Table S1: Purification procedure of 26S proteasome isoform from T. bernacchii red blood cells (RBCs)

Purification step	Total activity (U)	Total protein $(\mathbf{m g})$	Specific activity $(\mathbf{U} / \mathbf{m g})$	U/ml blood	Purification fold	Yield $(\%)$
Extract	645120	99.4	6490	586473	1	100
DEAE	303206	18.8	16128	-	2.5	47
Phenyl peak 1	30321	1.4	21658	-	3.3	4.7
Phenyl peak 2	23953	2.9	8260	-	1.3	3.7
Superdex 200 peak 1	758	0.02	37900	-	5.8	0.1

The proteasome activity was measured using LLVY as substrate and expressed assuming $\varepsilon=1 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}$

Table S2: Structural analysis of the ten models obtained for the seven proteasome subunits. Analyses have been performed with PROCHECK, PROSA web and Hbplus. Columns concerning the PROCHECK analysis report, as absolute numbers and percentage, the amino acids falling in the Ramachandran plot regions (most favoured, additional favoured, generously allowed, disallowed). PROSA web results report the Z-score obtained, which give a whole measure of the quality of the model in comparison to the value obtained for the template chain (last line for each table). The Hbplus column reports the number of H -bonds observed for each model. This is not a measure of model quality, but it is reported for a comparison among models and to the template chain.

