high-score low-score high-score low-score high-score low-score high-score low-score high-score low-score high-score high-score high-score high-score **Supplementary Figure: IC50 values of all 79 drugs.** A. 14 drugs with low drug sensitivity of the risk group. B. 65 drugs with high drug sensitivity of the risk group. | pmid | TF | characterist | gene | regulation_ | hallmark | original_text | title | Motif Strand | Location | p.value | Match.Sequ | Gene | |----------|-------|---------------------------------------|-------------------------------|---|--|--|---|------------------------------|-------------------------|----------|--------------------------------|--------| | 28643791 | PAX7 | high
expression;
tageted by | EWSR1
fusion
protein | type
positive | Ewing
sarcoma | Here, using analyses of published whole-genome
gene expression microarray data, we identify
PAX7 as a gene with significantly increased | EWSR1 fusion
proteins mediate PAX7
expression in Ewing | V_PAX7_01
_M01339 | 102557208-
102557224 | 5.00E-06 | TCAAATAAT
TAGAAAAA | LRRC17 | | | | | | | | PAXY as a gene with significantly increased expression in Ewing sercoma in comparison to CIC-DUM round cell sarcoma Exploring the CIC-DUM round cell sarcoma Exploring the comparison of the CIC-DUM round comparison compar | sarcoma. | | | | | | | | | | | | | consensus GGAA repeat-containing binding site
and a peak of regulatory H3K27 acetylation. | | | | | | | | 28008375 | SMAD3 | targeted by | EWSR1/FLI | negative | N/A | SMAD3 were up-regulated and FLI1, MYB, E2F1, ETS2, WT1 were down-regulated with more than half of their targets were down-regulated after EWSR1/FLI1 knockdown. | Knockdown of
EWSR1/FLI1
expression alters the
transcriptome of Ewing | V_SMAD3_
Q6_01_M01
888 | 127348889-
127348901 | 7.00E-06 | AGGCAGAC
ACATC | PODXL2 | | 28008375 | MYB | targeted by | EWSR1/FLI | positive | N/A | EWSHIFLII Knockdown. SMAD3 were up-regulated and FLI1, MYB, E2F1, ETS2, WT1 were down-regulated with more than half of their targets were down-regulated after EWSR1/FLII knockdown. | transcriptome of Ewing
sarcoma cells in vitro.
Knockdown of
EWSR1/FLI1
expression alters the
transcriptome of Ewing | V_MYB_Q3 +
_M00773 + | 102557023-
102557033 | 2.00E-06 | AGTGTCAG
TTG | LRRC17 | | 29773426 | sox | correlate
with | H3K27me3 | N/A | synovial
sarcoma | H3R27me3 immunohistochemistry of the synovial sarcoma cases revealed a high statistically sarcoma cases revealed a high statistically H3R27me3 expression (p_<0.0005, Chi square test). Six SOX2 positive synovial sarcoma cases were analyzed by FISH using a SOX2/CEN3 dual color FISH probe. None of these cases revealed | sarcoma cells in vitro." Stem cell transcription factor SOX2 in synovial sarcoma and other soft tissue tumors. | V_SOX2_Q6 +
_M01272 | 102553198-
102553213 | 1.00E-05 | ATTCTCTTT
GTTTGTG | LRRC17 | | 7828148 | CHOP | amplification
; high
expression | N/A | N/A | N/A | | The protooncogene
CHOP/GADD153,
involved in growth
arrest and DNA | V_CHOP_01 +
_M00249 | 102557059-
102557071 | 7.00E-06 | TTGTGCAAT | LRRC17 | | | | | | | | We have now found CHOP amplification in two sacroms cell lines with previously reported constitutive expression levels of CHOP were observed in tumors with gene amplification, but of constitutive expression levels of CHOP were co-amplified in two of these, whereas the two sets of constitutive expression levels of CHOP were co-amplified in two of these, whereas the two osteosarooms had amplified CHOP but not MDMZ CHOP was amplified in both cell lines with GLI amplified city, and the constitution, and MCMZ only in one. | | | | | | | | 10574952 | ATF1 | high
expression | N/A | N/A | cell viability;
clear cell
sarcoma | The level of EWS/ATF1 expression was found to be significantly higher in primary tumor tissue than in student and the significant properties of the significant properties. The significant properties of significan | Tumor cell viability in
