1. **Scope**

Clinical Science publishes papers in the field of clinical investigation, provided they are of a suitable standard and contribute to the advancement of knowledge in this field. The term 'clinical investigation' is used in its broad sense to include studies in animals and the whole range of biochemical, physiological, immunological and other approaches that may have relevance to disease in man. Studies which are confined to normal subjects, or animals, or are purely methodological in nature may be acceptable. The material presented should permit conclusions to be drawn and should not be only of a preliminary nature. The journal publishes four types of manuscript, namely invited Editorial Reviews, Full Papers, Short Communications and Correspondence. In addition, *Clinical Science* publishes abstracts of the proceedings of the Medical Research Society and also that Society's Annual Guest Lecture.

1.2. **The Editorial Board**

The Board comprises Editors for the Medical Research Society and the Biochemical Society and a Chairman and Deputy Chairman who are drawn alternately from the two Societies. Members of the Board retire after a maximum of 5 years; the Chairman serves in his capacity for 2 years. The membership of the Board is designed to cover as wide a range of interests as possible.

The main function of the Board is to decide on the acceptability of submitted papers, but it also deals with general matters of editorial policy. Financial policy is dealt with separately by the Committee of Management.

1.3. **The editorial process**

A submitted paper is first read by the Chairman of the Editorial Board who then sends it to an Editor. The latter considers the paper in detail and sends it to one or more referees (who remain anonymous) from outside the membership of the Board. The Editor returns it with his recommendation to the Chairman who then writes formally to

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>1. POLICY OF THE JOURNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Policy of the Journal</td>
<td>1.1. Scope</td>
</tr>
<tr>
<td>1.1. Scope</td>
<td>Clinical Science publishes papers in the field of clinical investigation, provided they are of a suitable standard and contribute to the advancement of knowledge in this field. The term 'clinical investigation' is used in its broad sense to include studies in animals and the whole range of biochemical, physiological, immunological and other approaches that may have relevance to disease in man. Studies which are confined to normal subjects, or animals, or are purely methodological in nature may be acceptable. The material presented should permit conclusions to be drawn and should not be only of a preliminary nature. The journal publishes four types of manuscript, namely invited Editorial Reviews, Full Papers, Short Communications and Correspondence. In addition, Clinical Science publishes abstracts of the proceedings of the Medical Research Society and also that Society's Annual Guest Lecture.</td>
</tr>
<tr>
<td>1.2. The Editorial Board</td>
<td>1.2. The Editorial Board</td>
</tr>
<tr>
<td>1.3. The Editorial process</td>
<td>1.3. The editorial process</td>
</tr>
<tr>
<td>1.4. Ethics of investigations on human subjects</td>
<td>1.4. Ethics of investigations on human subjects</td>
</tr>
<tr>
<td>1.5. Originality of papers</td>
<td>1.5. Originality of papers</td>
</tr>
<tr>
<td>2. Submission of Manuscripts: General Information and Format</td>
<td>2. Submission of Manuscripts: General Information and Format</td>
</tr>
<tr>
<td>2.1. General</td>
<td>2.1. General</td>
</tr>
<tr>
<td>2.2. Full papers</td>
<td>2.2. Full papers</td>
</tr>
<tr>
<td>2.3. Short Communications</td>
<td>2.3. Short Communications</td>
</tr>
<tr>
<td>2.4. Correspondence</td>
<td>2.4. Correspondence</td>
</tr>
<tr>
<td>2.5. Arrangements for large amounts of information</td>
<td>2.5. Arrangements for large amounts of information</td>
</tr>
<tr>
<td>2.6. Proof corrections</td>
<td>2.6. Proof corrections</td>
</tr>
<tr>
<td>2.7. Offprints</td>
<td>2.7. Offprints</td>
</tr>
<tr>
<td>2.8. Availability on MEDLINE</td>
<td>2.8. Availability on MEDLINE</td>
</tr>
<tr>
<td>3. Miscellaneous Notes</td>
<td>3. Miscellaneous Notes</td>
</tr>
<tr>
<td>3.1. Abbreviations</td>
<td>3.1. Abbreviations</td>
</tr>
<tr>
<td>3.2. Anatomical nomenclature</td>
<td>3.2. Anatomical nomenclature</td>
</tr>
<tr>
<td>3.3. Animals, plants and microorganisms</td>
<td>3.3. Animals, plants and microorganisms</td>
</tr>
<tr>
<td>3.4. Buffers and salts</td>
<td>3.4. Buffers and salts</td>
</tr>
<tr>
<td>3.5. Doses</td>
<td>3.5. Doses</td>
</tr>
<tr>
<td>3.6. Enzymes</td>
<td>3.6. Enzymes</td>
</tr>
<tr>
<td>3.7. Evaluation of measurement procedures</td>
<td>3.7. Evaluation of measurement procedures</td>
</tr>
<tr>
<td>3.8. Figures and Tables</td>
<td>3.8. Figures and Tables</td>
</tr>
<tr>
<td>3.10. Isotope measurements</td>
<td>3.10. Isotope measurements</td>
</tr>
<tr>
<td>3.11. Radionuclide applications in man</td>
<td>3.11. Radionuclide applications in man</td>
</tr>
<tr>
<td>3.15. References</td>
<td>3.15. References</td>
</tr>
<tr>
<td>3.16. Solutions</td>
<td>3.16. Solutions</td>
</tr>
<tr>
<td>3.17. Spectrophotometric data</td>
<td>3.17. Spectrophotometric data</td>
</tr>
<tr>
<td>3.18. Spelling</td>
<td>3.18. Spelling</td>
</tr>
<tr>
<td>3.20. Trade names</td>
<td>3.20. Trade names</td>
</tr>
<tr>
<td>4. Units: The SI System</td>
<td>4. Units: The SI System</td>
</tr>
<tr>
<td>5. Abbreviations, Conventions etc.</td>
<td>5. Abbreviations, Conventions etc.</td>
</tr>
</tbody>
</table>
the authors. The ultimate responsibility of acceptance for publication lies with the Chairman. If the Chairman is for any reason unavailable, the Deputy Chairman assumes this function.

1.4. Ethics of investigations on human subjects

Authors must state in the text of their paper the manner in which they have complied, where necessary, with the recommendations on human investigations published in the Medical Research Council report of 1962/63 [British Medical Journal (1964), 11, 178–180]. Consent must be obtained from each patient or subject after full explanation of the purpose, nature and risks of all procedures used and the fact that such consent has been given should be recorded in the paper. Papers should also state that the Ethical Committee of the Institution in which the work was performed has given approval to the protocol. The Editorial Board will not accept papers the ethical aspects of which are, in the Board’s opinion, open to doubt.

1.5. Originality of papers

Submission of a paper to the Editorial Board is taken to imply that it reports unpublished work, that it is not under consideration for publication elsewhere and that, if accepted for publication by Clinical Science, it will not be published elsewhere in the same form, either in English or in any other language, without the consent of the Editorial Board. This does not usually apply to previous publication of oral communications in brief abstract form. In such cases authors should enclose copies of the abstracts. When a paper has been accepted for publication the author, or in the case of multiple authorship the author with whom correspondence has taken place, will be asked to sign a statement vesting the copyright in the Editorial Board. This is particularly important in relation to methodology. The dates of receipt and acceptance of the paper will be published. If the paper has to be returned to the author for revision and is not resubmitted within 1 month, the date of receipt will be revised accordingly. For Short Communications the published date will always be that of receipt of the final version.

2. SUBMISSION OF MANUSCRIPTS:
GENERAL INFORMATION AND FORMAT

2.1. General

Papers submitted for publication should be sent to the Chairman of the Editorial Board (Dr D. J. Galton, Department of Medicine, St Bartholomew’s Hospital, West Smithfield, London EC1M 6BQ).

The submission should contain three copies (of which two may be photocopies) of the typescript, Tables, Figures etc. The authors should retain one copy of the paper. The Editorial Board does not accept responsibility for damage or loss of papers submitted, although great care is taken to ensure safety and confidentiality of the typescript during the editorial process. In the case of multiple authorship, the covering letter should indicate that the approval of all co-authors has been obtained.

Papers should be presented so that they are intelligible to the non-specialist reader of the journal. This is particularly important in highly specialized fields and a very brief résumé of the current state of knowledge is usually helpful. Certain types of material, e.g. mathematical formulations requiring more than trivial derivations, should be given in a separate Appendix.

Where the reader is referred to previous works by the same author(s) for important details relevant to the present work, it often speeds up assessment if reprints are enclosed with the typescript. This is of particular importance in relation to methodology.

The dates of receipt and acceptance of the paper will be published. If the paper has to be returned to the authors for revision and is not resubmitted within 1 month, the date of receipt will be revised accordingly. For Short Communications the published date will always be that of receipt of the final version. It is emphasized that badly presented or unduly long papers will be returned for revision and delays in publication will be inevitable. Similar delays will be incurred if the typescript is not prepared strictly in accordance with the instructions detailed below.

2.2. Full papers

The authors should refer to a current issue of Clinical Science to make themselves familiar with the general layout. Concise presentation is very important for rising costs are a severe constraint on space. The length of manuscript and the number of Figures and Tables must be kept to a minimum.