Subunit alpha 4

Subunit alpha 5

Subunit alpha 7

Subunit beta 1

Subunit beta 2

Subunit beta 3

Subunit beta 5

		$\stackrel{20}{1}$		40				
Drosophila melanogaster＿NP＿652031	MQ－PDFDF	TD			TPVS－T	GTTIMAVEFD	GGVVIGADSR 34	
Caenorhabditis elegans＿NP－498806	MTSFTGITAV	ANATNEMAMF	KQAMKEVAAH	PEWMSSRQIE	RQRWNPYSME	gGstcalsge	NFAIVASDTR 70	
Arabidopsis thaliana＿NP＿191641	－－－－MTKQH	AN			WSPYDNN	GGTCVAIAGS	DYCVIAADTR 34	
Xenopus laevis＿NP＿001080435	MF－SSESI	LNRELNRSM－		－DYHYTGPVE	QRFNPYTFN	GGTVLALAGD	DFALVASDTR 54	
Mus musculus＿NP＿035315	－－ML－STAAY	RDVERELGM－		GPHGSAGPVQ	LRFSPYAFN	GgTVLAIAGE	DFSIVASDTR 55	
Homo sapiens＿NP＿002784	－MLSSTAMY	SAPGRDLGM－		EPHRAAGPLQ	LRFSPYVFN	GGTILAIAGE	DFAIVASDTR 56	
Danio rerio＿NP＿001003889	－－MI－SAQAY	GENGK－－M－		KEYHYTGPVE	HKFSPYAFN	GgTVLAVAGE	DFAIVASDTR	
Oreochromis niloticus＿XP＿003454565	－－ML－SSQHF	GDPGK－－M－		KDYHYTGPVE	HKFSPYAFN	GGTVLAVAGE	DFAIVASDTR 52	
Trematomus bernacchii	－－ML－SSQSY	QDPGK－－M－		QDYHYSGPVE	HRFSPYSFN	GgTVLAVAGE	DFAIVASDTB 52	
Notothenia coriiceps＿XP＿010781254	－ML－SSQSY	QDPGK－－M－		KDYHYSGPVE	HRFSPYSFN	GGTVLAVAGE	DFAIVASDTR 52	
Consensus	x Y	XDPGK－－M－		KDYHYXGPVE	HRFSPYSFN	gGtVLAVAGE	DFAIVASDTR	
Conservation 0\％					$\boxed{\square}$			
$\text { Sequence } \begin{gathered} 4,3 \mathrm{bits} \\ \hline 0.0 \mathrm{obits} \\ 0.0 \end{gathered}$	M_{80}			EMM̂̂́spóve		GGTvLAvAGE		
Drosophila melanogaster＿NP＿652031	TSSG－AYVAN	RVTDKLTRIT	DKVYCCRSGS	AADTQAIADI	VAYSLNYHEN	QTNKDALVFE	AASEFRNYCY 103	
Caenorhabditis elegans＿NP＿498806	MTQNDINILT	BDAEKIQILN	DNIILTTSGF	YGDVLQLKKV	LQSRLHKYRF	DYRSDMSVDL	CAELLSRNLY 140	
Arabidopsis thaliana＿NP＿191641	MSTG－YSILS	BDYSKIHKLA	DRAVLSSSGF	QADVKALQKV	LKSRHLIYQH	QHNKQMSCPA	MAQLLSNTLY 103	
Xenopus laevis＿NP＿001080435	LSEG－YSIHS	RNTPKCYKLT	DKTVIGCTGF	HADCLTLTKI	1EARLKMYKH	SNNKTMTSGA	IAAMLSTILY 123	
Mus musculus＿NP＿035315	LSEG－FSIHT	RDSPKCYKLT	DKTVIGCSGF	HGDCLTLTKI	IEARLKMYKH	SNNKAMTTGA	IAAMLSTILY 124	
Homo sapiens＿NP＿002784	LSEG－FSIHT	BDSPKCYKLT	DKTVIGCSGF	HGDCLTLTKI	IEARLKMYKH	SNNKAMTTGA	IAAMLSTILY 125	
Danio rerio＿NP＿－001003889	LSEG－YSIHS	RDSPKCYKLT	DTTVLGCSGF	HGDCLTLTKI	1EARLKMYKH	SNNKSMTSGA	IAAMLSTILY 121	
Oreochromis niloticus＿XP＿003454565	LSEG－YSIHS	BDSPKCYKLT	DTTVLGCSGF	HGDCLTLTKI	IDABLKMYKH	SNNKTMTSGA	IAAMLSTILY 121	
Trematomus bernacchii	LSEG－YSIHS	RDSPKCYKLT	DTTVIGCSGF	HGDCLTLTKI	IDARLKMYKH	SNNKTMTSNA	IAAMLSTILY 121	
Notothenia coriiceps＿XP＿010781254	LSEG－YSIHS	RDSPKCYKLT	DTTVIGCSGF	HGDCLTLTKI	IDABLKMYKH	SNNKTMTSNA	IAAMLSTILY 121	
Consensus	LSEG－YSIHS	RDSPKCYKLT	DXTVIGCSGF	HGDCLTLTKI	IEARLKMYKH	SNNKTMTSGA	IAAMLSTILY	
Conservation			\square			$\square \square \square \square \square$		
Sequence logo 0，0bits		RDOSPKCYKG ©		HAJC"F			$\widehat{T} A \overline{\text { AxM }}[\hat{S}$	
Drosophila melanogaster＿NP＿652031	SYR－ESLLAG	11VAGWDEQR	GGQVYSIPLG	GMLTRESCTI	GGSGSSFIYG		VREHYR 159	
Caenorhabditis elegans＿NP＿498806	YRRFFPYYTG	AILAGIDEHG	KGAVFSYDPI	GCIERLGYSA	SGAAEPMIIP	FLDCQIGHVT	LSEGYER 207	
Arabidopsis thaliana＿NP＿191641	FKRFFPYYAF	NVLGGLDEEG	KGCVFTYDAV	GSYERVGYGA	QGSGSTLIMP	FLDNQLKSPS	PLLLPKQDSN 173	
Xenopus laevis＿NP＿001080435	SRRFFPYYVY	N IIGGLDEEG	KGAVYSFDPV	GSYQRDAYKA	GGSASAMLQP	LLDNQIGYKN	－－－MQNVEQ 189	
Mus musculus＿NP＿035315	SRRFFPYYVY	NIIGGLDEEG	KGAVYSFDPV	GSYQRDSFKA	GGSASAMLQP	LLDNQVGFKN	－MQN VEH 190	
Homo sapiens＿NP＿002784	SRRFFPYYVY	NIIGGLDEEG	KGAVYSFDPV	GSYQRDSFKA	GGSASAMLQP	LLDNQVGFKN	MQN VEH 191	
Danio rerio＿NP＿－001003889	GRRFFPYYVY	NIIGGLDEEG	BGAVYSFDPV	GSYQRDTYKA	GGSASAMLQP	LLDNQIGFKN	MENVEH 187	
Oreochromis niloticus＿XP＿003454565	SRRFFPYYVY	NIIGGLDEEG	KGAVYSFDPV	GSYQRDTYKA	GGSASAMLQP	LLDNQIGFKN	MEGVEH 187	
Trematomus bernacchii	GRRFFPYYYY	N IIGGLDEHG	KGAVYSFDPV	GSYQRDTYKA	GGSASAMLQP	LLDNQIGFKN	MEGVQH 187	
Notothenia coriiceps＿XP＿010781254	GRRFFPYYVY	NIIGGLDEHG	KGAVYSFDPV	GSYQRDTYKA	GGSASAMLQP	LLDNQIGFKN	MEGVQH 187	
Consensus	SRRFFPYYVY	NIIGGLDEEG	KGAVYSFDPV	GS YQRDTYKA	GGSASAMLQP	LLDNQIGFKN	MEXV	
$\begin{aligned} & \text { ation } \\ & \text { ation } \end{aligned}$				$\square \square \\| \square \square]^{\square}$				
		$\hat{N} Y \check{T G U G U} G E \mathrm{E}$		G	GUSASSAML QT	ELUNQFḠFKN		
Drosophila melanogaster＿NP＿652031	PNMALEDCVT	FVKKAVQHAI	YHDGSSGGVV	RIGII－TKDG	IERRIFYNTE	SGASAVSSTP	SFISSE 224	
Caenorhabditis elegans＿NP＿498806	PELTLDRAIS	LMKDSFRGAA	EREISTGDKI	HLV IAEAGKP	VVVK	FLP	LRED 258	
Arabidopsis thaliana＿NP＿191641	TPLSEAEAVD	LVKTVFASAT	ERDIYTGDKL	EIMIL－KADG	1KTE	LMD	RKD 223	
Xenopus laevis＿NP＿001080435	LPLTLEKALK	LIKDVFISAA	ERDVYTGDAL	HISIV－TKDG	VREE	SIS	LRKD 239	
Mus musculus＿NP＿035315	VPLTLDRAMR	LVKDVFISAA	ERDVYTGDAL	BICIV－TKEG	1RE	TVP	LRKD 240	
Homo sapiens＿NP＿002784	VPLSLDRAMR	LVKDVFISAA	ERDVYTGDAL	RICIV－TKEG	1 R	TVS	LRKD 241	
Danio rerio＿NP＿－001003889	VPLTQEKAVQ	LVKDVFISAA	ERDVYTGDAL	KVCIV－SKEG	IKE	IVP	LRKD 237	
Oreochromis niloticus＿XP＿003454565	VPLTKDKAVQ	LVKDVFISAA	ERDVYTGDAL	RICVI－TKEG	INE	TIP	RKD 237	
Trematomus bernacchii	VPLTQERAVQ	LVKDVFISAA	ERDVYTGDAL	RLCII－TKEG	INEQ	TVP	LRKD 237	
Notothenia coriiceps＿XP＿010781254	IPLSQERAVQ	LVKDVFISAA	ERDVYTGDAL	RLCII－TKEG	INE	TVP	LRKD 237	
Consensus	VPLTLERAVQ	LVKDVFISAA	ERDVYTGDAL	RICIX－TKEG	XEE	－TVP	－LRKD	
Conservation	$\square \square \square \square \square \square \square \square$							
Sequence logo 0，0bits			ERDVYTGAL		Y领旨。	$=$	'RED	