clear cell sarcoma
requires DNA binding
activity of the
EWS/ATF1 fusion
protein. | V_ATF1_Q6 +
_M00691 + | 53342311-
53342321 | 1.00E-06 | CCCTGACG | HLF | | 10574952 | ATF1 | high
expression | N/A | N/A | cell viability; | | Tumor cell viability in | V_ATF1_04_ +
M02842 | 102553731-
102553744 | 7.00E-06 | CTATGACA
AAGAAA | LRRC17 | | | | | | | clear cell
sarcoma | In the conditional ways and the conditional ways found that in SUL-CCS-1 cells or in SQ37 cells following introduction of an EWS/ATF1 expression vector. These studies demonstrate a direct role for the EWS/ATF1 fusion protein in maintaining tumor that intracellular antibodies may be used to achieve a phenotypic knockout of tumor-related proteins as a method to explore their function. | clear cell sercoma
requires DNA binding
activity of the
EWS/ATF1 fusion
protein. | | | | | | | 20514024 | EGR1 | regulate | PTEN | positive;
promoter
binding | cell death;
synovial
sarcoma | Moreover, we find that under these conditions
phosphatase and tensin homolog deleted in | EGR1 reactivation by
histone deacetylase
inhibitors promotes | V_EGR1_Q6 -
_M01873 | 53342277-
53342286 | 4.00E-06 | GCGGGGG
CGG | HLF | | | | | | binding | sarcoma | Moreover, we find that under these conditions phosphatase and treams homolog deleted in obromosome 10 (PTEV) is uprojudated and the conditions of the condition | inhibitors promotes
synowal sarcoma cell
death through the
PTEN tumor
suppressor. | | | | | | | 20514024 | EGR1 | regulate | PTEN | positive;
promoter
binding | cell death;
synovial
sarcoma | Moreover, we find that under these conditions
phosphatase and tensin homolog deleted in
chromosome 10 (PTEN) is upregulated and this
occurs through direct binding of EGR1 to an | EGR1 reactivation by histone deacetylase inhibitors promotes synowial sarcoma cell death through the PTEN tumor suppressor. | V_EGR1_06 +
_M02744 | 53342276-
53342289 | 1.00E-06 | CCCGCCCC | HLF | | | | | | | | combination of gain- and loss-of-function approaches, we show that EGR1 modulation of PTEN contributes to HDAC inhibitor-induced apoptosis in synowal sarcoma. Finally, restoration of EGR1 or PTEN expression is sufficient to induce synowal sarcoma cell death. | | | | | | | | 24415532 | REST | targeted by | EWS-FLI1 | positive | tumor growth | | | V_REST_01 +
_M01256 + | 35182303-
35182324 | 1.00E-06 | CCTGGGGG
CTGTCCTG
GCTGCT | SCUBE3 | | | | | | | | Inhibition of EWS-FLI-1 using small interfering RNA decreased REST expression in human Ewing sarcome cells, inhibition of REST did not be seen to the seen and th | EWS-FLI-1 regulates
the neuronal repressor
gene REST, which
controls Ewing
sarcoma growth and
vascular morphology. | | | | GCTGCT | | | 24415532 | REST | targeted by | EWS-FLI1 | positive | tumor growth | Inhibition of EWS-FLI-1 using small interfering
RNA decreased REST expression in human
Ewing sarcoma cells. Inhibition of REST did not
affect EWS-FLI-1, but significantly suppressed | EWS-FLI-1 regulates
the neuronal repressor | V_REST_02 -
_M02256 | 35182307-
35182327 | 7.00E-06 | CCCAGCAG
CCAGGACA
GCCCC | SCUBE3 | | | | | | | | Ewing sarcoma cells. Insultation or Res.1 did not affect EWS-FLL-1, but significantly suppressed affect EWS-FLL-1, but significantly suppressed period of the same series of the same series and same series and series (SMA) and desmin, increased hypoxia and apoptosis in turnor tissues, and decreased the expression of delta-like ligand 4 (DLL4) and Hes1. | EWS-FLI-1 regulates
the neuronal repressor
gene REST, which
controls Ewing
sarcoma growth and
vascular morphology. | | | | GCCCC | | | 24415532 | REST | regulate | SMA;
deamin;
DLL4; Hes1 | positive | N/A | Inhibition of EWS-FLI-1 using small interfering RNA decreased REST expression in human
Ewing sarcoma cells. Inhibition of REST did not
affect EWS-FLI-1, but significantly suppressed