Extensive Tables of data can be deposited with the Royal Society of Medicine (see 2.5). Guidance for Authors is usually published in the January issue of the journal, and revised periodically.

Typescripts should be, in general, arranged as follows:

(a) Title page. Title: this should be as informative as possible, since titles of papers are being increasingly used in indexing and coding for information storage and retrieval. The title should indicate the species in which the observations reported have been made. The numbering of parts in a series of papers is not permitted.
List of authors’ names (degrees and appointments are not required).

Laboratory or Institute of origin.

Key words: for indexing the subject of the paper; they should, if possible, be selected from the current issues of ‘Medical Subject Headings’ (MeSH), produced by the Index Medicus.

Short title: for use as a running heading in the printed text; it should not exceed forty-five characters and spaces.

Author for correspondence: the name and address of the author to whom queries and requests for reprints should be sent.

(b) Summary. This should be a brief statement arranged in numbered paragraphs of what was done, what was found and what was concluded and should rarely exceed 250 words. Contributors from non-English speaking countries are invited to include a translation of the summary in their own language. Abbreviations should be avoided as far as possible and must be defined. Statistical and methodological details including exact doses should also be avoided unless they are essential to the understanding of the summary.

(c) Introduction. This should contain a clear statement of the reason for doing the work, but should not include either the findings or the conclusions.

(d) Methods. The aim should be to give sufficient information in the text or by reference to permit the work to be repeated without the need to communicate with the author.

(e) Results. This section should not include material appropriate to the Discussion section.

(f) Discussion. This should not contain results and should be pertinent to the data presented.

(g) Acknowledgments. These should be as brief as possible.

(h) References. See p. v for the correct format.

(i) Figures and Tables. See p. iv.

2.3. Short Communications

The Short Communication should describe completed work, and should not be merely a preliminary communication. The format of Short Communications should be similar to that of Full Papers, but should not exceed 1200 words of text. One Figure or Table is allowed, but if neither is included the text may be expanded to 1400 words. The passage of Short Communications through the editorial process can frequently be expedited and contributors are encouraged to take advantage of these facilities when rapid publication is of importance and the material can be presented concisely.

The paper should appear in print within 3 months of acceptance. When submitting Short Communications, authors should make it quite clear that the work is intended to be treated as a Short Communication.

2.4. Correspondence

Letters containing critical assessments of material published in Clinical Science, including Editorial Reviews, will be considered for the Correspondence section of the journal. Such letters should be sent to the Chairman of the Editorial Board within 6 months of the appearance of the article concerned. They will be sent to the authors for comment and both the letter and any reply by the author will be published together. Further correspondence arising therefrom will also be considered for publication. Consideration will also be given to publication of letters on ethical matters.

2.5. Arrangements for large amounts of information

It is impracticable to publish very large sets of individual values or very large numbers of diagrams, and under these circumstances a summary of the information only should be included in the paper. The information from which the summary was derived should be submitted with the typescript and, if the latter is accepted, the Editors may ask for a copy of the full information and diagrams to be deposited with the Librarian, the Royal Society of Medicine, 1 Wimpole Street, London W1M 8AE, who will issue copies on request. Experience has shown that such requests are frequently received.

2.6. Proof corrections

These are expensive and corrections of other than printers’ errors may have to be charged to the author.

2.7. Offprints

Fifty offprints are supplied free and additional copies may be obtained at terms, based upon the cost of production, that will be given with the proofs. All offprints should be ordered when the proofs are returned.

2.8. Availability on MEDLINE

Summaries of papers in Clinical Science are available on-line on teleprinters participating in the MEDLINE system run by the National Library of Medicine, National Institutes of Health, Bethesda, Maryland, U.S.A.
3. MISCELLANEOUS NOTES

3.1. Abbreviations
Abbreviations should be avoided; if used they must be defined at the first mention; new abbreviations should be coined only for unwieldy names which occur frequently. Abbreviations should not appear in the title nor, if possible, in the Summary. A list of accepted abbreviations is on p. vi. Numbers, not initials, should be used for patients and subjects.

3.2. Anatomical nomenclature
This should follow the recommendations of the International Anatomical Nomenclature Committee (1966) Nomina Anatomica, 3rd edn, Excerpta Medica Foundation, Amsterdam.

3.3. Animals, plants and micro-organisms
The full binomial specific names should be given at first mention for all experimental animals other than common laboratory animals. The strain and, if possible, the source of laboratory animals should be stated. Thereafter in the text, single letter abbreviations may be given for the genus; if two genera with the same initial letter are studied, abbreviations such as Staph. and Strep. should be used.

3.4. Buffers and salts
The acidic and basic components should be given, together with the pH. Alternatively, a reference to the composition of the buffer should be given. Further details are provided in the Biochemical Journal (1978) 169, 9.

When describing solutions containing organic anions and their parent acids, the salt designator (e.g. lactate, urate, oxalate) should be used in preference to the name of the acid (lactic, uric, oxalic) unless it is certain that virtually all of the acid is in the undissociated form.

The composition of incubation media should be described, or a reference to the composition should be given.

3.5. Doses
Doses of drugs should be expressed in mass terms, e.g. milligrams (mg) or grams (g), and also (in parentheses) in molar terms, e.g. mmol, mol, where this appears to be relevant. Molecular weights of many drugs may be found in The Merck Index, 8th edn, Merck and Co. Inc., N.J., U.S.A.

3.6. Enzymes
Nomenclature should follow that given in Enzyme Nomenclature (1978), Academic Press, London and New York, and Enzyme Commission (EC) number should be quoted at the first mention. Where an enzyme has a commonly used informal name, this may be employed after the first formal identification. A unit of enzyme activity should preferably be expressed as that amount of material which will catalyse transformation of 1 μmol of the substrate/min under defined conditions, including temperature and pH. Alternatively, or when the natural substrate has not been fully defined, activity should be expressed in terms of units of activity relative to that of a recognized reference preparation, assayed under identical conditions. Activities of enzymes should normally be expressed as units/ml or units/mg of protein.

3.7. Evaluation of measurement procedures
When a new measuring procedure has been used, or when an established procedure has been applied in a novel fashion, an estimate of the precision of the procedure should be given. This should, as far as possible, indicate what sources of variation have been included in this estimate, e.g. variation of immediate replication, variation within different times of day, or from day to day etc.

If the precision of measurement varies in proportion to the magnitude of the values obtained, it can best be expressed as the coefficient of variation; otherwise it should be expressed by an estimate of the (constant) standard error of a single observation, or by estimates at several points within the range of observed values.

When recovery experiments are described the approximate ratio of the amount added to the amount already present and the stage of the procedure at which the addition was made should be stated.

3.8. Figures and Tables
These are expensive to print and their number should be kept to a minimum. Their appropriate position in the paper should be indicated in the margin of the text. References to Figures and Tables should be in Arabic numerals, e.g. Fig. 3, and they should be numbered in order of appearance. In general, the same data should not be presented in both a Figure and a Table.

Figures, with captions attached, should be supplied as original drawings or matt photographs together with photocopies. All Figures should have their number and the authors' names written in pencil on the back; the top of the Figure should be indicated with a pencilled arrow. A horizontal or square layout is preferred to a vertical one. Acceptable symbols for experimental points are .
Guidance for Authors

The symbols × or + must be avoided. The same symbols must not be used for two curves where the points might be confused. For scatter diagrams, solid symbols are preferred. When a particular variable appears in more than one Figure, the same symbol should be used for it throughout, if possible.

Curves should not be drawn beyond the experimental points, nor should axes extend appreciably beyond the data. Only essential information that cannot readily be included in the legend should be written within the Figure.

Figures for half-tone reproduction should be submitted as glossy prints. They are particularly expensive to print and their use should be avoided as far as possible.

Tables should be typed separately from the text. They should have an underlined title followed by any legend.

Captions for the Figures, and titles and legends for the Tables, should make them readily understandable without reference to the text. Adequate statistical information, including that on regression lines, should be included in Figure captions where appropriate.

3.9. Footnotes

These should be avoided as far as possible but where they are used in Tables they should be identified by the symbols * † ‡ § ¶ in that order.

3.10. Isotope measurements

The information given should include (a) conditions of radioactivity counting, e.g. infinitely thick, infinitely thin; (b) the nature of the phosphor used in liquid-scintillation counting; (c) details of corrections made to the observed count rate, e.g. for 'quenching' or 'cross-over'; (d) standard deviation of the results or a statement of the minimum total counts above background collected and the background value.

In general the specific radioactivity of the starting materials should be given, preferably in terms of radioactivity per unit weight or, for stable isotopes, as atoms % excess.

Pending the general introduction of SI units radioactivity should continue to be expressed in terms of the curie (Ci) followed by the corresponding figure in terms of the becquerel (Bq: disintegrations/s), in parentheses, and suitably rounded.

3.11. Radionuclide applications in man

If new or modified radionuclide applications in man are described, an estimate of the maximal possible radiation dose to the body and critical organs should be given.

For the time being this can continue to be expressed in rems, but with the corresponding figure in sieverts (Sv) given in parentheses after it.

3.12. Methods

In describing certain techniques, namely centrifugation (when the conditions are critical), chromatography and electrophoresis, authors should follow the recommendations published by the Biochemical Society (currently, Biochemical Journal (1978) 169, 1-21).

