Figure S1 Cellular effects of Pi supply in roots of wild-type white clover The effects of P treatment [1 mM Pi, P+ (-•-); 10 μ M Pi, P- (-•-)] on total leaf Pi content per gram fresh weight (% Pi/g FW) (A), acid phosphatase activity (μ mole ρ NP/min/g FW) in the soluble (B) and cell-wall-enriched fractions (C) in rooted stolon cuttings of genotype 10F, cv. Grasslands Challenge. Values are means \pm SE, n = 3. * indicates significant differences between treatments (P \leq 0.05); † indicates significant differences within a treatment from day 1 (P \leq 0.05). Figure S2 Ethylene evolution from whole roots of white clover in response to Pi supply Ethylene evolution (expressed as ppm/hr/g FW) from whole roots of white clover nodal explants maintained hydroponically in half-strength Hoagland's media containing either 1 mM Pi (clear bars) or 10 μ M Pi (shaded bars) for the time intervals listed. Values are means, \pm SE, of three biological replicates where the ethylene production of six pooled nodal roots (primary and lateral roots combined) represents one biological replicate. Figure S3 Changes in transcript abundance of the *TR-ACS* gene family in roots in response to Pi supply Relative transcript abundance of *TR-ACS1*, *TR-ACS2* and *TR-ACS3*, as indicated in the EZ (A), VL (B) and MR (C) regions of the primary roots of nodal explants maintained hydroponically in half-strength Hoagland's media containing either 1 mM Pi (clear bars) or 10 μ M Pi (shaded bars) for the time intervals indicated. Relative transcript abundance was determined by qRT-PCR and transcription was normalized against two internal reference genes, *TR-8-actin* and *TR-GAPDH*. Values are means \pm SE, for two biological replicates each of which was derived from means of three technical replicates. * indicates significant differences between the 1 mM Pi and the 10 μ M Pi treatments (P \leq 0.05). Figure S4 Changes in transcript abundance of the *TR-ACO* gene family in roots in response to Pi supply Relative transcript abundance of *TR-ACO1*, *TR-ACO2* and *TR-ACO3*, as indicated in the EZ (A), VL (B) and MR (C) regions of the primary roots of nodal explants maintained hydroponically in half-strength Hoagland's media containing either 1 mM Pi (clear bars) or 10 μ M Pi (shaded bars) for the time intervals indicated. Relative transcript abundance was determined by qRT-PCR and transcription was normalized against two internal reference genes, *TR-8-actin* and *TR-GAPDH*.Values are means \pm SE, for two biological replicates each of which was derived from means of three technical replicates. * indicates significant differences between the 1 mM Pi and the 10 μ M Pi treatments (P \leq 0.05). Figure S5 Localization of *TR-ACO1* transcripts in Pi-sufficient roots using *in situ* hybridization Localization of *TR-ACO1* transcripts in Pi-sufficient roots of white clover. A,C, localization in lateral root primordia at different developmental stages in the VL region revealed using the antisense *TR-ACO1* probe; B,D, localization in lateral root primordia at different developmental stages in the VL region revealed using the sense *TR-ACO1* probe; E, localization in the primary root tip using the antisense *TR-ACO1* probe. The bars represent 50 µm. Figure S6 Localization of *TR-ACO2* and *TR-ACO3* transcripts in Pi-sufficient roots using *in situ* hybridization Localization of TR-ACO2 transcripts in the primary root tip (A), and in the vascular tissue in the VL (B) revealed using the anti-sense TR-ACO2 probe. Localisation of TR-ACO2 transcripts in the lateral root primordia (C) and in the vascular tissue (D) in the VL revealed using the sense TR-ACO2 probe. Localization of TR-ACO3 transcripts in the lateral root primordia in Pisufficient roots of white clover in the VL revealed using the anti-sense TR-ACO3 probe (E) or the sense TR-ACO3 probe (F). The bars represent 50 μ m. Figure S7 Cellular effects of Pi supply in roots of the *TR-ACO1p::mGFP-ER* white clover (line TR2-1) The effects of Pi treatment [1 mM Pi, P+ (- \blacklozenge -); 10 μ M Pi, P- (- \blacksquare -)] on total leaf Pi content (A), acid phosphatase activity in the cell-wall-enriched (B) and soluble fractions (C) in the transgenic white clover (*TR-ACO1p::mGFP-ER*) line TR2-1. Values are means \pm SE, n = 3 (A), n = 4 (B,C) * indicates significant differences between treatments (P \le 0.05); † indicates significant differences within a treatment from day 1(P \le 0.05). Table S1 List of primer sequences used in this study | Gene | Sense | Antisense | | |--|--------------------------|-----------------------------|--| | Degenerate primers used for cloning TR-PT1 | | | | | DegTR-PT1 | CAATTGTGATAGCWGGAATGGG | CCTGCAGCAGCWGAGATTC | | | Sequences of primers used for qRT-PCR | | | | | TR-β-actin | CGTATGAGCAAGGAGATCACTG | CATCTGCTGGAAGGTGCT | | | TR- GAPDH | TCCAGTATTGAACGGTAAATTGAC | TCTGATTCCTCCTTGATAGCAG | | | TR-ACS1 | AGGTTTCGATCGAGATTTGA | TTGGTTCTGTCCATAACTGTG | | | TR-ACS2 | GAGAACCGGTGTTGAGATT | GACTTTAAGGTTGCGGTCT | | | TR-ACS3 | TGTTCGTGATTTGTGTTGGA | TGTTCCTAGAGGGTTTGATG | | | TR-ACO1 | GTGTTGATGTGGGACCAGTAG | CCAAACCAAACACTAATAATCGC | | | TR-ACO2 | CTTGTAAAAGGTCTCCGAGCAC | GAGGAACATCTACCCATTTACCAT | | | TR-ACO3 | AGCATCATTCTACAACCCTGG | CAAACACAAATTTAGGATACACATTGG | | | TR-PT1 | GAATGCGAAACAGGCTACTG | CTGAACAAGCCATACTGATTTCT | | Table S2 Accession numbers of genes examined in this study | Gene Name | GenBank Accession | |-----------|-------------------| | TR-ACS1 | KM881530 | | TR-ACS2 | KM881531 | | TR-ACS3 | KM881532 | | TR-ACO1 | DQ112347 | | TR-ACO2 | DQ112348 | | TR-ACO3 | DQ112349 | | TR-PT1 | KF022212 |