the suppression of the suppression of the suppression of
pericyte markers: smooth muscle actin (SMA)
and desmin, increased hypoxia and apoptosis in
turnor tissues, and 4 (DLL4) and Hes 1. | EWS-FLI-1 regulates
the neuronal repressor
gene REST, which
controls Ewing
sarcoma growth and
vascular morphology. | V_REST_01 +
_M01256 + | 35182303-
35182324 | 1.00E-06 | CCTGGGGG
CTGTCCTG
GCTGCT | SCUBE3 | | 24415532 | REST | regulate | SMA;
desmin;
DLL4; Hes1 | positive | N/A | Inhibition of EWS-FLI-1 using small interfering
RNA decreased REST expression in human
Ewing sarcoma cells. Inhibition of REST did not
turnor growth in wo, reduced the turnor wessel
pericyte markers - smooth muscle actin (SMA)
and desmin, increased hypoxics and apoptosis in | EWS-FLI-1 regulates
the neuronal repressor
gene REST, which
controls Ewing
sarcoma growth and
vascular morphology. | V_REST_02 -
_M02256 | 35182307-
35182327 | 7.00E-06 | CCCAGCAG
CCAGGACA
GCCCC | SCUBE3 | | 24069508 | REST | interact with | EWS | N/A | neuronal
phenotype
development
; oncogenic
transformatio
n: Ewing | detta-like ligand 4 (DLL4) and Hes1. Co-immunoprecipitation analysis demonstrated that EWS interacts directly with REST. Genomewide binding analysis showed that EWS binds burneling as studies excelled that beth EWS and brieflown studies excelled that both EWS and | EWS and RE1-
Silencing Transcription
Factor inhibit Neuronal
Phenotype
Development and
Oncogenic | V_REST_01 +
_M01256 | 35182303-
35182324 | 1.00E-06 | CCTGGGGG
CTGTCCTG
GCTGCT | SCUBE3 | | 24069508 | REST | interact with | EWS | N/A | n; Ewing
sarcoma
neuronal
phenotype
development
; oncogenic | REST inhibit neuronal phenotype development and
oncogenic transformation in Ewing sarcoma cells. Co-immunoprecipitation analysis demonstrated
that EWS interacts directly with REST. Genome-
wide binding analysis showed that EWS binds
chromatin at or near NRSE. Furthermore, | EWS and RE1-
Silencing Transcription
Factor Inhibit Neuronal | V_REST_02 -
_M02256 | 35182307-
35182327 | 7.00E-06 | CCCAGCAG
CCAGGACA
GCCCC | SCUBE3 | | 24043308 | GLI1 | regulate | KRT17 | positive | transformatio
n; Ewing
sarcoma | functional studies revealed that both EWS and
REST inhibit neuronal phenotype development and
oncogenic transformation in Ewing sarcoma cells. | Phenotype Development and Oncogenic Transformation in Ewing Sarcoma. A novel role for keratin 17 in coordinating | V_GLI1_01
M01702 | 102556953-
102556963 | 8.00E-06 | GGCCACCC
AAG | LRRC17 | | | | | | | cellular
adhesion;
oncogenic
transformatio
n | In this work, we identify keratin 17 (KRT17) as a
direct downstream target gene upregulated by
direct downstream target gene upregulated by
cellular adhesion by activating AKT/PKB (protein
kinase B) signaling, in addition, KRT17 is
necessary for oncogenic transformation in Ewing
sarroma and accounts for much of the GLI1-
mediated transformation function but via a
mechanism independent of AKT signaling. | oncogenic
transformation and
cellular adhesion in
Ewing sarcoma. | | | | | | | 11973649 | ETS1 | targeted by | PARP-1 | negative | N/A | Previously, we cloned the PARP gene promoter region from EWS cells, showed that it contained region from EWS cells, showed that it contained shows the property of the PARP by ETSI Results show that stable down-regulation of ETSI received increases the resistance of EWS cells to various experiences the resistance of EWS cells to various EWS/FLI-1 has pro-apportic effects. Because down-regulation EWS/FLI-1 does not dramatically change PARP levels, these results suggest a | Differential regulation of
the response to DNA
damage in Ewing's
sarcoma cells by
ETS1 and EWS/FLI-1. | V_ETS1_B
M00339 | 102549332-
102549346 | o | CCAGGAAG
TGGTTAC | LRRC17 | | 30219084 | ATF1 | EWSR1-