3.13. Nomenclature of disease

This should follow the International Classification of Disease (8th revision, World Health Organization, Geneva, 1969) as far as possible.

Care is needed where powers are used in Table headings and in Figures to avoid numbers with an inconvenient number of digits. For example: (i) an entry '2' under the heading 10²k means that the value of k is 0.002; an entry '2' under the heading 10⁻³k means that the value of k is 2000. (ii) A concentration 0.00015 mol/l may be expressed as 0.15 under the heading 'conc. (mol/l)' or as 150 under the heading 'conc. (mmol/l)' or as 15 under the heading '10⁻² concn. (mol/l)', but not as 15 under the heading 'conc. (mol/l × 10⁻²)'.

3.15. References

These should be in alphabetical order of first authors. The full title of the paper, the journal and the first and last page numbers should be given, e.g.

When the quotation is from a book, the following format should be used, giving the relevant page or chapter number:

References in the text should follow the style: Clark, Freedman, Campbell & Winn (1969) on the first quotation and, if there are more than two authors, 'Clark et al. (1969)' or '(Clark et al., 1969)' in subsequent quotations.

References to 'personal communications' and 'unpublished work' should appear in the text only and not in the list of references. The name and
initials of the source of information should be given. When the reference is to material that has been accepted for publication but has not yet been published, this should be indicated in the list of references by 'In press' together with the name of the relevant journal and, if possible, the expected date of publication. If such a citation is of major relevance to the manuscript submitted for publication authors are advised that the editorial process might be expedited by the inclusion of a copy of such work. In the case of quotations from personal communications the authors should state in the covering letter that permission for quotation has been obtained.

3.16. Solutions
Concentration of solutions should be described where possible in molar terms (mol/l and subunits thereof), stating the molecular particle weight if necessary. Values should not be expressed in terms of normality or equivalents. Mass concentration should be expressed as g/l or subunits thereof, for example mg/l or µg/l. For solutions of salts, molar concentration is always preferred to avoid ambiguity as to whether anhydrous or hydrated compounds are used. Concentrations of aqueous solutions should be given as mol/l or mol/kg (g/l or g/kg if not expressed in molar terms) rather than % (w/v) or % (w/w). It should always be made clear whether concentrations of components in a reaction mixture are final concentrations or the concentrations in solutions added.

3.17. Spectrophotometric data
The term 'absorbance' (log(Io/I)) should be used rather than 'optical density' or 'extinction'. The solvent, if other than water, should be specified. Symbols used are: A, absorbance; a, specific absorption coefficient (litre g⁻¹ cm⁻¹) (alternatively use A(%, cm⁻¹)); ε, molar absorption coefficient (the absorbance of a molar solution in a 1 cm light path) (litre mol⁻¹ cm⁻¹, not cm² mol⁻¹).

3.18. Spelling

3.19. Statistics
Papers are frequently returned for revision (and their publication consequently delayed) because the authors use inappropriate statistical methods. Two common errors are the use of means, standard deviations and standard errors in the description and interpretation of grossly non-normally distributed data and the application of t-tests for the significance of difference between means in similar circumstances, or when the variances of the two groups are non-homogeneous. In some circumstances it may be more appropriate to provide a 'scattergram' than a statistical summary.

A reference should be given for all methods used to assess the probability of a result being due to chance. The format for expressing mean values and standard deviations or standard errors of the mean is, for example: mean cardiac output 10.4 l/min (SD 1.2; n = 11). Degrees of freedom should be indicated where appropriate. Levels of significance are expressed in the form P < 0.01.

3.20. Trade names
The name and address of the supplier of special apparatus and of biochemicals should be given. In the case of drugs, approved names should always be given with trade names and manufacturers in parentheses.

3.21. Computer modelling
Papers concerned primarily with computer modelling techniques are acceptable provided that use of such techniques leads to a clear choice between two or more alternative hypotheses, or to the formulation of a new hypothesis amenable to experimental challenge or verification, or provides some new insight into the behaviour of a particular physiological system. Extensive technical details of hardware and software should not be given.

4. UNITS: THE SI SYSTEM
The recommended Système International (SI) units [see Quantities, Units and Symbols, 2nd edn (1975) The Royal Society, London] are used by Clinical Science. All papers submitted should use these units except for blood pressure values, which should be expressed in mmHg, or gas tensions, where values at the author's discretion may be given as mmHg (with kPa in parentheses) or as kPa (with mmHg in parentheses) in the text and either as mmHg or as kPa in Figures, which (if practicable) should have scales in both units. Airways pressure should be expressed in kPa. Where molecular weight is known, the amount of a chemical or drug should be expressed in mol or in an appropriate subunit, e.g. mmol. Energy should be expressed in joules (J).
The basic SI units and their symbols are as follows:

<table>
<thead>
<tr>
<th>Physical quantity</th>
<th>Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>metre</td>
<td>m</td>
</tr>
<tr>
<td>mass</td>
<td>kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>time</td>
<td>second</td>
<td>s</td>
</tr>
<tr>
<td>electric current</td>
<td>ampere</td>
<td>A</td>
</tr>
<tr>
<td>thermodynamic temperature</td>
<td>kelvin</td>
<td>K</td>
</tr>
<tr>
<td>luminous intensity</td>
<td>candela</td>
<td>cd</td>
</tr>
<tr>
<td>amounts of substance</td>
<td>mole</td>
<td>mol</td>
</tr>
</tbody>
</table>

The following are examples of derived SI units:

<table>
<thead>
<tr>
<th>Physical quantity</th>
<th>Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>energy</td>
<td>joule</td>
<td>J</td>
</tr>
<tr>
<td>force</td>
<td>newton</td>
<td>N</td>
</tr>
<tr>
<td>power</td>
<td>watt</td>
<td>W</td>
</tr>
<tr>
<td>pressure</td>
<td>pascal</td>
<td>Pa</td>
</tr>
<tr>
<td>electric charge</td>
<td>coulomb</td>
<td>C</td>
</tr>
<tr>
<td>electric potential</td>
<td>volt</td>
<td>V</td>
</tr>
<tr>
<td>difference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>electric resistance</td>
<td>ohm</td>
<td>Ω</td>
</tr>
<tr>
<td>electric conductance</td>
<td>siemens</td>
<td>S</td>
</tr>
<tr>
<td>electric capacitance</td>
<td>farad</td>
<td>F</td>
</tr>
<tr>
<td>frequency</td>
<td>hertz</td>
<td>Hz</td>
</tr>
<tr>
<td>volume</td>
<td>litre</td>
<td>l</td>
</tr>
</tbody>
</table>

The word ‘litre’ has been accepted as a special name for cubic decimetre (1 litre = 1 dm³).

Both the basic and derived SI units, including the symbols of derived units that have special names, may be preceded by prefixes to indicate multiples and submultiples. The prefixes should be as follows:

<table>
<thead>
<tr>
<th>Multiple</th>
<th>Prefix</th>
<th>Symbol</th>
<th>Multiple</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁰</td>
<td></td>
<td></td>
<td>10⁶</td>
<td>mega</td>
<td>M</td>
</tr>
<tr>
<td>10¹</td>
<td>kilo</td>
<td>k</td>
<td>10⁴</td>
<td>hecto</td>
<td>h*</td>
</tr>
<tr>
<td>10²</td>
<td>deka</td>
<td>da</td>
<td>10¹²</td>
<td>pico</td>
<td>p</td>
</tr>
<tr>
<td>10⁻¹</td>
<td>deci</td>
<td>d*</td>
<td>10⁻¹⁵</td>
<td>femto</td>
<td>f</td>
</tr>
<tr>
<td>10⁻²</td>
<td>centi</td>
<td>c*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* To be avoided where possible (except for cm).

Compound prefixes should not be used, e.g. 10⁻⁹ m should be represented by 1 nm, not 1 μm.

Notes:
(i) Full stops are not used after symbols.
(ii) Minutes (min), hours (h), days and years will continue to be used in addition to the SI unit of time [the second (s)].
(iii) The solidus may be used in a unit as long as it does not have to be employed more than once, e.g. mmol/l is acceptable, but ml/min/kg is not, and should be replaced by ml min⁻¹ kg⁻¹.

5. ABBREVIATIONS, CONVENTIONS, DEFINITIONS, SYMBOLS AND SPECIAL COMMENTS

As well as standard symbols and abbreviations that have been accepted by international bodies, and which can be used without definition, this list shows selected abbreviations in the form of groups of capital letters (e.g. ALA, ECF, MCHC) which when used must be defined in the text as indicated on p. iv. The standard abbreviations for amino acids are only for use in Figures and Tables or for peptide sequences.

