Table S1. Classification of CHD subtypes in our study

Diagnosis	Number
Conotruncal $^{\text {Septal }^{\mathrm{a}}}$	$139(33.3 \%)$
RVOTO	$138(33.1 \%)$
AVSD	$46(11.0 \%)$
LVOTO	$22(5.3 \%)$
APVR	$17(4.1 \%)$
Complex $^{\mathrm{b}}$	$12(2.9 \%)$
Heterotaxy $^{\text {Others }^{\text {c }}}$	$10(2.4 \%)$
Total	$3(0.7 \%)$

AVSD: Atrioventricular septal defect; APVR: Anomalous pulmonary venous return; LVOTO: Left Ventricular outflow tract obstruction; RVOTO: Right ventricular outflow tract obstruction; PDA: Patent ductus arteriosus.
${ }^{\text {a }}$ Group "Septal" includes VSD, ASD (Except ASD I) etc.
${ }^{\text {b }}$ Group "Complex" includes single ventricle, L-TGA and multiple complex heart anomalies.
${ }^{\text {c }} 387$ out of 417 cases were classified into first eight groups according to the method introduced by Lorenzo et al. ${ }^{[1]}$. Whereas 30 cases can't be classified into the study mentioned above and are sorted into "Other" groups, which includes 17 cases of isolated PDA, 8 cases of aproctia with CHD, 2 cases of mitral insufficiency, 2 cases of aortopulmonary window and 1 mitral stenosis.

1. Botto, L.D., A.E. Lin, T. Riehle-Colarusso, S. Malik, A. Correa, and S. National Birth Defects Prevention, Seeking causes: Classifying and evaluating congenital heart defects in etiologic studies. Birth Defects Res A Clin Mol Teratol, 2007. 79(10): p. 714-27.

c.G711C (p.Q237H)

TGTTECCATT GTECTCACCTA Mutated Allele
T G T T G C CA T T C T G C T CA C C T A Reference Allele (Complementary strand)

c.933_934 ins AA (p.T312K fs*55)

IGCIGTICTCACTCTAGCGAGC
TGCTGT T C T CAA ACTAA AGCGAMutated Allele
TGCTGT T CT CAC TAAAGCGAGCReference Allele
c.T811G (p.W271G)

T CAT GGAGGAGGGACTGATGGMutatedAllele T CA T G G A GGATGGAC TGATGGReference Allele
c.A1558C (p.S520R)

ACAT CGAGGTCGT GCTGATTTMutated Allele
ACAT CGAGGTAGTGCTGAT TTReference Allele

Table S2 Summary of mutations and clinical information of the carriers

Nucleotide $^{\text {a }}$	Amino Acid $^{\text {b }}$	SIFT	POLYPhen-2	Age	Gender	Diagnosis
c.G711C	p.Q237H	Tolerated	Benign	1.3	Male	PDA
c.T811G	p.W271G	Deleterious	Possibly damaging	7.75	Male	VSD, ASD, PDA
c.933_934 ins AA	p.T312K fs*55	N/A	N/A	3	Female	ASD, PS
c.A1558C	p.S520R	Deleterious	Benign	5.5	Female	ASD, PS
c.C2186T	p.A729V	Tolerated	Benign	11	Female	Healthy control

${ }^{\mathrm{a}}$ NM_020774.3; ${ }^{\text {b }}$ NP_065825.1.
ASD: Atrial septal defect; VSD: Ventricular septal defect; PDA: Patent ductus arteriosus; PS: Pulmonary Stenosis.

Table S3 Phenotypic statistics of zebrafish embryo injection

	Normal	Mild	Moderate	Severe	n	\boldsymbol{p} (vs WT)	
Uninjected	221	3	1	0	225		
Vector	168	6	4	0	178		
Wild Type	112	25	7	28	172		
p.Q237H	101	21	13	9	144	$*$	Pearson
p.W271G	193	33	16	3	245	$* *$	Pearson
p.T312K fs*55	182	12	7	6	207	$* *$	Fisher
p.S520R	217	45	19	16	297	$* *$	Pearson

*p<0.05; **p<0.01