		1	2	3	4	5	6	7	8	9	10
Drosophila melanogaster_NP_652031	1		15,02	21,25	21,26	21,57	21,09	19,84	21,83	21,83	21,83
Caenorhabditis elegans_NP_498806	2	41		35,25	36,82	37,98	36,43	37,21	37,21	38,76	38,37
Arabidopsis thaliana_NP_191641	3	51	92		42,80	43,03	43,27	44,40	44,40	43,15	43,57
Xenopus laevis_NP_001080435	4	54	95	104		78,33	77,18	79,17	80,42	78,75	78,33
Mus musculus_NP_035315	5	55	98	105	188		93,36	81,67	82,50	81,67	80,83
Homo sapiens_NP_002784	6	54	94	106	186	225		79,67	80,91	80,50	80,50
Danio rerio_NP_001003889	7	50	96	107	190	196	192		90,72	88,61	88,19
Oreochromis niloticus_XP_003454565	8	55	96	107	193	198	195	215		91,98	91,56
Trematomus bernacchii	9	55	100	104	189	196	194	210	218		98,73
Notothenia coriceps_XP_010781254	10	55	99	105	188	194	194	209	217	234	

Figure S1. MUSCLE alignment of proteasome subunit beta 1 amino acid sequences, with species names and accession numbers. The consensus sequence, the conservation histogram and the sequence logo are shown at the bottom of the alignment. The Table in the last page contains the pairwise comparison of the sequences, with the number of identities (below the diagonal) and percent identity (above the diagonal).

