

1 kPa = 7.5 mm Hg (1969)

113,5–28;

probability of an event being due to chance alone

sGaw; express in s^{-1} kPa^{-1}

may be used

without definition

STP

see Biochemical Journal (1969) 113, 5–28;

(1972) 127, 613–617

use thiol or SH

1 kPa = 7.5 mm Hg (1969)

113,5–28;

probability of an event being due to chance alone

sGaw; express in s^{-1} kPa^{-1}

may be used

without definition

STP

see Biochemical Journal (1969) 113, 5–28;

(1972) 127, 613–617

use thiol or SH

1 kPa = 7.5 mm Hg (1969)

113,5–28;

probability of an event being due to chance alone
AUTHOR INDEX

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberti, K.G.M.M.</td>
<td>579–585</td>
</tr>
<tr>
<td>Amann, F.W.</td>
<td>483–489, 571–577</td>
</tr>
<tr>
<td>Amery, A.</td>
<td>377–385</td>
</tr>
<tr>
<td>Amtorp, O.</td>
<td>157–164</td>
</tr>
<tr>
<td>Aynsley-Green, A.</td>
<td>349–353</td>
</tr>
<tr>
<td>Balasubramaniam, S.</td>
<td>435–439</td>
</tr>
<tr>
<td>Baldwin, C.J.</td>
<td>579–585</td>
</tr>
<tr>
<td>Baron, P.G.</td>
<td>537–542, 543–548</td>
</tr>
<tr>
<td>Barrand, M.A.</td>
<td>519–525, 527–535</td>
</tr>
<tr>
<td>Bauminger, S.</td>
<td>405–410</td>
</tr>
<tr>
<td>Beeley, J.A.</td>
<td>179–184</td>
</tr>
<tr>
<td>Belfield, P.W.</td>
<td>139–143</td>
</tr>
<tr>
<td>Bell, M.</td>
<td>303–310</td>
</tr>
<tr>
<td>Bereznowski, Z.</td>
<td>565–569</td>
</tr>
<tr>
<td>Berglund, G.</td>
<td>229–232</td>
</tr>
<tr>
<td>Bernheim, J.</td>
<td>405–410</td>
</tr>
<tr>
<td>Bisdee, A.</td>
<td>17–23</td>
</tr>
<tr>
<td>Bloom, S.R.</td>
<td>349–353</td>
</tr>
<tr>
<td>Bobik, A.</td>
<td>217–219</td>
</tr>
<tr>
<td>Bonjour, J.P.</td>
<td>101–107, 171–177</td>
</tr>
<tr>
<td>Boomsma, F.</td>
<td>491–498</td>
</tr>
<tr>
<td>Braganza, J.M.</td>
<td>303–310</td>
</tr>
<tr>
<td>Brewer, D.B.</td>
<td>693–702</td>
</tr>
<tr>
<td>Buckman, M.</td>
<td>17–23</td>
</tr>
<tr>
<td>Bühler, F.R.</td>
<td>483–489, 571–577</td>
</tr>
<tr>
<td>Bulen, A.W.</td>
<td>109–113</td>
</tr>
<tr>
<td>Bullock, S.</td>
<td>419–426</td>
</tr>
<tr>
<td>Bunch, C.</td>
<td>191–198</td>
</tr>
<tr>
<td>Burgess, E.M.</td>
<td>499–506</td>
</tr>
<tr>
<td>Burkinshaw, L.</td>
<td>457–461</td>
</tr>
<tr>
<td>Butler, J.</td>
<td>1–4</td>
</tr>
<tr>
<td>Callingham, B.A.</td>
<td>519–525, 527–535</td>
</tr>
<tr>
<td>Cameron, I.R.</td>
<td>441–449</td>
</tr>
<tr>
<td>Cameron, J.S.</td>
<td>81–86</td>
</tr>
<tr>
<td>Campbell, D.</td>
<td>355–361</td>
</tr>
<tr>
<td>Campbell, E.J.M.</td>
<td>463–466, 513–518</td>
</tr>
<tr>
<td>Cangiano, J.L.</td>
<td>479–482</td>
</tr>
<tr>
<td>Carney, S.L.</td>
<td>549–554</td>
</tr>
<tr>
<td>Castleden, C.M.</td>
<td>587–589</td>
</tr>
<tr>
<td>Chan, T.K.</td>
<td>681–688</td>
</tr>
<tr>
<td>Chan, V.</td>
<td>681–688</td>
</tr>
<tr>
<td>Chettle, D.R.</td>
<td>457–461</td>
</tr>
<tr>
<td>Chou, H.J.</td>
<td>633–637</td>
</tr>
<tr>
<td>Chow, F.P.R.</td>
<td>327–329</td>
</tr>
<tr>
<td>Clague, M.B.</td>
<td>233–235</td>
</tr>
<tr>
<td>Clark, T.J.H.</td>
<td>11–15</td>
</tr>
<tr>
<td>Cloix, J.F.</td>
<td>339–341</td>
</tr>
<tr>
<td>Cobden, I.</td>
<td>115–118</td>
</tr>
<tr>
<td>Coffman, J.D.</td>
<td>5–9</td>
</tr>
<tr>
<td>Cohen, R.A.</td>
<td>5–9</td>
</tr>
<tr>
<td>Compston, J.E.</td>
<td>241–243</td>
</tr>
<tr>
<td>Corazza, G.R.</td>
<td>109–113</td>
</tr>
<tr>
<td>Craven, A.H.</td>
<td>261–265</td>
</tr>
<tr>
<td>Crawford, G.A.</td>
<td>73–80</td>
</tr>
<tr>
<td>Cremer, J.E.</td>
<td>87–93</td>
</tr>
<tr>
<td>Cumberbatch, M.</td>
<td>555–564</td>
</tr>
<tr>
<td>Cumming, G.</td>