- absorbance
- acceleration due to gravity
- adenosine 3':5'-cyclic monophosphate
- adenosine 5'-phosphate
- adenosine 5'-pyrophosphate
- adenosine 5'-triphosphate
- adenosine triphosphatase
- adrenocorticotropic hormone
- adrenoreceptor (see also blocking agents)
- alanine
- alginic acid
- alveolar minute ventilation
- alveolar to arterial oxygen tension difference
- ampicillin
- angiotensin
- Angstrom (Å)
- antidiuretic hormone
- arginine
- arteriovenous
- asparagine
- aspartic acid
- atmosphere (unit of pressure)
- atomic weight
- becquerel
- blocking agents
- blood pressure
- blood urea nitrogen
- blood volume
- body temperature and pressure
- saturated

For general usage, the use of symbols for the following units is recommended:
- absorbance
- acceleration due to gravity
- adenosine 3':5'-cyclic monophosphate
- adenosine 5'-phosphate
- adenosine 5'-pyrophosphate
- adenosine 5'-triphosphate
- adenosine triphosphatase
- adrenocorticotropic hormone
- adrenoreceptor (see also blocking agents)
- alanine
- alginic acid
- alveolar minute ventilation
- alveolar to arterial oxygen tension difference
- ampicillin
- angiotensin
- Angstrom (Å)
- antidiuretic hormone
- arginine
- arteriovenous
- asparagine
- aspartic acid
- atmosphere (unit of pressure)
- atomic weight
- becquerel
- blocking agents
- blood pressure
- blood urea nitrogen
- blood volume
- body temperature and pressure
- saturated

Notes:
(i) Full stops are not used after symbols.
(ii) Minutes (min), hours (h), days and years will continue to be used in addition to the SI unit of time (the second (s)).
(iii) The solidus may be used in a unit as long as it does not have to be employed more than once, e.g. mmol/l is acceptable, but ml/min/kg is not, and should be replaced by ml min⁻¹ kg⁻¹.

Abbreviations, Conventions, Definitions, Symbols and Special Comments
British Pharmacopoeia

calculated

'Calorie' (= 1000 cal)

carbon dioxide output (in respiratory physiology)
cardiac frequency
cardiac output
centimetre
clearance of x
coenzyme A and its acyl derivatives
compare
complement fractions
compliance (respiratory physiology)
concentrated
concentration
cycles/min

cysteine
dates
dead-space minute ventilation
dead-space volume
degrees, Celsius or centigrade
deoxy (prefix)
deoxytocorticosterone
deoxytocorticosterone acetate
deoxyribonucleic acid
dialysate
diethylaminoethylcellulose

differential of x with respect to time
dilute

direct current
disintegrations/min
disintegrations/s
dissociation constant
acidic
basic
apparent
minus log of

dyne
elastance
electrocardiogram
electroencephalogram

Guidance for Authors

write in full and give edition
calc. (in Table only)
not used; recalculate as kilojoules (1 'Calorie' = 4.184 kJ)

\dot{V}_{CO_2}; express in ml STP/min
f_r; in beats/min
express in l/min

C_x

CoA and acyl-CoA
cf.

C1-C9

C; express in 1 kPa$^{-1}$

conc.

conc.; may be denoted []; e.g. plasma

$[HCO_3^{-}]$

G; express in 1 s$^{-1}$ kPa$^{-1}$

r: may be used without definition
c.p.m., c.p.s.

use ml

Cl (1 Cl = 3.7 x 10$^{-10}$ d.p.s.)

Hz

Cys
e.g. 11 August 1970

\dot{V}_D

\dot{V}_C

not deoxy

DOC

DOCA

DNA
diffusate preferred;

'dialysate' should be clearly defined

DEAE-cellulose

\dot{x} (= dx/ddt)

1,25-(OH)$_2$D$_3$

dil.

2,3-DPG
d.c.
d.p.m.
d.p.s.

K_a

K_b
e.g. K'_a
pK

avoid Latin designations such as b.d. and t.i.d.

not used; express in newtons (1 dyne = 10$^{-5}$ N)

dynt

E_r; express in Pa m$^{-3}$

ECG

EEG

electron motive force
electron spin resonance
electronvolt
equation
equivalents (amount of a chemical)
erythrocyte count
erythrocyte sedimentation rate
ethanol, ethanolic

ethylenediaminetetra-acetate

exchangeable

Experiment (with reference numeral)

expired minute ventilation

extracellular fluid

extracellular fluid volume

extravascular space of x (renal)

Figure (with reference numeral)

filtered load of x (renal)

follicle-stimulating hormone

forced expiratory volume in

dry gas

fractional concentration in

fractional disappearance rate

frequency of respiration

functional residual capacity

gas-liquid chromatography

gaseous exchange

glomerular filtration rate

glutamic acid

glutamine

(k as in A = Av$^{-x}$)

f_{r}; in breaths/min

T; in mmol min$^{-1}$ kPa$^{-1}$

GFR

Glut

Gln

GSH (reduced); GSSG (oxidized)

Gly

g

GH; if human, HGH

not allowed; use packed cell volume (PCV)

Hb; express in g/dl

F

F_r

in breaths/min

FRC

F_{R}
in mmol mid kPa$^{-1}$

GFR

Glut

Gln

GSH (reduced); GSSG (oxidized)

Gly

g

H2O

HCG

HPL

use cortisol

aH; express in mmol/l

25-(OH)D$_3$

Hyp

IgA, IgD, IgE, IgG, IgM
injection routes:
intra-arterial i.a.
intramuscular i.m.
intraperitoneal i.p.
intravenous i.v.
subcutaneous s.c.
international unit i.u. (definition and reference should be given for uncommon or ambiguous applications, e.g. enzymes)
intracellular fluid ICF
intracellular fluid volume ICFV
ionic strength I
isoleucine Ile
isotonic nor used; specify composition of fluid, e.g. NaCl, 150 mmol/l
isotopically labelled compounds e.g. [U-14C]glucose, [1-14C]glucose, sodium [1-14C]-acetate; use 131I-labelled albumin, nor [131I]albumin for simple molecules: 14CO2, 3H2O
joule J
kilogram(me) kg
kilopond
lactate dehydrogenase
leucine
leucocyte count
lipoproteins (serum) high density
low density
very low density
litre
logarithm (base 10)
logarithm (base e)
lysine
maximum
mean corpuscular haemoglobin
mean corpuscular haemoglobin concentration
mean corpuscular volume
median lethal dose
metabolite
methanol, methanolic
methionine
metre
Michaelis constant
micromole
micron (10^-6 m)
milliequivalent
millilitre

Guidance for Authors

use abbreviations only in Figures

millimetre of mercury mmHg; for blood pressure and, at authors' discretion, for gas tensions: see p. vii (1 mmHg = 0.133 kPa)

millimolar (concentration) mmol/l; not mm mol

millimole
minimum
minute (60 s)
mol
molar (concentration)
molar absorption coefficient
e (the absorbance of a molar solution in a 1 cm light-path)

mole
molecular weight

nicotinamide-adenine dinucleotide

nicotinamide-adenine dinucleotide phosphate

normal

normal temperature and pressure

nuclear magnetic resonance number (in enumerations) observed

ohm

ornithine

orthophosphate (inorganic)

osmolality

oxygen uptake per minute (in respiratory physiology)

packed cell volume

page, pages

para-

para-aminodiphenyl

partial pressure

e.g. alveolar, of O2, arterial, of CO2, capillary, of O2, mixed venous, of CO2

pascal

per

per cent

petroleum ether

phenylalanine

plasma renin activity

plasma volume

poise

ppm; not p

not used; use light petroleum and give boiling range

Phe

express as pmol of angiotensin I h^-1 ml^-1

PV

1 poise = 10^-1 N s m^-2
potential difference
power output
precipitate
pressure
probability of an event being
due to chance alone
proline
protein-bound iodine
(plasma)
pulmonary capillary blood
flow
pyrophosphate (inorganic)
ad (radiation dose; 10^{-3} J
absorbed/g of material)
red blood cell
red cell mass
relative band speed (partition
chromatography)
rem
renin
residual volume
resistance (rheological)
respiratory exchange
ratio (pulmonary)
respiratory quotient
(metabolic)
revolutions
rev./min
ribonucleic acid
röntgen
saturation
second (time)
serine
sievert
solvent systems
species
specific activity
specific conductance of
airways
standard deviation
standard error of the mean
standard temperature and
pressure
steroid nomenclature
sulphydryl
sum
Svedberg unit
temperature (absolute)
(empirical)
temperature, thermodynamic
thin-layer chromatography
threonine
thyrotrophic hormone
thyrotrophin-releasing hor-
more
tidal volume
time (symbol)
time of day
torr
total lung capacity
tryptophan
tubular maximal reabsorptive
capacity for x
tyrosine
ultraviolet
urinary concentration of x
valency
valine
variance ratio
vascular resistance
velocity
venous admixture
veronal
viscosity, dynamic
viscosity, kinematic
vital capacity
volt
volume of blood (in cardio-
respiratory physiology)
watt
wavelength
weight
white blood cell

p.d.
W ($1 \text{ W} = 0.1635$
kpm/min)
$ppt.
P$; express in kPa
(except for blood
pressures and gas
tensions: see p. 6);
$1 \text{kPa} = 7.5 \text{ mm Hg}$
P
P_{rc}
not abbreviated
Qc
PPi
pro
Qc
PPi
pro
PBI
Qc
PPi
$not abbreviated$
RCM
RV
$100 \text{ ergs/g x quality factor}$
$see plasma renin
activity$
RV
R; express in kPa $\text{l}^{-1} \text{s}$
R
Q
$rev.$
$not \text{ r.p.m.; use g if}$
possible (see p. viii)
RNA
R
S, e.g. Sa_o, for arterial
oxygen saturation
(see partial pressure
for other analogous
abbreviations)
s
Ser
$Sv (1 J/kg x quality
factor)$
e.g. butanol/acetic acid/
water ($4:1:1$, by
vol.), butanol/
acetic acid ($4:1$, v/v)
$sp.$, plural spp.
$sp. \text{ act. Confusion}$
must be avoided
between e.g. specific
radioactivity and the
specific activity of an
enzyme
specific conductance of
airways
standard deviation
standard error of the mean
standard temperature and
pressure
steroid nomenclature
sulphydryl
sum
Svedberg unit
temperature (absolute)
(empirical)
temperature, thermodynamic
thin-layer chromatography
threonine
thyrotrophic hormone
thyrotrophin-releasing hor-
more
tidal volume
time (symbol)
time of day
torr
total lung capacity
tryptophan
tubular maximal reabsorptive
capacity for x
tyrosine
ultraviolet
urinary concentration of x
valency
valine
variance ratio
vascular resistance
velocity
venous admixture
veronal
viscosity, dynamic
viscosity, kinematic
vital capacity
volt
volume of blood (in cardio-
respiratory physiology)
watt
wavelength
weight
white blood cell

