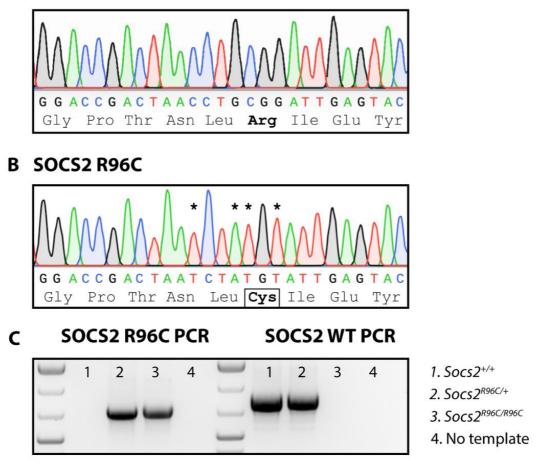
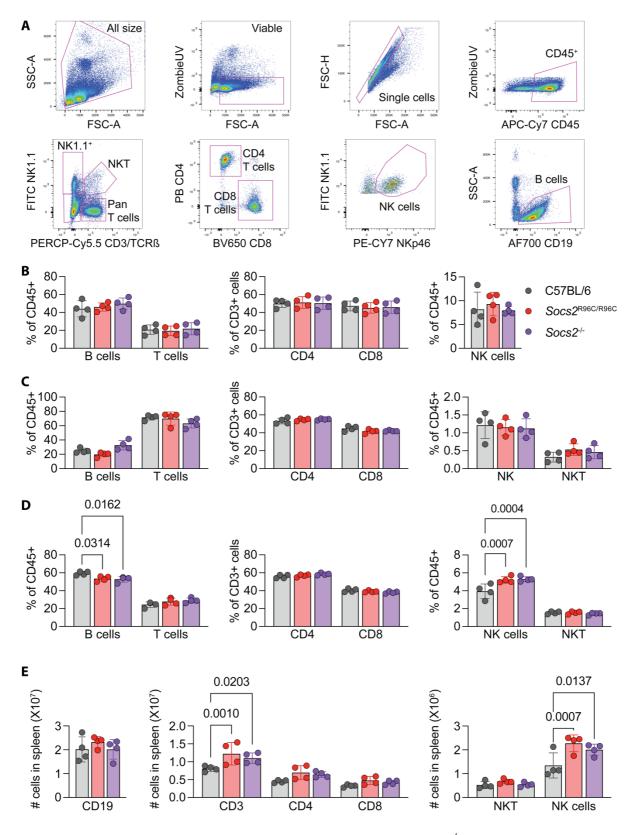

Supplementary - SOCS2 regulation of growth hormone signaling requires a canonical

interaction with phosphotyrosine

Kunlun Li^{1,2}, Lizeth G. Meza Guzman^{1,2}, Lachlan Whitehead^{1,2}, Evelyn Leong¹, Andrew Kueh, Warren S. Alexander^{1,2}, Nadia J. Kershaw^{1,2}, Jeffrey J. Babon^{1,2}, Karen Doggett^{1,2}[†], Sandra E. Nicholson^{1,2}[†]

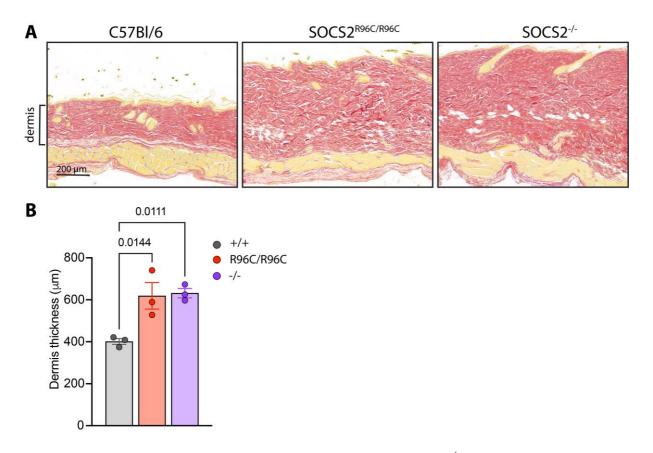

¹The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; ²Department of Medical Biology, University of Melbourne, Parkville, Australia.

[†] These authors jointly supervised this work and are corresponding authors.