<td>17–23</td>
</tr>
<tr>
<td>Cummins, P.</td>
<td>33–40, 251–259</td>
</tr>
<tr>
<td>Cunningham, V.J.</td>
<td>87–93</td>
</tr>
<tr>
<td>Damkjær Nielsen, M.</td>
<td>591–593</td>
</tr>
<tr>
<td>Dandonia, P.</td>
<td>327–329</td>
</tr>
<tr>
<td>Davies, I.B.</td>
<td>399–404</td>
</tr>
<tr>
<td>Davies, T.J.</td>
<td>595–597</td>
</tr>
<tr>
<td>De Bruyn, J.H.B.</td>
<td>491–498</td>
</tr>
<tr>
<td>Derkx, F.H.M.</td>
<td>491–498</td>
</tr>
<tr>
<td>Dickinson, C.J.</td>
<td>471–477</td>
</tr>
<tr>
<td>Dirks, J.H.</td>
<td>549–554</td>
</tr>
<tr>
<td>Dobbs, R.J.</td>
<td>659–666</td>
</tr>
<tr>
<td>Dormaly, T.L.</td>
<td>295–301</td>
</tr>
<tr>
<td>Duncan, G.</td>
<td>145–155</td>
</tr>
<tr>
<td>Düsing, R.</td>
<td>467–469</td>
</tr>
<tr>
<td>Eckersall, P.D.</td>
<td>179–184</td>
</tr>
<tr>
<td>Edmonds, C.J.</td>
<td>311–318</td>
</tr>
<tr>
<td>Edström, S.</td>
<td>319–326</td>
</tr>
<tr>
<td>Eiser, N.M.</td>
<td>363–370</td>
</tr>
<tr>
<td>Ekman, L.</td>
<td>319–326</td>
</tr>
<tr>
<td>Eriksson, S.</td>
<td>95–100</td>
</tr>
<tr>
<td>Esler, M.</td>
<td>217–219</td>
</tr>
<tr>
<td>Evemy, K.L.</td>
<td>33–40</td>
</tr>
<tr>
<td>Fagard, R.</td>
<td>377–385</td>
</tr>
<tr>
<td>Farrington, K.</td>
<td>55–63</td>
</tr>
<tr>
<td>Finch, A.M.</td>
<td>411–418</td>
</tr>
<tr>
<td>Fitch, W.</td>
<td>355–361</td>
</tr>
<tr>
<td>Flaherty, D.K.</td>
<td>225–228</td>
</tr>
<tr>
<td>Flecknell, P.A.</td>
<td>335–338</td>
</tr>
<tr>
<td>Fleisch, H.</td>
<td>101–107, 171–177</td>
</tr>
<tr>
<td>Flemström, G.</td>
<td>427–433</td>
</tr>
<tr>
<td>Fog-Møller, F.</td>
<td>157–164</td>
</tr>
<tr>
<td>Francis, M.J.O.</td>
<td>617–623</td>
</tr>
<tr>
<td>Frankel, H.L.</td>
<td>399–404</td>
</tr>
<tr>
<td>Funck-Brentano, J.L.</td>
<td>339–341</td>
</tr>
<tr>
<td>Fyrquist, F.</td>
<td>267–272</td>
</tr>
<tr>
<td>Gandevia, S.C.</td>
<td>463–466, 513–518</td>
</tr>
<tr>
<td>Gardner, M.L.G.</td>
<td>707–710</td>
</tr>
<tr>
<td>Garner, A.</td>
<td>427–433</td>
</tr>
<tr>
<td>Geiyo, F.</td>
<td>331–334</td>
</tr>
<tr>
<td>George, C.F.</td>
<td>247–250</td>
</tr>
<tr>
<td>Giese, J.</td>
<td>591–593</td>
</tr>
<tr>
<td>Gilmore, I.T.</td>
<td>65–72</td>
</tr>
<tr>
<td>Goldstraw, P.W.</td>
<td>139–143</td>
</tr>
<tr>
<td>Grahem-Smith, D.G.</td>
<td>191–198</td>
</tr>
<tr>
<td>Greening, A.P.</td>
<td>507–512</td>
</tr>
<tr>
<td>Gregerman, R.I.</td>
<td>633–637</td>
</tr>
<tr>
<td>Guz, A.</td>
<td>363–370</td>
</tr>
<tr>
<td>Hagenfeldt, L.</td>
<td>95–100</td>
</tr>
<tr>
<td>Hall, R.</td>
<td>109–113</td>
</tr>
<tr>
<td>Hall, R.J.C.</td>
<td>441–449</td>
</tr>
<tr>
<td>Hamilton, G.</td>
<td>327–329</td>
</tr>
<tr>
<td>Hammett, F.G.</td>
<td>241–243</td>
</tr>
<tr>
<td>Hanson, P.G.</td>
<td>225–228</td>
</tr>
<tr>
<td>Harris, A.L.</td>
<td>191–198</td>
</tr>
<tr>
<td>Hartling, O.J.</td>
<td>675–679</td>
</tr>
<tr>
<td>Harvey, J.E.</td>
<td>579–585</td>
</tr>
<tr>
<td>Heath, J.R.</td>
<td>667–674</td>
</tr>
<tr>
<td>Henderson, R.M.</td>
<td>543–548</td>
</tr>
<tr>
<td>Henquet, J.W.</td>
<td>25–31</td>
</tr>
<tr>
<td>Henriksen, O.</td>
<td>157–164</td>
</tr>
<tr>
<td>Herlitz, H.</td>
<td>229–232</td>
</tr>
<tr>
<td>Hervey, G.R.</td>
<td>457–461</td>
</tr>
<tr>
<td>Heys, A.D.</td>
<td>295–301</td>
</tr>
<tr>
<td>Higenbottam, T.</td>
<td>11–15</td>
</tr>
<tr>
<td>Hill, G.</td>
<td>451–456</td>
</tr>
<tr>
<td>Hilton, P.J.</td>
<td>237–239</td>
</tr>
<tr>
<td>Hobbs, K.E.F.</td>
<td>327–329</td>
</tr>
<tr>
<td>Hughes, J.M.B.</td>
<td>507–512</td>
</tr>
</tbody>
</table>
Author Index