$\text{s}Gaw$; express in
s$^{-1}$ kPa$^{-1}$
SD
SEM
STP
 may be used
 without
 definition
$\text{ see Biochemical Journal}$
(1969) 113, 5-28;
(1972) 127, 613-617
 use thiol or SH
S
T
$0^\circ K$
$t_{1/2}$C.
Thr
TSH
TRH
V_r
t
e.g. 18.15 hours
$not used; use kPa (1 \text{ torr}$
$= 0.133 \text{ kPa})$
 TLC
 Trp
T_{mf}
 Tyr
 u.v.
U_x
e.g. Fe^{2+}, $not Fe^{2+}$
Val
F
express in kPa $l^{-1} \text{s}$ (with
value in dyne cm s$^{-1}$
in parentheses);
primary values of dif-
ferential vascular pres-
sure (mmHg) and
flow (l/min) should
always also be given
in Tables or text as
appropriate
\dot{V}_r
express as m s$^{-1}$
\dot{Q}_v
$used only for buffer mix-
tures; otherwise use
$5,5'$-diethylbarbituric
acid
η
ν
 VC
V
\dot{Q}; use \dot{Q} for blood flow
rate
W
λ
 wt.
$\text{ use leucocyte; express}$
counts as 10^9 cells/l

$\text{Biochemical Journal}$
(1969) 113, 5-28;
(1972) 127, 613-617
 use thiol or SH
S
T
$0^\circ K$
$t_{1/2}$C.
Thr
TSH
TRH
V_r
t
e.g. 18.15 hours
$not used; use kPa (1 \text{ torr}$
$= 0.133 \text{ kPa})$
 TLC
 Trp
T_{mf}
 Tyr
 u.v.
U_x
e.g. Fe^{2+}, $not Fe^{2+}$
Val
F
express in kPa $l^{-1} \text{s}$ (with
value in dyne cm s$^{-1}$
in parentheses);
primary values of dif-
ferential vascular pres-
sure (mmHg) and
flow (l/min) should
always also be given
in Tables or text as
appropriate
\dot{V}_r
express as m s$^{-1}$
\dot{Q}_v
$used only for buffer mix-
tures; otherwise use
$5,5'$-diethylbarbituric
acid
η
ν
 VC
V
\dot{Q}; use \dot{Q} for blood flow
rate
W
λ
 wt.
$\text{ use leucocyte; express}$
counts as 10^9 cells/l

$\text{Biochemical Journal}$
(1969) 113, 5-28;
(1972) 127, 613-617
 use thiol or SH
S
T
$0^\circ K$
$t_{1/2}$C.
Thr
TSH
TRH
V_r
t
e.g. 18.15 hours
$not used; use kPa (1 \text{ torr}$
$= 0.133 \text{ kPa})$
 TLC
 Trp
T_{mf}
 Tyr
 u.v.
U_x
e.g. Fe^{2+}, $not Fe^{2+}$
Val
F
express in kPa $l^{-1} \text{s}$ (with
value in dyne cm s$^{-1}$
in parentheses);
primary values of dif-
ferential vascular pres-
sure (mmHg) and
flow (l/min) should
always also be given
in Tables or text as
appropriate
\dot{V}_r
express as m s$^{-1}$
\dot{Q}_v
$used only for buffer mix-
tures; otherwise use
$5,5'$-diethylbarbituric
acid
η
ν
 VC
V
\dot{Q}; use \dot{Q} for blood flow
rate
W
λ
 wt.
$\text{ use leucocyte; express}$
counts as 10^9 cells/l
Volume 58

AUTHOR INDEX

ADIGUN, S.A. 169-171
ADAMS, J.F. 83-91
ADAMS, L. 83-91
ADIGUN, S.A. 549-552
AISENBREY, G.A. 493-500
ALBERTI, K.G.M.M. 153-155, 507-515
AL-UBAIDl, F. 45-51
ALAMIN, S. 101-103
ANDERSON, R.J. 493-500
ASHTON, B.A. 435-438
ATKINS, D. 201-210
AUDU, C.D. 501-506
BACON, S. 301-309
BAKHYLE, Y.S. 45-51
BARBIERI, C. 135-138
BARNES, P.J. 457-461
BARNES, S. 485-492
BARTLETT, K. 111-114
BAUM, H. 403-409
BEASTALL, C.H. 105-106
BELLAMY, D. 403-409
BENNERT, T. 193-200
BERGSTROM, J. 553-555
BERL, T. 493-500
BERTHELLOT, A. 365-371
BESSENT, R.G. 169-171
BETTER, I.S. 493-500
BINDER, C. 507-515
BING, R.F. 1-6, 15-20
BOARDMAN, A.K. 357-364
BOLTON, C.H. 419-421
BOBIS, A.R. 311-316
BOTHWELL, T.H. 93-100
BRASH, H.M. 357-364
BURGES, D.W. 263-270
BURSTON, D. 221-225
CALDARA, R. 135-138
CALDER, I. 379-384
CAMPBELL, W.B. 415-450
CASALS-STENZEL, J. 445-450
CHABERT, P. 227-233
CHARLTON, R.W. 93-100
CLARK, R.J.H. 249-253
CLAUSEN, P.J. 279-286
CLOUGH, D.P. 549-552
COLE, P.V. 83-91
COLLIERS, V.U. 327-335
CONWAY, J. 549-552
COONEY, G.J. 337-340
CRAIG, S.J. 259-262
CRAIG, E. 327-340
CURL, R.G. 341-342
CURTARELLI, G. 135-138
DASHER, C.A. 485-492
DAVIE, M. 235-242
DAVIES, D.S. 311-316
DAWSON, A.G. 337-340
DE HAAN, J.G. 321-325
DESAI, R. 403-409
DE SALAMANCA, R.E. 477-484
DICKENSON, C.J. 83-91
DOLLLERY, C.T. 457-461
DUBIN, M. 545-548
EISER, N.M. 537-544
ELDER, G.H. 477-484
ELIA, M. 301-309
ENGELKING, L.R. 485-492
ERLINGER, S. 545-548
EVANS, W.H. 439-444
FATTI, L.P. 93-100
FAVRE, H. 385-391
FERRARI, C. 135-138
FITZGERALD, G.A. 423-425
FOREST, E. 255-257
FOSTER, F.J. 507-515
FURST, P. 553-555
GAUILLARD, R.C. 227-233
GAILARD, A. 365-371
GALTON, D.J. 59-63
GAMMON, A. 431-433
GANAPATHY, V. 431-433
GOLDEN, M.H.N. 517-522
GOMPERTZ, D. 111-114
GORCHEIN, A. 469-476
GRANDCHAMP, A. 139-144
GREAVES, M. 201-210
GREENWOOD, P.V. 127-133
GUPTA, V.J. 427-430
HAMILTON, C.A. 37-43, 423-425
HAMPTON, J.R. 193-200
HANDELMEYER, W.A. 493-500
HANNAN, W.J. 357-364
HART, D.M. 255-257
HART, S. 379-384
HARTOG, M. 419-421
HARTLING, O.J. 259-286
HATTON, R. 549-552
HAWKER, M. 243-248
HAWKER, R.J. 243-248
HELLIER, M.D. 431-433
HELLSTRÖM, K. 533-555
HENDERSON, A.R. 157-160
HIGENBOTTAM, T. 249-253
HINDS, C.J. 83-91
HINKS, L. 507-515
HIRSCHOWITZ, B. 485-492
HOFFBRAND, A.V. 101-103
HORSBURGH, T. 111-114
HORSMAN, A. 341-342
HOSKING, D.J. 193-200
HUGHES, J.M.B. 110-125
HUMA, R. 105-106
HUNT, N.H. 463-467
HUTCHISON, D.C.S. 403-409
IBBOTSON, D.J. 201-210
IDEURA, K. 21-27
IKEMOTO, F. 451-456
ILIC, V. 301-309
INGRAM, D. 83-91
JACKSON, A.A. 517-522
JACKSON, L. 419-421
JAMES, W.P.T. 183-191
JEWELL, D.P. 295-300
JONES, D.H. 37-43, 311-316, 423-425
JONES, M.M. 341-342
JÖRNING, G.G.A. 321-325
JUNG, R.T. 183-191
KAPPAGODA, C.T. 127-133
KARLNER, J.S. 457-461
KARRAN, S. 507-515
KAWAMURA, M. 451-456
Author Index

