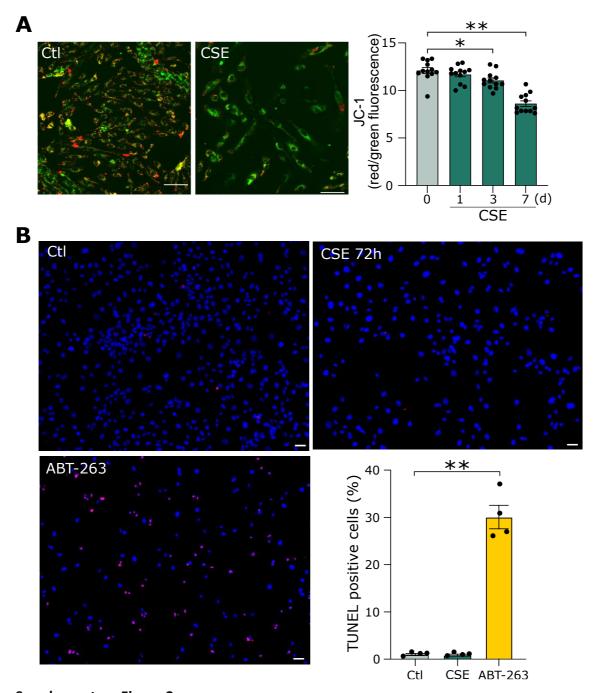
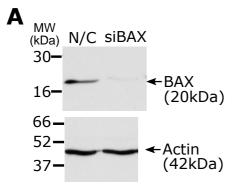
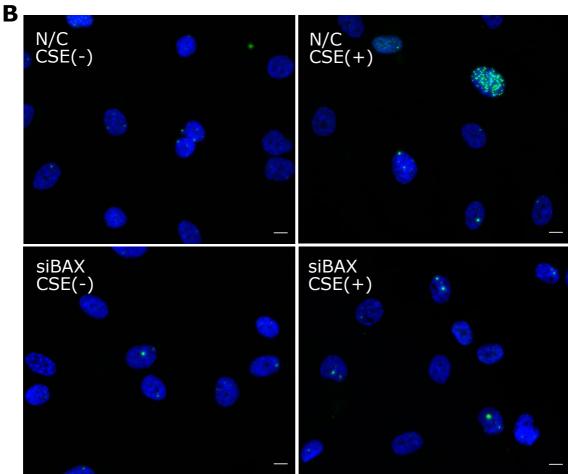

SUPPLEMENTARY DATA (Supplementary Figures and Tables)

Cigarette smoke induces mitochondrial DNA damage and activates cGAS-STING pathway -Application to a biomarker for atherosclerosis

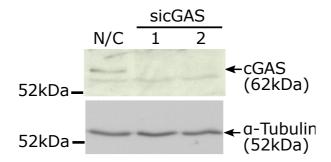
Keitaro Ueda¹, Chiemi Sakai¹, Takafumi Ishida², Kosuke Morita¹, Yusuke Kobayashi³, Yasunori Horikoshi⁴, Akiko Baba¹, Yuma Okazaki¹, Masao Yoshizumi¹, Satoshi Tashiro⁴, Mari Ishida¹


- 1. Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan.
- 2. Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima 960-1295 Japan.
- 3. Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan.
- 4. Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan.

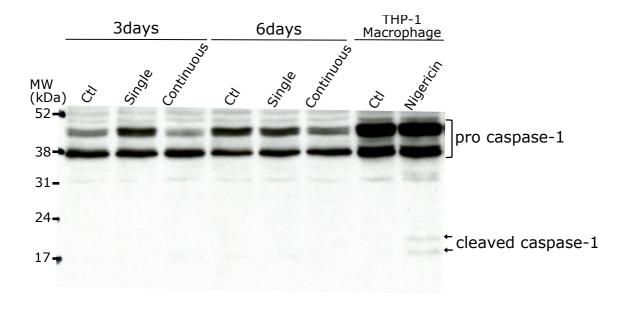


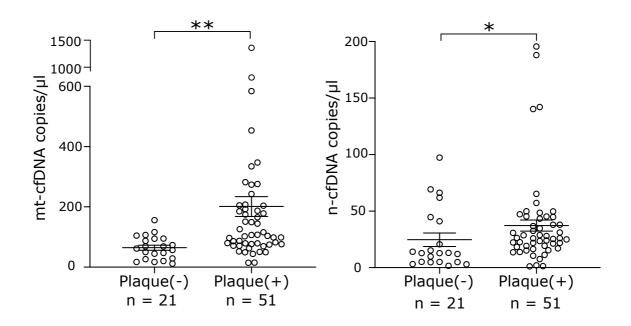

(A) Low-power field images of γ H2AX immunofluorescent staining (green) in human umbilical vein endothelial cells (HUVECs). Control experiments were performed with normal mouse IgG. γ H2AX formation by cigarette smoke extract (CSE) were shown. (B) Low-power field images of 8-OHdG immunofluorescent staining (red) in HUVECs. Control experiments were performed with normal rabbit IgG. (C) Immunofluorescent staining of BAX 6A7 in HUVECs. Control experiments were performed with normal mouse IgG. (D) Immunofluorescent staining of cleaved caspase-3 in HUVECs. Control experiments were performed with normal rabbit IgG.