Hughes, R.L. 355-361
Hugh, K. 101-107
Hutton, R. 327-329
Iles, R.A. 245-246, 537-542, 543-548
Isaacson, L.C. 283-293
Ito, G. 331-334
Jackman, G. 217-219
James, V.H.T. 399-404
James, W.P.T. 519-525, 527-535
Jarrett, R.J. 81-86
Jenkins, W. 207-212
Jewkes, R. 17-23
John, M. 335-338
Johnson, R.H. 145-155
Jones, P.R.M. 457-461
Jones, R.B. 237-239
Jones, S.M. 703-706
Jung, R.T. 519-525, 527-535
Karlberg, B.E. 229-232
Karlberg, I. 319-326
Kasidas, G.P. 411-418
Keeling, P.W.N. 237-239
Keir, M.J. 233-235
Kelly, D. 221-224
Kelsey, C.R. 659-666
Kho, T. 25-31
Kilian, K.J. 463-466, 513-518
King, R.F.G.J. 451-456
King, R.V. 499-506
Kinosita, Y. 331-334
Kiowski, W. 483-489, 571-577
Klass, H.J. 303-310
Klingmüller, D. 467-469
Knibbs, A.V. 457-461
Körber, A. 467-469
Korner, P. 217-219
Kraft, C.A. 587-589
Kramer, H.J. 467-469
Kroos, M.J. 185-190
Lai, C.L. 681-688
Lam, H. 157-164
Lambie, D.G. 145-155
Langley, F. 17-23
Lawrence, G.M. 693-702
Leckie, B.J. 119-130
Leonard, P. 217-219
Levenson, J.A. 653-658
Linnen, P. 377-385
Littler, W.A. 33-40, 251-259
Lockhart, A. 371-375, 599-605
Losowsky, M.S. 109-113
Lucas, A. 349-353
Lundholm, K. 319-326
Lundin, S. 229-232
Lush, D.J. 393-398
Lyso Svendsen, T. 675-679
Mackie, J. 451-456
Magill, P. 241-243
Mahony, J.F. 73-80
Makarewicz, W. 565-569
Mancini, M. 435-439
Martínez-Maldonado, M. 479-482
Martínez, P. 387-392
Mathias, C.J. 165-170, 399-404
Mathie, R.T. 355-361
Matsen III, F.A. 499-506
Mattick, M. 81-86
McCormick, J. 625-631
McGurk, B. 251-259
Meilton, V. 81-86
Merrett, A.L. 241-243
Miettinen, A. 267-272
Mills, J. 363-370
Mitropoulos, K.A. 435-439
Mohammed, M.N. 55-63
Monet, J.D. 339-341
Moorehead, J.F. 55-63
Morgan, D.B. 457-461, 555-564
Mühlbauer, R.C. 171-177
Munday, K.A. 393-398
Myant, N.B. 435-439
Naik, R.B. 165-170
Naish, P. 47-53
Nascimento, L. 479-482
Newman, S.P. 55-63
Nielsen, A.H. 41-46
Noble, A.R. 393-398
Noble, M.M. 17-23
Ogg, C.S. 81-86
O'Malley, B.P. 595-597
Pearson, S.B. 667-674
Peart, W.S. 399-404, 639-651
Peters, T.J. 207-212, 435-439
Plumb, J.A. 707-710
Podjarny, E. 405-410
Postiglione, A. 435-439
Potter, C.G. 191-198
Poulsen, K. 41-46
Pourmotabbed, G. 633-637
Qazzaz, S. 47-53
Querido, D. 283-293
Raffestin, B. 371-375
Rahn, K.H. 25-31
Rasmusson, S. 591-593
Rathaus, M. 405-410
Rayid, M. 405-410
Reed, B. 221-224
Rees, J. 689-692
Reid, J.L. 165-170
Richards, H.K. 393-398
Rigden, B.G. 261-265
Rizzoli, R. 101-107
Robinson, B.F. 659-666
Robinson, P.J. 109-113
Rodriguez-Sargent, C. 479-482
Rose, G.A. 411-418
Rosenthal, F.D. 595-597
Ross, B. 419-426
Rosza, I. 327-329
Rothwell, J. 115-118
Safar, M.E. 653-658
Sagnella, G.A. 639-651
Saig, B. 599-605
Sanchez-Ibarrola, A. 47-53
Sarna, G.S. 87-93
Saverymuttu, S. 659-666
Schalekamp, M.A.D.H. 491-498
Scherstén, T. 319-326
Schols, M. 25-31
Scott, J. 207-212
Scott, J.M. 221-224
Seed, A. 17-23
Shetty, P.S. 519-525, 527-535
Shuster, S. 689-692
Sigström, L. 229-232
Silk, D.B.A. 607-615
Silva, P. 419-426
Simon, A.C.H. 653-658
Simmons, C.W. 499-506
Skagen, K. 157-164, 213-216
Skews, H. 217-219
Smith, G.P. 207-212
Author Index

SMITH, J.A. 543-548
SMITH, R. 617-623
SMITH, T. 311-318
SNASHALL, P.D. 363-370
STANKIEWICZ, A. 565-569
START, M.K. 81-86
STEWART, J.H. 73-80
STOLL, R.W. 273-282
STURNILO, G. 303-310
SUMI, H. 199-205
SYKES, B.C. 617-623