KAY, J. 83-91
KIRSCHENBAUM, M.A. 393-401
KOBAYASHI, Y. 173-175
KRAPEZ, J.R. 83-91
LAMBERT, P.P. 65-75
LAMMENS-VERSLUPE, M. 65-75
LASZLO, G. 263-270
LAURBERG, P. 317-320
LAWSON, D.E.M. 235-242
LEE, M.R. 77-82
LEVENSON, J.A. 349-356
LIARD, J.-F. 271-277
LIGHT, T.M. 501-506
LINAS, S.L. 493-500
LINDHEIMER, M.D. 139-144
LINDSAY, R. 255-257
LITTLE, W.A. 115-117
LONDON, G.M. 349-356
LOUIS, F. 385-391
LYNCH, S.R. 93-100
MACDONALD, C.M.L.A. 169-171
MACPHerson, J.N. 177-181
MANZER, A. 145-152
MARKER, J.D. 7-13
MARKS, E.S. 1-6, 15-20
MARTIN, T.J. 201-210
MARTIN, T.R.P. 53-57
MATHAN, V.I. 431-433
MATTThS, D.M. 221-225
MAURY, P. 165-168
MAWER, E.B. 523-535
MCDae, K.D. 537-544
MEE, A.S. 295-300
MILES, T.S. 7-13
MILLER, J.N. 263-270
MILLER, M.J.S. 29-35
MILLS, J. 537-544
MITCH, W.E. 327-335
MITO, Y. 21-27
MÖLLER, P. 533-555
MORTON, J.J. 445-450
MOULDS, R.F.W. 373-378
MUIR, A.L. 357-364
MURRAY, S. 311-316
NAFTEL, D. 485-492
NATTRASS, M. 153-155
NEALON, D.A. 157-160
NOER, I. 279-286
NORDIN, B.E.C. 341-342
NORMAN, J.N. 501-506
OATES, N.S. 77-82
OKAHATA, S. 173-175
OLMOS, A. 477-484
ØRSKOV, H. 507-515
PACIOREK, J. 161-164
PALO, J. 165-168
Pembrey, R. 463-467
PERKINS, C.M. 77-82
PETERS, T.J. 211-220
RADHAKRISHNAN, A.N. 431-433
RANICAR, A. 101-103
RECKLESS, J.P.D. 59-63
REDDY, S.G. 427-430
REEVE, J. 287-293
REID, J.L. 37-43, 311-316, 423-425
REINHARZ, A. 139-144
RITTINGHAUSEN, R.E. 373-378
RIONDEL, A.M. 227-233
ROBERTS, C.J.C. 419-421
ROSS, B. 379-384
ROSSALL, R.E. 127-133
ROWLANDS, D.B. 115-117
SAPAR, M.E. 349-356
SAMSON, G. 321-325
SAPRU, R.P. 357-364
SCARPPELLO, J.H.B. 53-57
SCHRIER, R.W. 493-500
ScooP, G.C. 7-13, 29-35
Selden, C. 211-220
SEMPL, P.D'A. 105-106
SEYMOUR, C.A. 211-220
SHEPPARD, D.M. 477-484
SHETTY, P.S. 183-191
SHIGAI, T. 21-27
SHINOHARA, S. 21-27
SHORT, M.D. 101-103
SIMON, A.CH. 349-356
SIZER, K. 153-155
SMITH, B. 463-467
SMITH, R. 301-309, 435-438
SMYTHE, P. 507-515
SNASHALL, P.D. 537-544
SPENCER, N. 161-164
SPENNEw, J.G. 485-492
SPINZ, T. 101-103
STALLARD, T.J. 37-43, 115-117
STANBURY, S.W. 523-535
SVENDSen, T.L. 279-286
SWALES, J.D. 1-6, 15-20
TAKEuchi, J. 21-27
TALBOT, S. 507-515
TANGE, J. 379-384
TAVES, D. 145-152
TAYLOR, E. 221-225
THURSTON, H. 1-6, 15-20
TOMITA, K. 21-27
TOMIMtA, O. 21-27
T ORRANCE, J.D. 93-100
TOTHILL, P. 177-181
TRAP-JENSEN, J. 279-286
TREE, M. 445-450
TURNEll, D. 507-515
USUI, T. 173-175
VAN GOOL, J. 321-325
VALLOTTON, M.B. 139-144, 227-233
VANHOLDER, R. 65-75
VANRENTERGHEM, Y. 65-75
WAGSTAFF, M. 259-262
WALSER, M. 327-335
WARD, J.D. 53-57
WATERHOUSE, C. 145-152
WATSON, R.D.S. 37-43, 115-117
WATSON, W.S. 105-106, 169-171
WHITE, N.J. 411-413
WILcken, D.E.L. 427-430
WILKINSON, A.R. 243-248
WILLIAMS, J. 83-91
WILLIAMSON, D.H. 301-309
WINSBOROUGH, M. 263-270
WOOTON, R. 287-293
WORWOOD, M. 259-262
YAMAMOTO, K. 451-456
ZAWMA, A. 401-404
ZIMMER, J.A. 415-418
ZUYDERHOUDT, F.M.J. 321-325
Absorption
calcium 287–293
competitive 221–225
dipeptides 221–225
iron 93–100
kinetics 221–225

Acetylcholine, baroreceptor reflex 7–13
N'-Acetyl-β-D-glucosaminidase, Crohn's disease 295–300

Acid–base balance
cardiopulmonary arrest 127–133
respiratory pattern 343–348*

Active transport see Transport

Acute intermittent porphyria, mauve factor 469–476

Adenosine 3' : 5' -cyclic monophosphate, excretion in cancer 463–467

Adrenaline, release by insulin 415–418
α-Adrenergic agonist see Clonidine

Adrenergic function, central 135–138

Adrenocorticotropic hormone
aldosterone regulation 227–233
spironolactone 227–233

α-Adrenoreceptors, identified by [3H]prazosin in lung 457–461

β-Adrenoreceptors, binding of [3H]dihydral-
prenol 457–461

Aging, phosphagens in skeletal muscle 553–555
Airway resistance 249–253
Airways disease, chronic obstructive 105–106

Alanine
diabetes 301–309
hepatic cirrhosis 301–309
hip replacement 301–309
muscular dystrophy 301–309
phenformin 153–155
protein-sparing infusions 507–515

Aldosterone, spironolactone 227–233

Alkaline phosphatase
menopause 341–342
Paget's disease 435–438

Amino acids
infusion in postoperative patients 507–515
sulphur-containing 427–430

β-Aminoisobutyric acid 427–430
α-Amino-nitrogen pool 517–522

Anaemia
Fanconi's 173–175
iron-deficiency 93–100
pernicious 101–103

Anaemia see also Vitamin B12

Analgesic nephropathy 379–384

Angiotensin, effect of captopril 445–450

Angiotensin II
antagonists on cardiovascular response 549–552
baroreceptor reflex 7–13
removal from circulation 29–35
renin–angiotensin 15–20
saralasin 15–20
spironolactone 227–233