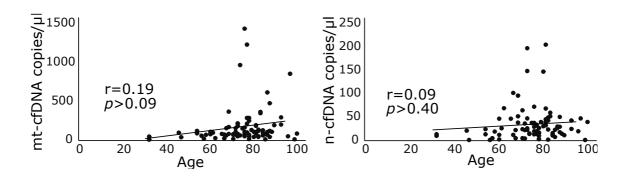
Scale bar = $50 \mu m$.



(A) Mitochondrial membrane potential after CSE treatment. Scale bar = 100 μ m. Mitochondrial membrane potential was quantified by JC-1 probe over seven days with CSE in HUVECs. The ratio of red/green fluorescence indicates mitochondrial transmembrane potential. *P < 0.05, **P < 0.01 compared with control (0 d). (B) TUNEL staining in HUVECs treated with CSE for 72 hours. ABT-263, an inhibitor of Bcl-2 was used for a positive control. Scale bar = 50 μ m. **P < 0.01 compared with control (Ctl).




(A) BAX expression after transfection with negative Control siRNA or BAX small interfering RNA (siRNA). Western blot analysis was performed with anti-BAX antibody. Arrow indicates BAX. (B) Low-power field images of the immunofluorescent staining of γ H2AX in HUVECs transfected with siRNA against BAX (siBAX), or negative control siRNA (N/C) with or without CSE. Scale bar = 20 μ m.


cGAS expression after transfection with negative Control siRNA (N/C) or cGAS small interfering RNA (sicGAS). Western blot analysis was performed with anti-cGAS antibody. The arrow indicates the band corresponding to cGAS.

Time course analysis of cytosolic caspase-1 levels by Western blotting. HUVECs were treated with CSE for 3 days or 6 days. As a positive control, THP-1 macrophages were treated with Nigericin.

The cfDNA copy number in normal subjects (Plaque [-]) and subjects with carotid plaques (Plaque [+]) in non-smokers. *P < 0.05, **P < 0.01 compared with Plaque (-).

Correlation of nuclear or mitochondrial cfDNA copy number with age. The correlation was analyzed using Pearson's correlation.

Supplementary Table 1. Primer Sequences

Table 1. Fi	I	
<i>IL-6</i> forward primer	AAGCCAGAGCTGTGCAGATGAGTA	qRT-PCR
(human)		
<i>IL-6</i> reverse primer	TGTCCTGCAGCCACTGGTTC	qRT-PCR
(human)		
<i>IL-1a</i> forward primer	CTCAATTGTATGTGACTGCCCAAGA	qRT-PCR
(human)		
<i>IL-1a</i> reverse primer	TGGATGGCAACTGATGTGAA	qRT-PCR
(human)		
MCP-1 forward primer	GCTCATAGCAGCCACCTTCATTC	qRT-PCR
(human)		
MCP-1 reverse primer	GGACACTTGCTGCTGGTGATTC	qRT-PCR
(human)		
<i>IFN-b</i> forward primer	AAACTCATGAGCAGTCTGCA	qRT-PCR
(human)		
<i>IFN-b</i> reverse primer	AGGAGATCTTCAGTTTCGGAGG	qRT-PCR
(human)		
18s ribosomal RNA	ACTCAACACGGGAAACCTCA	qRT-PCR
forward primer		
(human)		
18s ribosomal RNA	AACCAGACAAATCGCTCCAC	qRT-PCR
reverse primer (human)		
HBB 5'	CAAACAGACACCATGGTGCACCTGACTCCTG	PCR
	AGGAGAAGTCTGCCGTTACTGCCCTGTGGG	
	GCAAGGTG	
HBB 3'	AACGTGGATGAAGTTGGTGGTGAGGCCCTG	PCR
	GGCAGGTTGGTATCAAGGTTACAAGACAGG	
	ттт	
NADH 15'	TCTTAACAACATACCCATGGCCAACCTCCTAC	PCR
	TCCTCATTGTACCCATTCTAATCGCAATGGCA	
	ттсст	
NADH1 3'	AATGCTTACCGAACGAAAAATTCTAGGCTAT	PCR
	ATACAACTACGCAAAGGCCCCAACGTTGTA	
	1	

IL-6 = Interleukin 6, IL-1a = Interleukin 1 a, MCP-1 = monocyte chemoattractant molecule 1, IFN-b = Interferon-b, HBB = hemoglobin subunit beta, NADH1 = NADH dehydrogenase subunit 1

Supplementary Table 2. Sequences for small interfering RNA

Target gene	Target sequence (5'–3')
cyclic GMP-AMP	GGAAGAAUUAACGACAUUTT
synthase (human) (1)	
cyclic GMP-AMP	CCUUCUCACAUCGAAAATT
synthase (human) (2)	
BAX (human)	GCGUCCACCAAGAAGCUGATT

Supplementary Table 3. Logistic regression analysis in non-smokers: associations between the presence of plaque and the log cfDNA and clinical profiles.