TAKASUGI, S. 199-205
TATTERSFIELD, A.E. 579-585
TAYLOR, S.H. 139-143
TEMMAR, M.M. 653-658
THUSSEN, H. 25-31
THOM, A. 625-631
THOMAS, R.D. 139-143
THOMPSON, R.P.H. 65-72, 237-239
TIKKANEN, I. 267-272
TOKI, N. 199-205
TOMKINS, A. 131-137

TOPPING, R.M. 261-265
TÖRNROTH, T. 267-272
TORRETTI, J. 703-706
TOTOMOUKOU, J.M. 653-658
TRAP-JENSEN, J. 675-679
TUCKER, S. 87-93
TUNNEY, A. 387-392
TURNER-WARWICK, M. 261-265
TURTON, C.W.G. 261-265
ULMANN, A. 339-341
UNGAR, A. 625-631
VALETTE, H. 371-375
VAN BRUMMELLEN, P. 483-489, 571-577
VAN DER HEUL, C. 185-190
VANDONGEN, R. 387-392
VAN Eijk, H.G. 185-190
VAN NOORT, W.L. 185-190
VARGHESE, Z. 55-63
VARTSKY, D. 457-461
VENKATESAN, S. 435-439
VERNON, P. 17-23
WAHREN, J. 95-100
WALKER, P. 319-326
WARREN, D.J. 165-170
WASS, V.J. 81-86
WATSON, M.L. 625-631
WATT, S.J. 139-143
WEIR, D. 221-224
WEISS, E. 405-410
WEN, S.-F. 273-282
WHELPDALE, P. 625-631
WHITING, S. 261-265
WILKE, R. 467-469
WILLIAMS, K.J. 617-623
WILSON, C.A. 165-170
WONG, N.L.M. 549-554
WOOD, P.J. 579-585
WOOTTON, R. 335-338
WORKMAN, R.J. 633-637
WRIGHT, P.D. 233-235
WYSS, C.R. 499-506
ZIMMERMAN, B.G. 343-348
Absorption, intestinal
 calcium 101–107
 competition 221–225
 diarrhoeal disease 131–137
 dipeptides 221–225
 fluid and electrolytes 131–137
 mucosal damage 115–118
 oxalate 411–418
 phosphate 55–63
 vitamin D₃ 241–243
Absorption, renal
 calcium 101–107
 phosphate 171–177
Acidosis
 ischaemia 537–542
 metabolic 355–361
Acid protease 41–46
Acyl-CoA:cholesterol O-acyltransferase, liver
 submicrosomal distribution 435–439
Adenosine ammoniaogenesis in parotid gland
 565–569
Adenosine 3':5'-cyclic monophosphate, intravenous salbutamol
 579–585
Adenosine 5'-phosphate, ammoniaogenesis in parotid gland
 565–569
Adenosine phosphate deaminase 565–569
Adenosine triphosphatase (Na⁺, K⁺-activated), erythrocyte
 229–232
Adrenaline, hepatic lactate and glucose 543–548
Adrenergic facilitation, angiotensin 343–348
Adrenergic resistance 579–585
α-Adrenoceptor, noradrenaline and vasoconstriction
 483–489
β-Adrenoceptor
 blockade 675–679
 blockade and growth 33–40
 lymphocyte cyclic AMP 587–589
 renal 571–577
Adrenocorticotropic hormone, spironolactone
 227–233
β-Adrenoreceptor see β-Adrenoceptor
Affinity chromatography, renin 633–637
Age
 isoprenaline responses 571–577
 lymphocyte cyclic AMP 587–589
 noradrenaline kinetics 217–219
Airways
 chronic disease 17–23
 obstruction 11–15
 resistance 249–253, 579–585
 nasal 249–253
Albuminuria 693–702
Alcohol, folate catabolism 221–224
Aldosterone
 regulation 227–233
 renal hypertension 625–631
 saralasin 377–385
 sympathetic stimulation 399–404
 urinary excretion 229–232
Alkalosis, metabolic 355–361
Altitude, pulmonary circulation 599–605
Alveolar volume, intrapulmonary haemorrhage 507–512
Amino acids, blood
 aromatic 95–100
 branched-chain 95–100
Ammonia, parotid gland production 565–569
Androgens, sweat gland activity 689–692
Angiotensin I
 captopril 591–593
 converting enzyme 387–392, 491–498
Angiotensin II
 adrenergic facilitation 343–348
 antagonism 377–385
 captopril 591–593
 sodium 377–385
 spironolactone 227–233
Antiserum, human saliva 179–184
Antithrombin III, metabolism in liver disease 681–688
Apolipoproteins, plasma 73–80
Arteries, haemodynamics and responses to drugs 659–666
Arteriovenous pressure difference, skin 499–506
Asthma
 histamine receptors 363–370
 intravenous salbutamol 579–585
Athletic training, methandienone 457–461
Atrial pacing, chronic bronchitis 371–375
Autonomic nervous system
 borderline hypertension 25–31
 haemodialysis hypotension 165–170
 noradrenaline 217–219, 483–489
 sympatholytic drugs 139–143
tetraplegia 399–404
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baroreflexes, blood volume 193–200</td>
</tr>
<tr>
<td>Bethanidine, blood pressure and heart rate 139–143</td>
</tr>
<tr>
<td>Bicarbonate, gastric secretion 427–433</td>
</tr>
<tr>
<td>Bile acids, hepatic extraction 65–72</td>
</tr>
<tr>
<td>Bladder, urinary, sympathetic stimulation 399–404</td>
</tr>
<tr>
<td>Blood flow</td>
</tr>
<tr>
<td>borderline and essential hypertension 653–658</td>
</tr>
<tr>
<td>subcutaneous regulation 157–164, 213–216</td>
</tr>
<tr>
<td>transcutaneous oxygen tension 499–506</td>
</tr>
<tr>
<td>Blood platelets, 111In-labelled 243–248</td>
</tr>
<tr>
<td>Blood pressure</td>
</tr>
<tr>
<td>isometric exercise 139–143, 145–155</td>
</tr>