Caenorhabditis elegans_NP_493271	H 277
Arabidopsis thaliana_NP_193216	- 199
Drosophila melanogaster_NP_609804	- 201
Homo sapiens_NP_002785	201
Mus musculus_NP_036100	- 201
Xenopus laevis_NP_001084761	- 199
Trematomus bernacchii	- 199
Notothenia coriiceps_XP_010789577	- 199
Danio rerio_NP_001002609	- 199
Oreochromis niloticus_XP_003447226	- 199
Consensus 100\%	$-$
Conservation 0% 4,3bits	
Sequence logo	

		1	2	3	4	5	6	7	8	9	10
Caenorhabditis elegans_NP_493271	1		14,23	14,95	14,95	14,59	16,73	19,22	19,93	18,86	19,22
Arabidopsis thaliana_NP_193216	2	40		41,09	43,56	43,07	47,00	44,50	45,00	45,50	45,00
Drosophila melanogaster_NP_609804	3	42	83		49,75	50,25	55,72	52,24	53,73	53,23	51,74
Homo sapiens_NP_002785	4	42	88	100		96,52	81,59	77,11	77,11	81,09	78,61
Mus musculus_NP_036100	5	41	87	101	194		81,59	77,11	76,62	81,59	78,61
Xenopus laevis_NP_001084761	6	47	94	112	164	164		81,41	82,41	85,43	82,91
Trematomus bernacchii	7	54	89	105	155	155	162		97,49	90,45	89,45
Notothenia coriceps_XP_010789577	8	56	90	108	155	154	164	194		90,45	90,45
Danio rerio_NP_001002609	9	53	91	107	163	164	170	180	180		92,96
Oreochromis niloticus_XP_003447226	10	54	90	104	158	158	165	178	180	185	

Figure S2. MUSCLE alignment of proteasome subunit beta 2 amino acid sequences, with species names and accession numbers. The consensus sequence, the conservation histogram and the sequence logo are shown at the bottom of the alignment. The Table in the last page contains the pairwise comparison of the sequences, with the number of identities (below the diagonal) and percent identity (above the diagonal).