Supplementary Figure 1. Mutation of Arg73 to Lys in the SOCS2-SH2 domain results in reduced binding to phosphopeptide. A competitive surface plasmon resonance (SPR) assay was used to assess the impact of the R73K mutation. SOCS2 bound to a phosphopeptide derived from GHR pY595 with an IC₅₀ $1.1 \pm 0.05 \mu$ M. The SOCS2-R73K mutation reduced binding to GHR pY595, IC₅₀ $26.7 \pm 1.0 \mu$ M. IC₅₀ values are mean \pm S.D., derived from three independent experiments.

A SOCS2WT



Supplementary Figure 2. Genotyping confirmation of the correct sequence change in the $Socs2^{R96C}$ mouse. Sanger sequencing chromatograms confirming (A) the WT Socs2 sequence and (B) the mutated $Socs2^{R96C}$ sequence (homozygous mutant allele). *Highlights the CRISPR targeted base residue changes, two of which are synonymous and were introduced to enable primer specificity for standard gDNA genotyping. (C) Example 2% agarose gel confirming genotyping specificity by PCR. Primer sequences are available in Supplementary Table 1.

Supplementary Figure 3. Homozygous *Socs2*^{*R96C/R96C*} and *Socs2*^{-/-} mice display increased numbers of splenic NK cells. Single cell suspension peripheral blood mononuclear cells (PBMCs), splenocytes and lymphocytes from 8-12-week-old control C57BL/6 (black),

Socs2^{*R96C/R96C*} (red) and *Socs2*^{-/-} (purple) mice were stained with fluorescently conjugated antibodies to various immune markers and analysed by flow cytometry. (**A**) Example gating for the analysis of viable leukocytes (ZombieUV⁻CD45⁺), NKT (CD3⁺TCRβ⁺NK1.1⁺), Pan T cells (CD3⁺TCRβ⁺NK1.1⁻), CD4 T cells (CD3⁺TCRβ⁺NK1.1⁻CD4⁺), CD8 T cells (CD3⁺TCRβ⁺NK1.1⁻CD8⁺), Pan B cells (CD3⁻TCRβ⁻NK1.1⁻CD19⁺) and NK cells (CD3⁻TCRβ⁻NK1.1⁺NKp46⁺). Percentage of various immune populations in the (**B**) blood, (**C**) axial and inguinal lymph nodes, and (**D**) spleen. (**E**) Enumeration of immune populations in the spleen using counting beads (123count eBeads). (**B-E**) Each dot represents cells from an individual mouse. Significance determined by two-way ANOVA with Sidak's multiple comparisons test.

Supplementary Figure 4. Homozygous $Socs2^{R96C/R96C}$ and $Socs2^{-/-}$ mice display thickening of the skin. (A) Van Giessen-stained dorsal skin section from 10-week-old male WT, $Socs2^{R96C/R96C}$ and $Socs2^{-/-}$ mice. Socs2 mutant and null mice show increased collagen deposits and a thickened dermis. Scale bar = 200 µm. Representative images of 3 mice of each genotype. (B) Quantification of dermis thickness. n=3 mice/genotype. Data were analyzed using a one-way ANOVA.

Supplementary Figure 5. Socs2^{*R96C/R96C*} and Socs2^{-/-} MEFs display prolonged growth hormone signal activation. Socs2^{+/+}, Socs2^{*R96C/+*}, Socs2^{*R96C/R96C*} and Socs2^{-/-} MEFs were treated with 50 ng/mL of GH, lysed and analysed by immunoblotting with antibodies to the indicated proteins. P: phosphorylated, T: total. Two additional independent experiments related to **Figure 4**.

Supplementary Table 1. Socs2^{R96C} genotyping primers.

	Allele	Forward Primer (5'-3')	Reverse Primer (5'-3')	PCR Product (bp)
Standard genotyping	Socs2 ^{R96C}	AGCTTTCCACTTTGTCCCCTA	ATCTGAATTTCCCATCTTGGTACTCAAT ACAT	766
	Socs2 ^{+/+}	GCTGGACCGACTAACCTGC	AGCATGGTCAGCTTAACGGAA	901
NGS* genotyping		GTGACCTATGAACTCAGGAGTCTGAC TGTTAATGAAGCCAAAGAG	CTGAGACTTGCACATCGCAGCGTGAACA GTCCCATTCCGTG	290

*Next generation sequencing