<tr>
<td>noradrenaline 483–489</td>
</tr>
<tr>
<td>saralasin 377–385</td>
</tr>
<tr>
<td>sympatholytic drugs 139–143</td>
</tr>
<tr>
<td>Blood vessels</td>
</tr>
<tr>
<td>arterial occlusion 659–666</td>
</tr>
<tr>
<td>diseases 499–506</td>
</tr>
<tr>
<td>neurogenic vasoconstriction 483–489</td>
</tr>
<tr>
<td>portacaval anastomosis 87–93</td>
</tr>
<tr>
<td>portal blood flow 355–361</td>
</tr>
<tr>
<td>pulmonary artery wedge pressure 371–375</td>
</tr>
<tr>
<td>resistance 5–9</td>
</tr>
<tr>
<td>skin 157–164, 213–216, 499–506</td>
</tr>
<tr>
<td>Blood volume, cardiovascular responses 193–200</td>
</tr>
<tr>
<td>Body composition, methandienone 457–461</td>
</tr>
<tr>
<td>Bone</td>
</tr>
<tr>
<td>hydrochlorothiazide 101–107</td>
</tr>
<tr>
<td>marrow cells 185–190, 191–198</td>
</tr>
<tr>
<td>resorption 201–210</td>
</tr>
<tr>
<td>Bone marrow cells</td>
</tr>
<tr>
<td>leukaemia 191–198</td>
</tr>
<tr>
<td>transferrin 185–190</td>
</tr>
<tr>
<td>Bradykinin 387–392</td>
</tr>
<tr>
<td>Breast cancer 201–210</td>
</tr>
<tr>
<td>Breath holding</td>
</tr>
<tr>
<td>effort sense 463–466</td>
</tr>
<tr>
<td>expiratory flow measurements 11–15</td>
</tr>
<tr>
<td>Breathing pattern</td>
</tr>
<tr>
<td>airway resistance 249–253</td>
</tr>
<tr>
<td>sustained lung inflation 667–674</td>
</tr>
<tr>
<td>Bronchitis, cardiac function 371–375</td>
</tr>
<tr>
<td>Bronchomotor tone 249–253</td>
</tr>
<tr>
<td>Caffeine, catecholamines and metabolism 527–535</td>
</tr>
<tr>
<td>Calcium</td>
</tr>
<tr>
<td>gastric secretion 427–433</td>
</tr>
<tr>
<td>plasma, hydrochlorothiazide 101–107</td>
</tr>
<tr>
<td>tubular absorption 101–107</td>
</tr>
<tr>
<td>Calciuria, hydrochlorothiazide 101–107</td>
</tr>
<tr>
<td>Captopril</td>
</tr>
<tr>
<td>angiotensins 591–593</td>
</tr>
<tr>
<td>angiotensin I-converting enzyme 491–498</td>
</tr>
<tr>
<td>Captopril—continued</td>
</tr>
<tr>
<td>experimental hypertension 387–392</td>
</tr>
<tr>
<td>renin 491–498, 591–593</td>
</tr>
<tr>
<td>Carbon dioxide (14CO2), 14C-labelled substrates 233–235</td>
</tr>
<tr>
<td>Carbon monoxide diffusing capacity, intrapulmonary haemorrhage 507–512</td>
</tr>
<tr>
<td>Carcinoma, liver, antithrombin III metabolism 681–688</td>
</tr>
<tr>
<td>Cardiac muscle, see Muscle, heart</td>
</tr>
<tr>
<td>Cardiac output, chronic bronchitis 371–375</td>
</tr>
<tr>
<td>Catecholamines</td>
</tr>
<tr>
<td>borderline hypertension 25–31</td>
</tr>
<tr>
<td>caffeine 527–535</td>
</tr>
<tr>
<td>haemodialysis hypertension 165–170</td>
</tr>
<tr>
<td>isoprenaline 571–577</td>
</tr>
<tr>
<td>metabolism 183–191*</td>
</tr>
<tr>
<td>subcutaneous blood flow 157–164</td>
</tr>
<tr>
<td>Cholecystokinin, first meals 349–353*</td>
</tr>
<tr>
<td>Cholesterol, lipoprotein, home haemodialysis 81–86</td>
</tr>
<tr>
<td>Cholesterol, liver microsomal fractions 435–439</td>
</tr>
<tr>
<td>Cholesterol 7a-mono-oxygenase, liver submicrosomes 435–439</td>
</tr>
<tr>
<td>Cholic acid, hepatic extraction 65–72</td>
</tr>
<tr>
<td>Chylomicrons, plasma vitamin D 241–243</td>
</tr>
<tr>
<td>Cirrhosis</td>
</tr>
<tr>
<td>antithrombin III metabolism 681–688</td>
</tr>
<tr>
<td>primary biliary 207–212</td>
</tr>
<tr>
<td>Clonidine, blood pressure and heart rate 139–143</td>
</tr>
<tr>
<td>Coeliac disease, splenic function 109–113</td>
</tr>
<tr>
<td>Collagen chains, skin 617–623</td>
</tr>
<tr>
<td>Converting-enzyme inhibition 377–385, 387–392</td>
</tr>
<tr>
<td>Copper, liver 207–212</td>
</tr>
<tr>
<td>Corticosterone, spironolactone 227–233</td>
</tr>
<tr>
<td>Cortisol, spironolactone 227–233</td>
</tr>
<tr>
<td>Creatine kinase, primary hypothyroidism 595–597</td>
</tr>
<tr>
<td>Crystalluria, oxalate-rich foods 411–418</td>
</tr>
<tr>
<td>Cyclic AMP see Adenosine 3':5'-cyclic monophosphate</td>
</tr>
<tr>
<td>Cytosine arabinoside resistance 191–198</td>
</tr>
<tr>
<td>Dead-space measurement 17–23</td>
</tr>
<tr>
<td>Deconvolution analysis 55–63</td>
</tr>
<tr>
<td>Deoxycorticosterone acetate, salt-retention escape 467–469</td>
</tr>
<tr>
<td>Diabetes mellitus, blood volume 193–200</td>
</tr>
<tr>
<td>Dialysis, renal hypertension 625–631</td>
</tr>
<tr>
<td>Diet</td>
</tr>
<tr>
<td>fat-modified 81–86</td>
</tr>
<tr>
<td>obesity 519–525</td>
</tr>
<tr>
<td>oxalate-rich foods 411–418</td>
</tr>
<tr>
<td>Digoxin, erythrocyte sodium transport 555–564</td>
</tr>
</tbody>
</table>
Subject Index