[Sar1, Ala8]Angiotensin II, effect on cardio-
vascular response 549–552

Antidiuretic hormone
diabetes insipidus 139–144
kidney 139–144

Antipyrine clearance 419–421

Arachidonic acid 45–51

Arginine vasopressin 139–144

Arterial baroreflexes see Baroreceptor reflex

Arterial hypertension see Hypertension

Arterial pressure
dobutamine 271–277
physical activity 115–117

Arterial pressure see also Hypertension

Artery
isolated, muscle 373–378
pulse-wave velocity 53–57

Aspartylglucosamine 165–168

Aspartylglycosaminuria, storage material 165–
168

Atropine, systole 357–364

Baroreceptor reflex
cardiopulmonary 193–200
carotid sinus 7–13

sensitivity in renal failure 21–27

Bile acid, synthesis rate 485–492
Subject Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bile duct, ligation and antidiuretic hormone</td>
<td>493-500</td>
</tr>
<tr>
<td>Bile secretion, effect of phalloidin</td>
<td>545-548</td>
</tr>
<tr>
<td>Biotin, relation with carboxylases</td>
<td>111-114</td>
</tr>
<tr>
<td>Blood flow</td>
<td></td>
</tr>
<tr>
<td>diabetes</td>
<td>53-57</td>
</tr>
<tr>
<td>exercise</td>
<td>279-286</td>
</tr>
<tr>
<td>Blood platelets, In labelling</td>
<td>243-248</td>
</tr>
<tr>
<td>Blood pressure</td>
<td></td>
</tr>
<tr>
<td>exercise</td>
<td>37-43</td>
</tr>
<tr>
<td>hypotensive therapy</td>
<td>115-117</td>
</tr>
<tr>
<td>reduction induced by lower-body negative pressure</td>
<td>549-552</td>
</tr>
<tr>
<td>Blood pressure see also Hypertension</td>
<td></td>
</tr>
<tr>
<td>Bone</td>
<td></td>
</tr>
<tr>
<td>calcium absorption</td>
<td>287-293</td>
</tr>
<tr>
<td>osteoporosis</td>
<td>341-342</td>
</tr>
<tr>
<td>Paget's disease</td>
<td>435-438</td>
</tr>
<tr>
<td>Bone resorption</td>
<td></td>
</tr>
<tr>
<td>fluoride</td>
<td>145-152</td>
</tr>
<tr>
<td>renal and breast tumors</td>
<td>201-210</td>
</tr>
<tr>
<td>Bradykinin, potentiation by captopril</td>
<td>1-6</td>
</tr>
<tr>
<td>Brain</td>
<td></td>
</tr>
<tr>
<td>amine turnover</td>
<td>311-316</td>
</tr>
<tr>
<td>Breast cancer, bone resorption</td>
<td>201-210</td>
</tr>
<tr>
<td>Breathing pattern</td>
<td>343-348*</td>
</tr>
<tr>
<td>Bronchi, histamine receptors</td>
<td>537-544</td>
</tr>
<tr>
<td>Bronchomotor tone</td>
<td>249-253</td>
</tr>
<tr>
<td>Calciferol (vitamins D₃ plus D₂)</td>
<td>523-535</td>
</tr>
<tr>
<td>Calcitonin in Paget's disease</td>
<td>435-438</td>
</tr>
<tr>
<td>Calcium</td>
<td></td>
</tr>
<tr>
<td>absorption</td>
<td>287-293</td>
</tr>
<tr>
<td>parathyroid hormone</td>
<td>365-371</td>
</tr>
<tr>
<td>Cancer</td>
<td></td>
</tr>
<tr>
<td>cyclic nucleotide excretion in</td>
<td>463-467</td>
</tr>
<tr>
<td>Captopril</td>
<td></td>
</tr>
<tr>
<td>blood pressure and angiotensin</td>
<td>445-450</td>
</tr>
<tr>
<td>vasodepressor action</td>
<td>1-6</td>
</tr>
<tr>
<td>Carbon dioxide, estimation of cardiac output</td>
<td>263-270</td>
</tr>
<tr>
<td>Carboxylases, leucocyte</td>
<td>111-114</td>
</tr>
<tr>
<td>Cardiac arrest</td>
<td>127-133</td>
</tr>
<tr>
<td>Cardiac blood pool scanning</td>
<td>357-364</td>
</tr>
<tr>
<td>Cardiac output</td>
<td></td>
</tr>
<tr>
<td>dobutamine</td>
<td>271-277</td>
</tr>
<tr>
<td>estimation</td>
<td>263-270</td>
</tr>
<tr>
<td>indirect Fick method</td>
<td>263-270</td>
</tr>
<tr>
<td>Cardiopulmonary baroreflexes</td>
<td>193-200</td>
</tr>
<tr>
<td>Carotid sinus</td>
<td>7-13</td>
</tr>
<tr>
<td>Catalase, iron overload</td>
<td>211-219</td>
</tr>
<tr>
<td>Catechol-O-methyltransferase, erythrocyte</td>
<td>423-425</td>
</tr>
<tr>
<td>Central adrenergic function</td>
<td>135-138</td>
</tr>
<tr>
<td>Central circulating blood volume</td>
<td>549-552</td>
</tr>
<tr>
<td>Cholecalciferol, metabolism</td>
<td>523-535</td>
</tr>
<tr>
<td>Cholesterol</td>
<td></td>
</tr>
<tr>
<td>glutethimide</td>
<td>419-421</td>
</tr>
<tr>
<td>phalloidin on bile secretion</td>
<td>545-548</td>
</tr>
<tr>
<td>Chlororhoid plexus, lignocaine transport</td>
<td>107-109</td>
</tr>
<tr>
<td>Chronic renal failure</td>
<td></td>
</tr>
<tr>
<td>baroreflex sensitivity</td>
<td>21-27</td>
</tr>
<tr>
<td>creatinine metabolism</td>
<td>327-335</td>
</tr>
<tr>
<td>Clonidine, hypertension</td>
<td>135-138</td>
</tr>
<tr>
<td>Computer, model of respiratory system</td>
<td>83-91</td>
</tr>
<tr>
<td>Cold storage, renin conversion</td>
<td>451-456</td>
</tr>
<tr>
<td>Converting-enzyme inhibitor</td>
<td></td>
</tr>
<tr>
<td>angiotensin</td>
<td>549-552</td>
</tr>
<tr>
<td>captopril</td>
<td>1-6, 445-450</td>
</tr>
<tr>
<td>SQ 14 225</td>
<td>15-20</td>
</tr>
<tr>
<td>Corticosterone, effect of spironolactone</td>
<td>227-233</td>
</tr>
<tr>
<td>Cortisol secretion</td>
<td>227-233</td>
</tr>
<tr>
<td>Cretine—creatinine metabolism</td>
<td>327-335</td>
</tr>
<tr>
<td>Cretine kinase, immunoglobulin complex</td>
<td>157-160</td>
</tr>
<tr>
<td>Cretinine metabolism</td>
<td>327-335</td>
</tr>
<tr>
<td>Crohn's disease</td>
<td>295-300</td>
</tr>
<tr>
<td>Cyanocobalamin (vitamin B₁₂)</td>
<td>101-103</td>
</tr>
<tr>
<td>Cyclic AMP</td>
<td></td>
</tr>
<tr>
<td>adipose tissue</td>
<td>59-63</td>
</tr>
<tr>
<td>breast cancer</td>
<td>201-210</td>
</tr>
<tr>
<td>insulin</td>
<td>59-63</td>
</tr>
<tr>
<td>obese diabetic patients</td>
<td>59-63</td>
</tr>
<tr>
<td>Cysteine—homocysteine, mixed disulphide</td>
<td>427-430</td>
</tr>
<tr>
<td>Cytosol, renal cortical homogenate</td>
<td>451-456</td>
</tr>
<tr>
<td>Deamination, amino acid catabolism</td>
<td>517-522</td>
</tr>
<tr>
<td>Deconvolution analysis</td>
<td>287-293</td>
</tr>
<tr>
<td>Deoxycorticosterone acetate hypertension</td>
<td>365-371</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td></td>
</tr>
<tr>
<td>alanine</td>
<td>301-309</td>
</tr>
<tr>
<td>cardiac R—R interval</td>
<td>193-200</td>
</tr>
<tr>
<td>insulin</td>
<td>59-63</td>
</tr>
<tr>
<td>pulse-wave velocity</td>
<td>53-57</td>
</tr>
<tr>
<td>Digital artery, isolated</td>
<td>373-378</td>
</tr>
<tr>
<td>1,25-Dihydroxycholecalciferol</td>
<td>523-535</td>
</tr>
<tr>
<td>24,25-Dihydroxycholecalciferol</td>
<td>523-535</td>
</tr>
<tr>
<td>25,26-Dihydroxycholecalciferol</td>
<td>523-535</td>
</tr>
<tr>
<td>Dipeptide, tropical sprue</td>
<td>431-433</td>
</tr>
<tr>
<td>Dobutamine</td>
<td></td>
</tr>
<tr>
<td>cardiogenic hypertension</td>
<td>271-277</td>
</tr>
<tr>
<td>systole</td>
<td>357-364</td>
</tr>
<tr>
<td>L-Dopa, hypertension</td>
<td>135-138</td>
</tr>
<tr>
<td>Dopamine, mineralocorticoids</td>
<td>77-82</td>
</tr>
<tr>
<td>Doppler ultrasound</td>
<td>53-57</td>
</tr>
<tr>
<td>Dose—response curve, histamine</td>
<td>537-544</td>
</tr>
<tr>
<td>Drugs, hepatic plasma-membrane modifications</td>
<td>439-444*</td>
</tr>
</tbody>
</table>
Subject Index

Ejection fraction 357–364
Enzyme induction with glutethimide 419–421
Erythrocyte
 carbonic anhydrase 1 161–164
 magnesium 255–257
 menopause 255–257
 uroporphyrinogen decarboxylase 477–484
Exercise
 dynamic 279–286
 heart rate 37–43
 noradrenaline 37–43
Extracellular volume expansion 385–392
Fanconi’s anaemia, erythrocyte superoxide dismutase activity 173–175
Femoral artery, removal of angiotensin II and noradrenaline 29–35
Ferritin
 anaemia 93–100
 plasma 259–262
 serum 321–325
Fick, indirect method see Cardiac output
Fluoride, bone stores 145–152
Fractionation, analytical subcellular 211–219
Free radicals, scavenging enzymes 211–219
Geriatrics, orthostatic hypotension 411–413
Glomerular seiving 65–75
Glucagon
 natriuresis 393–401
 protein-sparing infusions 507–515
D-Glucaric acid 419–421
Glucagon metabolism, phenformin 337–340
[15N]Glycine, metabolism 517–522
Growth hormone, secretion in hypertension 135–138
Guanosine 3′:5′-monophosphate, excretion in cancer 463–467
H1-receptor antagonist, chlorpheniramine 537–544
H2-receptor antagonist, cimetidine 537–544
Haemochromatosis, primary iron damage 211–219
Haemodialysis, sulphur-amino acids 427–430
Haemodynamics in chronic bile-duct ligation 493–500
Haemopyrrole lactam, schizophrenia and porphyria 469–476
Heart
 ferritin 259–262
 rate 37–43, 411–413
 rate during cooling 501–506
 surgery 83–91
 systole 357–364
Hepatoma, plasma membrane fractions 439–444*
Hepato-biliary diseases, plasma-membrane modifications 439–444*
Hepatitis, d-galactosamine–HCl 321–325
Hering–Breuer reflex 343–348*
Hip replacement, alanine load 301–309
Histamine, receptors in bronchi 537–544
Homocysteine, haemodialysis 427–430
Hormone receptors, plasma-membrane modifications in disease 439–444*
α2HS-glycoprotein, Paget’s disease 435–438
25-Hydroxycholecalciferol 523–535
4-Hydroxy-3-methoxyphenylethylene glycol, urinary conjugates 311–316
Hydroxyproline excretion 341–342
Hypercalcaemia, prostaglandin E2 201–210
Hypercapnia, breathing pattern 343–348*
Hypertension
 baroreflex sensitivity 21–27
 calcium 365–371
 cardiac haemodynamics 349–356
 cardiogenic 271–277
 clonidine 135–138
 dopamine 135–138
 mineralocorticoids 365–371
 renal, Goldblatt two-kidney one-clip 1–6, 15–20
 renal failure 21–27
Hypothermia, cooling responses 501–506
Indium-labelled blood platelets 243–248
Indomethacin
 glycerol metabolism 337–340
 renin release 415–418
Insulin
 glucose in postoperative patients 507–515
 potassium 415–418