	Univariate		Multivariate			
	OR	95%CI	P value	OR	95% CI	P value
log mt-cfDNA	3.77	1.75-9.80	<0.0003	3.83	1.39-13.38	0.007
log n-cfDNA	1.71	1.05-2.91	0.03	1.07	0.57-2.03	0.84
Age	1.10	1.05-1.18	<0.0001	1.07	1.00-1.15	0.04
Male	2.88	0.96-9.95	0.06	1.32	0.31-5.87	0.71
BMI	1.00	0.91-1.11	0.96			
Hypertension	1.57	0.50-4.76	0.43			
Dyslipidemia	1.49	0.53-4.29	0.45			
Diabetes	1.04	0.37-2.95	0.94			
TG	1.01	0.99-1.02	0.26			
HDL-C	0.96	0.93-0.99	0.03	0.99	0.94-1.04	0.64
LDL-C	1.00	0.98-1.001	0.13			
HbA1c	0.96	0.67-1.01	0.13			
eGFR	0.96	0.93-0.99	0.02	0.98	0.93-1.02	0.32

Multivariate analysis was performed with the presence of plaque as binary dependent variables and with the log cfDNA, age, male, HDL-C, eGFR as covariates.

mt-cfDNA = mitochondrial cell-free DNA; n-cfDNA = nuclear cell-free DNA; BMI = body mass index; TG = Triglyceride; HDL-C = high-density lipoprotein cholesterol; LDL-C=low-density lipoprotein cholesterol; HbA1c = Hemoglobin A1c; eGFR = estimated glomerular filtration rate.

Supplementary Table 4. Baseline characteristics of study subjects divided into four groups

	Normal n=21	Mild n=28	Moderate n=17	Severe n=17	
Age	64.5 (55.8-72.5)	70 (65.5-78)	78* (71-81)	78*† (75-84)	
Male, n(%)	6 (28.6%)	15 (53.6%)	8 (47.1%)	12 (70.6%)	
plaque thicknesses	0	2.5 (1.8-3.2)	6.9 (6-8.5)	13.1 (11.4-16.7)	
HbA1c	5.9 (5.5-6.6)	6.2 (5.8-6.6)	6.3 (5.6-6.7)	6 (5.5-6.7)	
TG	76 (61-103)	101 (67.8-125)	84 (74-126)	107 (90-124)	
HDL-C	71 (63-77)	60 (53.8-64)	54 (49-66)	57 (45-66)	
LDL-C	113 (95-142)	107 (85-122.3)	96 (81-105)	102 (92-138)	
AST	21 (19-24)	20.5 (19-24.5)	22 (17-27)	25 (22-28)	
ALT	16 (14-27)	19 (13.8-23)	15 (13-22)	22 (12-26)	
eGFR	70.4 (62.2-73.5)	52.6 (45.4-64.6)	58.3 (50.8-70.6)	54.4 (44.7-69.5)	
MBP	96 (81.6-102)	93 (86.7-98.8)	86.7 (83.7-94.7)	92.7 (84.3-99.7)	
ВМІ	23 (20.8-26.6)	24.9 (22.7-28.4)	25.4 (24.3-27.1)	23.6 (22-26.2)	
Hypertension, n(%)	13 (62%)	18 (64.3%)	16 (94.1%)	13 (76.5%)	
Diabetes, n(%)	9 (42.9)	14 (50%)	10 (58.8)	9 (52.9%)	
Dyslipidemia, n(%)	10 (47.6%)	14 (50%)	9 (52.9%)	11 (64.7%)	
Atrial fibrillation , n(%)	0	3 (10.7%)	0	1 (5.8%)	
Heart failure , n(%)	0	1 (3.6%)	0	0	

Continuous data were expressed as median and interquartile range, and categorical data as number and ratio. Steel-Dwass test was performed for continuous data, and the Chi-square test was for categorical data. *p<0.05 vs Plaque(-), †p<0.05 vs Mild. HbA1c = Hemoglobin A1c; TG = Triglyceride; HDL-C = high-density lipoprotein cholesterol; LDL-C=low-density lipoprotein cholesterol; AST = aspartate transaminase; ALT = alanine aminotransferase; eGFR = estimated glomerular filtration rate; MBP = mean blood pressure; BMI = body mass index.