1,25-Dihydroxyvitamin D₃ 101–107
Disaccharides, intestinal absorption 115–118
Doping, sports 457–461
Drug resistance 191–198
Dyspnoea, respiratory muscle fatigue 463–466
Effort sense, maintained inspiration 463–466
Electrolytes, muscle, hypokalaemia 441–449
Encephalopathy 95–100
Endoplasmic reticulum, liver enzymes 435–439
Enteroglucagon, first meals 349–353
Enterotoxins 131–137
Ergometry, bicycle, hypertension 25–31
Ergotamine, small arteries 659–666
Erythrocyte adenosine triphosphatase 229–232
magnesium 225–257
pitted 109–113
sodium 229–232, 555–564
Erythropoietin 185–190
Essential hypertension 653–658
Ethane-1-hydroxy-1,l,l-diphosphonate, renal tubular phosphate absorption 171–177
Exercise adrenaline 543–548
creatine kinase 595–597
forearm haemodynamics 675–679
hydrogen ion balance 245–246
immunological responses 225–228
isometric 139–143
lactate and gluconeogenesis 537–542
sensory nerves, cardiorespiratory responses 145–155
sympatholytic drugs 139–143
Expiratory flow–volume curves 11–15
Facilitation, adrenergic 343–348
Fatigue, respiratory muscle 463–466
Fat-modified diet, long-term 81–86
Fatty acids, free, caffeine 527–535
Ferritin, microheterogeneity and sialic acid 259–262
Fibrin, glomerular deposition 47–53
Fibrinolysis 47–53
5-Fluorouracil, toxicity and pharmacokinetics 707–710
Folate catabolism 221–224
deficiency 131–137
Forearm haemodynamics 675–679
Free fatty acids, turnover 87–93
Free radicals, scavenging enzymes 211–219
Fructose biphosphatase, muscle 451–456
Frusemide active and inactive renin 393–398
renal papillary osmolality 467–469
renin and indomethacin 479–482
Gastric inhibitory peptide, first meals 349–353
Gastric mucosa, bicarbonate secretion 427–433
Gastrin, first meals 349–353
Gastrointestinal hormones 349–353
Geriatric patients, sodium transport 555–564
Glomerular filtration rate, haemorrhage 703–706
Glomerulus fibrin deposition 47–53
proteinuria 693–702
Glucagon heptic, ischaemia 537–542, 543–548
renal, sodium transport 419–426
Glucose intravenous salbutamol 579–585
propranolol 675–679
turnover 87–93
Glutathione, liver 211–219
Glutathione peroxidase, iron overload 211–219
Glutathione reductase, iron overload 211–219
Glycyrretinic acid, renal transport 659–666
Glycylsarcosine, intestinal absorption 221–225
Growth, adrenoceptor blockade 33–40
Gut hormones 349–353
H₁ and H₂-receptor antagonists 363–370
Haemochromatosis 211–219
Haemodialysis fat-modified diet 81–86
hypotension 165–170
Haemorrhage, renal renin 703–706
Head-up tilt, subcutaneous blood flow 213–216
Heart adrenoceptor blockade 33–40
chronic bronchitis 371–375
ferritin 259–262
sensory nerves 145–155
sympatholytic drugs 139–143
Henle’s loop, ascending, sodium reabsorption 467–469
Hepatic artery, blood flow 355–361
Hexokinase, muscle 451–456
Histamine receptors, asthma 363–370
Hydrallazine, small arteries 659–666
Hydrochlorothiazide calcium metabolism 101–107
renin substrate concentration 591–593
Hydrogen ion balance, exercise 245–246
β-Hydroxybutyrate, plasma 87–93
4-Hydroxy-3-methoxymandelic acid, borderline hypertension 25–31
3-Hydroxy-3-methylglutaryl-CoA reductase, liver microsomes 435–439
25-Hydroxy-vitamin D plasma chylomicrons 241–243
ultraviolet irradiation 235–242
Hypercalcaemia 201–210
Hypertension
 adrenergic facilitation 343–348*
 angiotensin I-converting enzyme 491–498
 borderline 25–31, 653–658
 essential 653–658
 indomethacin 479–482
 neurogenic 471–477*
 noradrenaline 483–489
 pulmonary 599–605*
 spontaneous 229–232, 491–498
Hypertension, experimental
captopril 387–392
renal 387–392, 625–631
Hyperthyroidism, sodium transport 555–564
Hypnosis, isometric exercise pain 145–155
Hypokalaemia
 cardiac and skeletal muscle 441–449
 sodium transport 555–564
Hypotension, haemodialysis-induced 165–170
Hypothyroidism, primary, creatine kinase 595–597
Immunity, cellular 225–228
Indium (111In)-labelled platelets 243–248
Indomethacin, renin response 479–482
Inspiratory pressures 513–518
Interrupted electrophoresis 617–623
Intestine, small
calcium absorption 101–107
dipeptide absorption 221–225
oxalate absorption 411–418
passive permeability 115–118
peptide transport 607–615
phosphate absorption 55–63
vitamin D3 absorption 241–243
Ion transport, kidney 419–426
Iron
overload, tissue damage 211–219
uptake 185–190
Ischaemia, lactic acidosis 537–542, 543–548
Isoleucine, blood 95–100
Isometric exercise
 sensory nerves and cardiorespiratory responses 145–155
 sympatholytic drugs 139–143
Isoprenaline
 blood pressure 399–404
 forearm blood flow 571–577
 lymphocyte cyclic AMP 587–589
 small arteries 659–666
Jejunum, dipeptide absorption 221–225
Kallikrein, pancreatic 199–205
Kidney
 albumin excretion 693–702
 blood flow, hypertension 653–658
 calcium absorption 101–107
 fibrin clearance 47–53
 high-molecular-weight renin 639–651
 hypertension 387–392
 phosphate absorption 171–177
 potassium transport 549–554
 renin molecular weight 41–46, 119–130*, 639–651
 sodium transport 419–426, 555–564
 venous renin 703–706
Kidney disease
cancer 201–210
haemodialysis hypotension 165–170
hypertension 653–658
lipoprotein lipase 73–80
renal failure, erythrocyte sodium 555–564
phosphate absorption 55–63
Lactate, blood, propranolol 675–679
Lactate metabolism, ischaemia and acidosis 537–542, 543–548
Lactic acidosis 543–548
Lactulose, intestinal absorption 115–118
Leucine, blood 95–100
Leucocyte
 cyclic AMP 587–589
 zinc content 237–239
Leucocytosis, stress 225–228
Leukaemia, myeloblasts 191–198
Limb capacitance, morphine 5–9
Lipoprotein lipase 73–80
Liver
 blood flow 355–361, 653–658
 bile acid extraction 65–72
 enzyme induction 221–224
 free-radical scavenging enzymes 211–219
 glutathione 211–219
 microsomal fractions 435–439
 oxygen consumption 355–361
Liver disease
 bile acid extraction 65–72
 carcinoma 681–688
 cirrhosis 95–100, 207–212, 681–688
 hypertension 653–658
 organelle pathology 207–212
Lung
 alveolar volume 507–512
 circulation 599–605*
 fluid balance 1–4*
 gas mixing 17–23
 haemorrhage 507–512
 imaging, ventilation/perfusion 17–23
 mechanics 17–23
 volume 249–253, 667–674
Lymphocyte, cyclic AMP formation 587–589
L-Lysyl-l-lysine, intestinal absorption 221–225
Subject Index