ATF1 fusion | N/A | N/A | N/A | response of EWS cells. These cases most likely had EWSR1-ATF1 and EWSR1-CREB1 fusions, respectively. RT-PCR was performed in 8 available cases, including 6 CCSSTs and 2 CCSLGTs. All CCSSTs showed cases, one had EWSR1-ATF1 fusion and the other had EWSR1-GREB1 fusion. | Detection of specific
gene rearrangements
by fluorescence in situ
hybridization in 15
cases of clear cell
sarcoma of soft tissue
and 6 cases of clear
cell sarcoma-like
gastrointestinal tumor. | V_ATF1_Q6 +
_M00691 | 53342311-
53342321 | 1.00E-06 | CCCTGACG
TCA | HLF | | 30219084 | ATF1 | EWSR1-
ATF1 fusion | N/A | N/A | N/A | These cases most likely had EWSR1-ATF1 and EWSR1-CREB1 fusions, respectively, RT-PCR was performed in 8 available cases, including 6 CCSSTs and 2 CCSLGTs. All CCSSTs showed EWSR1-ATF1 fusions. Among the 2 CCSLGT cases, one had EWSR1-ATF1 fusion and the other had EWSR1-ATF1 fusion. | Detection of specific
gene rearrangements
by fluorescence in situ
hybridization in 16
cases of clear cell
sarcoma of soft tissue
and 6 cases of clear
cell sarcoma-like | V_ATF1_04_ +
M02842 | 102553731-
102553744 | 7.00E-06 | CTATGACA
AAGAAA | LRRC17 | | 16463269 | STAT3 | N/A | N/A | N/A | Ewing
sarcoma
family of
tumours | In conclusion, STAT3 activation is present in approximately half of ESFT and correlates with approximately half of ESFT and correlates with ESFT pathogenesis seems to be independent of the type of EWS/EIts translocation. | gastrointestinal tumor. | V_STAT3_0 -
3_M01595 | 127351434-
127351449 | 4.00E-06 | CATTCCAG
GAAGAAAA | | | 23185447 | ETS | regulate | KCNN2 | negative | Ewing\'s
sarcoma | the type of EWS/Ets translocation. Conversely, KCNNZ was found underexpressed in ESFT relative to ARMS, suggesting that the EWSR+ETS oncoprotein may have the opposite effect of ERG rearrangements in PCa. | Potential downstream
target genes of
aberrant ETS
transcription factors
are differentially
affected in Ewing's
sarcoma and prostate
carcinoma. | V_ETS_B_M - 00340 | 102549334-
102549347 | 6.00E-06 | GCCAGGAA
GTGGTT | LRRC17 | | 23185447 | ETS | regulate | KCNN2 | negative | Ewing\'s
sarcoma | Conversely, KCNN2 was found underexpressed in
ESFT relative to ARMS, suggesting that the
EWSR*-ETS encoprotein may have the opposite
effect of ERG rearrangements in PCa. | Potential downstream
target genes of
aberrant ETS
transcription factors
are differentially
affected in Ewing's
sarcoma and prostate | V_ETS_Q4_ +
M00771 | 102549334-
102549345 | 0 | AACCACTT
CCTG | LRRC17 | | 23995784 | FOXO1 | targeted by | EWS-FLI1 | negative;
EWS-FLI1-
suppressed
regulator | decrease in
ES tumor
growth | In addition to FOXO1 regulation by direct promoter binding of EWS-FLH, its subcellular localization binding of EWS-FLH, its subcellular localization kinase 2- and AKT mediated phosphorylation downstream of EWS-FLH. Restoration of nuclear proliferation and significantly reduced clorogenicity. Cene-serpression profiling revealed clorogenicity. Cene-serpression profiling revealed and FCXO1-activated genes. | carcinoma. Suppression of FOXO1 is responsible for a growth regulatory repressive transcriptional subsignature of EWS-FLI1 in Ewing sarcoma. | V_FOX01_Q -
5_M01216 | 102557196-
102557204 | 8.00E-08 | AAAAACAA | LRRC17 | | 23995784 | FOXO1 | targeted by | EWS-FLI1 | negative;
EWS-FLI1-
suppressed
regulator | decrease in
ES tumor
growth | and FCXXT-activated genes. In addition to FOXXT regulation by direct promoter binding of EWS-FLH, its subcellular localization by the promoter binding of EWS-FLH, its subcellular localization downstream of EWS-FLH. Restoration of nuclear politication and significantly reduced clorospenicity. Gene-expression profiling reduced clorospenicity. Gene-expression profiling reduced and FCXXT-activated genes. | Suppression of FOXO1 is responsible for a growth regulatory repressive transcriptional subsignature of EWS-FLI1 in Ewing sarcoma. | V_FOX01_0
1_M00473 | 35185882-
35185891 | 3.00E-06 | AAAAAACA
AT | SCUBE3 | **Supplementary Table:** transcription factor motifs of seven genes.