						${ }_{1}^{60}$		
Caenorhabditis elegans_NP_494913	MSIMSYTGGT	VVamagDec ${ }^{\text {d }}$	CIASDLRIGE	QMTTIATDQK	KVHKVTDKVY	VGLAGFQSDA	RTVLEKIM	
Arabidopsis thaliana_NP_565156	MSIFEYNGSA	VVAMVGKNCF	AIASDRRLGV	QLQTIATDFQ	RISKIHDHLF	IGLSGLATDV	QTLYQRLVFR 70	
Drosophila melanogaster_NP_649858	MSILAYNGGC	VVAMRGKDCV	AIATDHRFGI	QAQTISTDFK	KVFHIGPRMF	LGLTGLQTDI	LTVRDRLMFR 70	
Homo sapiens_NP_002786	MSIMS YNGGA	VmAMKGKNCV	A 1 AADRRFG1	QAQMVTTDFQ	KIFPMGDRLY	IGLAGLATDV	QTVAQRLKF	
Mus musculus _NP_036101	MSIMS YNGGA	VmAMKGKNCV	A 1 AADRRFGI	QAQMVTTDFQ	KIFPMGDRLY	IGLAGLATDV	QTVAQRLK	
Xenopus laevis_NP_001088741	MSIMSYNGGA	IMAMKGKDCV	A AAADRRFG \bar{V}	QAQMVTTDFQ	KIFPMGERLY	IGLAGLATDV	QTVAQRLK	
Danio rerio_NP_001123295	MSIMS YNGGA	VMAMRGKECV	AIASDRRFGI	QAQLVTTDFQ	KIFPMGERLY	IGLAGLATDV	QTVSQRLK	
Trematomus bernacchii	MSIMS YNGGA	VmAmRGKNCV	A 1 AADRRFG1	QAQMVTTDFQ	KIFPMGDKLY	IGLAGLATDV	QTVSQRLK	
Oreochromis niloticus_XP_003448021	MSIIMSYNGGA	VMAMRGKNCV	AIAADRRFGI	QAQMVTTDFQ	KIFPMGDRLY	IGLAGLATDV	QTVAQRLKFR 70	
Consensus	MSIMSYNGGA	VMAMRGKNCV	AIAADRRFGI	QAQMVTTDFQ	KIFPMGDRLY	IGLAGLATDV	QTVAQRLKFR	
Conservation			$\square]$	- [\|]			$\square]$	
$\text { Sequence } \underset{\substack{4,3 \mathrm{gifits} \\ \text { logobits }}}{\substack{\text { and }}}$		MAM KRKMEV	$\tilde{A} \mid A \AA A \mathbb{R} R \mathcal{F G}_{100}$		KYGFMGGERLE	$T G A G[A \subset D \hat{V}$	QIVARTLEKFR	
Caenorhabditis elegans_NP_494913	KNLYELRENR	NIKPQVLSEM	ISNLAYQHRF	GSYFTEPLVA	GLD-DTNKPY	ICCMDTIGCV	SAPRDFVAVG 139	
Arabidops is thaliana_NP_565156	HKLYQLREER	DMKPETFASL	VSAILYEKRF	GPFLCQPVIA	GLG-DDNKPF	ICTMDSIGAK	ELAKDFVVSG 139	
Drosophila melanogaster_NP_649858	KNLYETRENR	EMCPKPFSAM	MSSFLYEHRF	GPYFIEPVVA	GLDPKTMEPF	ICNMDLIGCP	NAPDDFVVAG 140	
Homo sapiens_NP_002786	LNLYELKEGR	QIKPYTLMSM	VANLLYEKRF	GPYYTEPVIA	GLDPKTFKPF	ICSLDLIGCP	MVTDDFVVSG 140	
Mus musculus _NP_036101	LNLYELKEGR	QIKPYTLMSM	VANLLYEKR	GPYYTEPVIA	GLDPKTFKPF	ICSLDLIGCP	MVTDDFVVSG 140	
Xenopus laevis_NP_001088741	LNLYELKEGR	QIKPKTFMSM	VANLLYERRF	GPYYIEPVIA	GLDPKTFQPF	ICSLDLIGCP	METEDFVVSG 140	
Danio rerio _NP_001123295	LNLYELKEGR	QIKPRTFMSM	VSNLLYERRF	GPYYIEPVIA	GLDPKTFEPF	ICSLDLIGCP	MVTEDFVVSG 140	
Trematomus bernacchii	LNLYELKEGR	QIKPKTFMSM	VSNLLYEKRF	GPYYIEPVIA	GIDPKTSEPF	ICSLDLIGCP	MVTEDFVVSG 140	
Oreochromis niloticus_XP_003448021	LNLYELKEGB	QIKPKTFMSM	VSNLLYERR	GPYYIEPVIA	GLDPKTFEPF	ICSLDLIGCP	MVTDDFVVSG 140	
Consensus	LNLYELKEGR	QIKPKTFMSM	VSNLLYEKRF	GPYYIEPVIA	GLDPKTFXPF	ICSLDLIGCP	MVTDDFVVSG	
onservation		[1]	\square	-	[]	[]		
Sequence logo	RNLVELREGR	TKD	V'A SATLVEERF	$G D V Y T E P V A_{180}$	GI'JPRTMRF			
Caenorhabditis elegans_NP_494913	TGQEYLLGVc	ENFWRENMKP	DELFEATAQS	ILSCLERDAA	SGWGAVVYTI	TKDKVNVSTI	KARMD 204	
Arabidops is thaliana_NP_565156	TASESLYGAC	EAMFKPDMEA	EELFETISQA	LLSSVDRDCL	SGWGGHVYVV	TPKEVKERIL	KGRMD 204	
Drosophila melanogaster_NP_649858	TCAEQLYGMC	ETLWKPDLEP	DQLFEVIAQS	IVNAFDRDAM	SGWGATVYII	EKDKITERTL	KTRMD 205	
Homo sapiens_NP_002786	TCAEQMYGMC	ESLWEPNMDP	DHLFETISQA	MLNAVDRDAV	SGMGVIVHII	EKDKITTRTL	KARMD 205	
Mus musculus _NP_036101	TCSEQMYGMC	ESLWEPNMDP	EHLFETISQA	mLnavdrdav	SGMGVIVHVI	EKDKITTRTL	KARMD 205	
Xenopus laevis_NP_001088741	TCSEQMYGMC	ESLWEPDMEP	EDLFETISQA	MLNAVDRDAV	SGMGVVVHVI	EKDKITTRTL	KARMD 205	
Danio rerio_NP_001123295	TCSEQMYGMC	ESLWEPDMKP	EDLFETISQA	MLNAVDRDAV	SGMG VVVHVI	EKDKITTRTL	KARMD 205	
Trematomus bernacchii	TCSEQMYGMC	ESLWEPDMEP	EDLFETISQA	MLNAVDRDAV	SGMGVVVHVI	EKDKITTRTL	KARMD 205	
Oreochromis niloticus_XP_003448021	TCSEQMYGMC	ESLWEPDMEP	DDLFETISQA	MLNAVDRDAV	SGMGVVVHVV	EKDKITTRTL	KARMD 205	
Consensus	TCSEQMYGMC	ESLWEPDMEP	EDLFETISQA	MLNAVDRDAV	SGMGVVVHVI	EKDKITTRTL	KARMD	
Conservation 0\%			,					
Sequence logoo.obits	CSEOMYGM	STKEEDMED	${ }_{E B}\|F F Y\| \hat{S} Q \hat{A}$	MLNAFORUA	$\operatorname{SGW}\left(M_{0} \bar{V}^{\circ} \\| H^{T} Y\right.$	EKDKY早洰RJL	$\overline{K A R M D}$	