α-1-Macroglobulin, kallikrein interaction 199-205
Magnesium
deficiency and excess 549-554
menopause 255-257
Malate-aspartate shuttle, renal sodium transport 419-426
Mannitol, intestinal absorption 115-118
Menopause, serum, urinary, and erythrocyte magnesium 255-257
Metabolic rate, caffeine 527-535
Methandienone, athletic performance and body composition 457-461
Micropuncture, renal 171-177, 549-554
Morphine, forearm capacitance 5-9
Motilin, first meals 349-353*
Muscle, cardiac, hypokalaemia 441-449
Muscle, skeletal
blood flow in hypertension 653-658
fructose bisphosphatase 451-456
hexokinase 451-456
hypokalaemia 441-449
inspiratory 513-518
2-oxoglutarate dehydrogenase 451-456
phosphofructokinase 451-456
respiratory 463-466, 513-518
zinc content 237-239
Myeloblasts, leukaemia 191-198
Myocardial infarction, subcutaneous blood flow 157-164, 213-216
Neurogenic hypertension 471-477*
Neuropeptide, first meals 349-353*
Noradrenaline
α-adrenoceptor-mediated vasoconstriction 483-489
kinetics, age-dependence 217-219
tetraplegia 399-404
Nutrition, thyroid and catecholamines 183-191*
Obesity
caffeine 527-535
postprandial thermogenesis 519-525
Oedema, pulmonary 1-4*, 599-605*
Oestrogen, serum, urinary and erythrocyte magnesium 255-257
Oligopeptides, intestinal transport 607-615*
Oophorectomy, serum, urinary and erythrocyte magnesium 255-257
Optical isomerism, DL- and D-propranolol 675-679
Osmolality, renal papillary 467-469
Osteogenesis imperfecta, skin collagen 617-623
Osteomalacia, ultraviolet irradiation 235-242
Oxalate, diet and urinary output 411-418
Oxidation rates, 14C-labelled substrates 233-235
2-Oxoglutarate dehydrogenase, muscle 451-456
Oxprenolol, blood pressure and heart rate 139-143
Oxygen
consumption, liver 355-361
skin partial pressure 499-506
Pain, isometric exercise 145-155
Pancreatic polypeptide hormone, first meals 349-353*
Pancreatitis, plasma kallikrein 199-205
Papillary sodium concentration 467-469
Parathyroid hormone
experimental undersecretion 101-107, 549-554
gastric bicarbonate secretion 427-433
Parotid gland, ammonia production 565-569
D-Penicillamine, primary biliary cirrhosis 207-212
Peptides, intestinal absorption 221-225, 607-615*
pH, muscle, hypokalaemia 441-449
Phenoxybenzamine, blood pressure and heart rate 139-143
Pharmacokinetics, fluorouracil 707-710
Phentolamine, blood pressure and heart rate 139-143
Phosphate absorption
intestinal 55-63
renal 171-177
Phosphodiesterase, caffeine 527-535
Phosphofructokinase, muscle 451-456
Plasma flow, renal renin 703-706
Plasma volume, chronic bronchitis 371-375
Plethysmography
forearm blood flow 571-577
venous occlusion 5-9
Portacaval anastomosis 87-93
Portal vein, blood flow 355-361
Positive end-expiratory pressure, clinical use 1-4*
Potassium depletion
cardiac and skeletal muscle 441-449
renal tubular transport 549-554
Pressure load detection, respiratory 513-518
Pressure-volume hysteresis, respiratory 249-253
Propranolol
growth 33-40
haemodynamics 675-679
heart 33-40
metabolism 675-679
renin substrate concentration 591-593
Subject Index

