2	(A) Quantification of acetyl-TAG produced in vitro after incubation of microsomes
3	containing Ea DAcT with [1- 14 C] acetyl-CoA for 30 minutes at different temperatures. (B)
4	Quantification of acetyl-TAG produced in vitro after incubation of EaDAcT containing
5	microsomes at different pH. (C) Quantification of acetyl-TAG produced in vitro after
6	incubation of different amounts of EaDAcT microsomes with [1-14C] acetyl-CoA. The
7	trend line was fitted using linear regression. (D) Quantification of acetyl-TAG produced
8	in vitro after $\it EaDAcT$ microsomes were incubated with [1-14C] acetyl-CoA for different
9	amounts of time. The trend line was fitted using non-linear regression (GraphPad
10	Prism).
11	
12	Figure S2. Optimization of in vitro wax synthase assay conditions for EaDAcT.
13	(A) Autoradiogram of TLC separation of total lipids extracted from microsomes
14	containing EaDAcT incubated with [1- ^{14}C] acetyl-CoA, different fatty alcohols (250 μM
15	each) and with or without DMSO. Fatty alcohols are denoted using x:y where x indicates
16	the number of carbons and y the number of double bonds. (B) Autoradiogram of TLC
17	separation of total lipids extracted microsomes containing EaDAcT incubated with [1-
18	$^{14}\mbox{C}]$ acetyl-CoA, 125 $\mu\mbox{M}$ oleyl alcohol and different detergents. NP-40,
19	nonyl phenoxypolyethoxylethanol-40; OTG, octyl beta-thio-glucoside; OBG, octyl-beta-
20	glucoside; SD, sodium deoxycholate. (C) Quantification of alkyl acetate production from
21	microsomes containing $\it EaDAcT$ incubated with [1-14C] acetyl-CoA and oleyl alcohol
22	under different pH conditions. (D) Quantification of alkyl acetate production from
23	microsomes containing $\it EaDAcT$ incubated with [1- ^{14}C] acetyl-CoA and with different
24	concentrations of oleyl alcohol.
25	
26	Figure S3. Yeast expressing AmFAR1 produce fatty alcohols in vivo. (A) GC-MS
27	chromatograms of fatty alcohols purified from H1246 yeast expressing the empty vector
28	pESC-URA or combinations of Am FAR1 and Ea DAcT. (B) Quantification of fatty alcohols
29	from (A). Values represent mean ± SD for three biological replicates.

1 Figure S1. Optimization of *EaDAcT* activity in vitro.