Immunoglobulin G complex 157–160

Insulin
Subject Index

Insulin—continued
renin release 415–418
resistance 59–63
Intestinal transport, dipeptides 221–225
Iodothyronine, release 317–320
Iron
anaemia 173–175
deficiency 93–100
ferriin 93–100
overload 211–219
storage in hepatitis 321–325
Isolelectric focusing, ferritins 259–262
Isoenzymes, creatine kinase-1 157–160
Isoprenaline, systole 357–364
Jaundice, obstructive, antidiuretic hormone 493–500
Ketone bodies, postoperative patients 507–515
Kidney
antidiuretic hormone clearance 139–144
bile-acid excretion 489–492
cancer 201–210
diabetes 139–144
dopamine 77–82
drug handling 379–384
glomerular sieving 65–75
micropuncture 139–144
mineralocorticoid 77–82
natriuretic factor 385–392
nephropathy 65–75
paracetamol 379–384
prostaglandins 201–210
vasopressin 139–144
Kidney disease
cancer 201–210
chronic renal failure 21–27
glomerulonephritis, experimental 65–75
renal failure 327–335, 337–340, 427–430
Kidney tubules, glycerol metabolism 337–340
Lactate, phenformin 153–155
Leucocyte
biotin 111–114
carboxylases 111–114
emphysema 403–409
tobacco smoke 403–409
Lignocaine, transport 107–109
Lipolysis, adenyly cyclase–cyclic AMP system 59–63
Lipoproteins, enzyme induction 419–421
Liver
alanine load 301–309
chronic bile-duct ligation 493–500

damage in iron overload 211–219
induced hepatitis 321–325
plasma-membrane modifications 439–444
Liver disease, bile acids in 485–492
Lung
adrenoreceptors 457–461
vasoactive hormones 45–51
volume 249–253
Lymphocytes, aspartylglycosaminuria 165–168
Lysosomes
leucocyte 403–409
storage disease 165–168
Magnesium, menopause 255–257
Mauve factor 469–476
Menopause
alkaline phosphatase 341–342
hydroxyproline excretion 341–342
magnesium 255–257
Menstrual cycle, erythrocyte carbonic anhydrase I 161–164
Metabolic acidosis, hypothermia 501–506
Methionine, haemodialysis 427–430
β-Methylcrotonyl-CoA carboxylase 111–114
3-Methylhistidine, excretion postoperatively 507–515
Microfilaments, biliary function 545–548
Mineralocorticoid, effect on urinary dopamine 77–82
Monoamines, inhibition in anaesthesia 45–51
Monocytes, Crohn’s disease 295–300
Motor nerve, conduction velocity 21–27
Muscle, skeletal
metabolism 279–286
muscular dystrophy 301–309
Muscle, visceral, arterial 373–378
Natriuresis
glucagon-induced 393–401
sodium balance 385–392
Natriuretic factor, sodium balance 385–392
Nephropathy, urea-induced 65–75
Neuraminidase, serum ferritin 259–262
Neurotransmitter, adrenergic, release 373–378
Nitrogen, postoperative metabolite excretion 507–515
Nitrous oxide, cardiac output measurement 263–270
Noradrenaline
baroreceptor reflex 7–13
exercise 37–43
insulin 415–418
renal and femoral circulations 29–35
Subject Index

Occupancy principle, metabolism of vitamin B₁₂ 169–171
Oestrogen, therapy 255–257
Oral contraceptives, erythrocyte carbonic anhydrase I 161–164
Oral contraceptives, erythrocyte carbonic anhydrase I 161–164
Orthostatic hypotension, heart rate 411–413
Osteomalacia, u.v. irradiation 235–242
Osteoporosis, postmenopausal 341–342
Oxygen utilization, in hypothermia 501–506
Paget’s disease 435–438
Paper chromatography, ANG II extracts 445–50
Paracetamol, renal metabolism 379–384
Parathyroid hormone-induced hypertension 365–371
Peptides, intestinal absorption 221–225
Phaeochromocytoma brain amine turnover 311–316
haemodynamics 349–356
Phagocytosis, tobacco smoke 403–409
Phalloidin, effect on biliary lipid secretion 477–484
Phenformin, gluconeogenesis 153–155
Phosphagens, energy-rich, aging 553–555
Plasma membrane, in liver disease 439–444*
Platelets, ¹¹¹In labelling 243–248
Porphyria cutanea tarda 477–484
Porphyrinogens, in porphyria cutanea tarda 477–484
Potassium, insulin 415–418
Progesterone, erythrocyte carbonic anhydrase I 161–164
Prolactin, hypertension 135–138
Propionyl-CoA carboxylase 111–114
Propranolol, cardiogenic hypertension 271–277
Prostaglandin bone resorption in cancer 201–210
 glucagon-induced natriuresis 393–401
 precursor 45–51
Prostaglandin E₂ inactivation 45–51
 renin release 415–418
Prostaglandin F₂α baroreceptor reflex 7–13
 renin release 415–418
Proteinuria, urea-induced 65–75
Pulmonary emphysema 403–409
Pulse-wave velocity in diabetes 53–57
Radioligand binding, lung adrenoceptors 457–461
Rebreathing, cardiac output during 263–270
Renal artery, removal of angiotensin II and noradrenaline 29–35
Renin conversion on cold storage 451–456
 release mediated by prostaglandins 415–418
Renin-angiotensin system 1–6
Renin-binding substance 451–456
Respiration, artificial, computer model 83–91
Respiratory pattern 343–348*
R–R interval, diabetes mellitus 193–200
Saralasin ([Sar¹, Ala⁶]angiotensin II), antagonism 15–20
Schizophrenia, mauve factor in 469–476
Shivering, hypothermia 501–506
Sialic acid, residues in isoferritins 259–262
Skeletal muscle, aging on phosphagens 553–555
Skin, u.v. irradiation 235–242
Sleep, arterial pressure 115–117
Smooth muscle, isolated artery 373–378
Sodium dopamine production 77–82
 excretion 385–392
 glucagon 393–401
Somatostatin, iodothyronine release 317–320
Spironolactone, aldosterone regulation 227–233
Starvation, alanine excretion 301–309
Strontium (⁸⁵Sr), absorption 287–293
Superoxide dismutase
 Fanconi’s anaemia 173–175
 iron overload 211–219
Surgery, protein-sparing infusions on metabolism 507–515
Sympathetic nervous system
catechol-O-methyltransferase 423–425
 exercise 37–43
Testosterone, respiratory failure 105–106
Thrombocyte aggregation 243–248
 ¹¹¹In labelling 243–248
Thyrocalditonin, serum fluoride 145–152
Thyroid gland, iodothyronine release 317–320
Tobacco smoke, leucocyte phagocytosis 403–409
Toxins, hepatic plasma-membrane modifications 439–444*
Transamination, amino acid catabolism 517–522
Transport active, lignocaine 107–109
 intestinal 221–225
Triglycerides, enzyme induction 419–421
Tropical sprue, dipeptide absorption 431–433
Subject Index

Ulcerative colitis, enzyme activity 295–300
Ultraviolet irradiation, plasma 25–hydroxyvitamin D 235–242
Uraemic neuropathy, chronic renal failure 21–27
Uroporphyrinogen decarboxylase 477–484

Vascular disease, premature development 427–430
Vasoconstriction, subatmospheric pressure 193–200
Vasopressin
 kidney degradation 139–144
 radioimmunoassay 139–144

Vegans, vitamin B₁₂ clearance 101–103
Ventricular volume curves 357–364
Vitamin B₁₂ clearance 101–103
pernicious anaemia 169–171
Vitamin D deficiency 523–535
u.v. irradiation 235–242
Volume–pressure hysteresis 249–253

Water, renal excretion 493–500
Whole-body counting
calcium absorption 287–293
vitamin B₁₂ clearance 101–103

CORRECTION

Volume 57

page 412, Table 2: values on the top line should be deleted.