Prostaglandins
 bone resorption 201–210
 renal hypertension 625–631
 sodium balance 405–410
Prostaglandins E, F, sodium balance 405–410
Protease, human renin 633–637
Proteins, salivary and seminal 179–184
Proteinuria 693–702
Pseudorenin 633–637
Puberty, sweat gland activity 689–692
Pulmonary arterial wedge pressure 371–375
Pulmonary circulation, altitude 599–605*
Renin
 active 393–398
 assays 591–593
 borderline hypertension 25–31
 captopril 491–498, 591–593
 frusemide 393–398
 high-molecular-weight 639–651
 inactive 119–130*, 393–398
 indomethacin 479–482
 International Reference Preparation 633–637
 isoprenaline 571–577
 low-salt state 343–348*, 377–385
 molecular weight 41–46, 639–651
 protease 633–637
 renal hypertension 625–631
 spironolactone 227–233
 substrate 591–593
 tetrápela 399–404
 volume contraction 479–482
Renin–angiotensin system
 adrenergic facilitation 343–348*
 borderline hypertension 25–31
 Renin inhibitor, renal 639–651
 Respiration, sensory nerves 145–155
 Respiratory sensations
 mouth negative pressure 513–518
 muscle fatigue 463–466
Reversible tri-iodothyronine, metabolism 183–191*
R–R interval, blood volume 193–200
Salbutamol, asthma 579–585
Saliva
 ammonia 565–569
 proteins 179–184
Salivary gland see Parotid gland
Secretin, first meals 349–353*
Semen, proteins 179–184
Sensory neuropathy, isometric exercise 145–155
Sex difference, sweat gland activity 689–692
Shock, hepatic lactate and gluconeogenesis 537–542
Sialic acid, serum ferritin homogeneity 259–262
Skeletal muscle see Muscle, skeletal
Skin
 collagen chains 617–623
 subcutaneous blood flow 157–164, 213–216
 transcutaneous oxygen tension 499–506
 ultraviolet irradiation 235–242
Sodium
 depletion 625–631
 erythrocyte transport 555–564
 hypertension 471–477*, 625–631
 papillary concentration 467–469
 prostaglandins 405–410
 renal hypertension 625–631
 renal transport 419–426
 saralasin 377–385
Spironolactone, aldosterone regulation 227–233
Spleen, coeliac disease 109–113
Starvation, plasma glucose and free fatty acids 87–93
Stereoselectivity, DL- and D-propranolol 675–679
Stomach
 bicarbonate secretion 427–433
 first meals 349–353*
 gastrin 349–353*
 gastric inhibitory peptide 349–353*
 Stress, immunological responses 225–228
 Subcellular fractionation, analytical 211–219
 Superoxide dismutase 211–219
 Sweat glands, puberty 689–692
 Sympathetic nervous system
 borderline hypertension 25–31
 noradrenaline 217–219, 483–489
 tetrápela 399–404
 Sympatholytic drugs, cardiovascular response to exercise 139–143
Temperature, body, serum creatine kinase 595–597
Tetrahydrodouridine 191–198
Tetraplegia, sympathetic stimulation 399–404
Thermogenesis, obesity 519–525
Thrombocytes, 11In-labelled 243–248
Thromboplastin, fibrin deposition 47–53
Thyroid gland, metabolism 183–191*
Thyroparathyroidectomy, experimental 101–107, 171–177
Thyroxine, metabolism 183–191*
Timolol, growth and heart 33–40
Toxicity, 5-fluorouracil 707–710
Transaminase, renal gluconeogenesis 419–426
Transferrin, monoferric 185–190
Transplantation, renal 55–63, 73–80
Transport
 erythrocyte sodium 555–564
 intestinal peptides 607–615*
 renal potassium 549–554
 renal sodium 419–426, 555–564
Triacylglycerols, plasma 73–80
Triglyceride, lipoprotein, home haemodialysis 81–86
Tri-iodothyronine, metabolism 183–191*
Tropical malabsorption 131–137*
Trypsin inhibitor 639–651
Tubule, renal
 ascending loop 467–469
 calcium absorption 101–107
 phosphate absorption 171–177
Ultraviolet irradiation, vitamin D 235–242
Uraemia, lipoprotein lipase 73–80
Urinary bladder, sympathetic stimulation 399–404

Urine
 oxalate content 411–418
 protein content 693–702
Valine, blood 95–100
Vascular diseases 499–506
Vascular resistance 5–9, 659–666
Vasoconstriction, neurogenic 483–489
Veins, intravenous morphine 5–9
Venous pressure, skin 499–506
Ventilation, lung, sustained inflation 667–674
Ventilation/perfusion lung-imaging 17–23
Vitamin D
 plasma chylomicrons 241–243
 ultraviolet irradiation 235–242
Volume–pressure hysteresis, respiratory 249–253
Water retention, hypertension 471–477*
Wedge pressure, pulmonary artery 371–375
Zinc, leucocytes and muscles 237–239

CORRECTIONS

Volume 59

page 191: to the listed addresses below the authors’ names should be added Liver Unit, Kings College Hospital and Medical School, London

page 473, Fig. 4 legend: for C_{18:0}, Oleic acid; C_{18:2}, linoleic acid; C_{18:0}, stearic acid; C_{16:1}, myristic acid read C_{18:1}, Oleic acid; C_{18:2}, linoleic acid; C_{18:0}, stearic acid; C_{16:1}, palmitoleic acid.