		1	2	3	4	5	6	7	8	9
Caenorhabditis elegans_NP_494913	1		44,61	55,12	51,22	50,73	48,29	50,73	49,76	49,76
Arabidopsis thaliana_NP_565156	2	91		51,22	56,10	57,56	57,07	57,56	58,54	58,54
Drosophila melanogaster_NP_649858	3	113	105		63,90	62,44	63,90	64,88	64,88	66,34
Homo sapiens_NP_002786	4	105	115	131		98,54	91,22	90,24	91,22	93,17
Mus musculus _NP_036101	5	104	118	128	202		92,68	91,71	92,68	93,66
Xenopus laevis_NP_001088741	6	99	117	131	187	190		94,15	93,66	94,63
Danio rerio _NP_001123295	7	104	118	133	185	188	193		95,12	95,12
Trematomus bernacchii	8	102	120	133	187	190	192	195		96,10
Oreochromis niloticus_XP_003448021	9	102	120	136	191	192	194	195	197	

Figure S3. MUSCLE alignment of proteasome subunit beta 3 amino acid sequences, with species names and accession numbers. The consensus sequence, the conservation histogram and the sequence logo are shown at the bottom of the alignment. The Table in the last page contains the pairwise comparison of the sequences, with the number of identities (below the diagonal) and percent identity (above the diagonal).

		$\stackrel{20}{1}$		40		${ }_{1}^{60}$				
Caenorhabditis elegans_NP_493558	- MWGETFDDF	ENDEGEMAMA	KQNLIA -EPA	RAD-FTFA -	KLPLGI	QPVDFMKT - H	FAETAGKSMQ 60			
Drosophila melanogaster_NP_652014	MALAEIC-KI	SNAPYMRPNA	WSSADVEEEQ	KGLMCNLANP	YTLAAPPFEN	PLHNLNQIQA	NGDKTGVKIN 69			
Arabidopsis thaliana_NP_172765	MKL - . - - DT	SGFETSMPMI	\cdots-.-GFGSS	SDM-LD --	ELSSVPSFDL	P--RTKEFDG	FQKKAKDMLK 53			
Xenopus laevis_NP_001084323	MALLTMCGPT	QSHDWRMPL -	YGGTIS	PTIPFRVCNT	ELAVPPGYQP	A - -KFLQH-L	EEGVDDVKIE 62			
Mus musculus_NP_035316	MALASVL	- QRPMPVN	QHGFFGLGGG	ADL-LDLGPG	SPGDGLSLAA		WGVPEEPRIE 55			
Homo sapiens_NP_002788	MALASVL	-- ERPLPVN	QRGFFGLGGR	ADL-LDLGPG	SLSDGLSLAA	P - G	WGVPEEPGIE 55			
Danio rerio_NP_571226	MALSSIL-RN	ESADFSDPID	RSFAHGCGLN	QTN - LGFG - A	ALGDSPNFAV	K--T--L-G	EDDEPERKIE 61			
Oreochromis niloticus_XP_003457456	MALASVL-SG	DSADFSFDSS	QSFAFGGGPG	PSG-LGLE-G	TPGDSLSFSV	K--NPLCV-G	DDDGVERKIE 64			
Trematomus bernacchii	MALASVL-SS	DCAKFSFDNC	EPDSFGCAPG	QSG-LGFD-A	TPGDGLSFSV	R--NPLCA - V	EEDGVERKIE 64			
Notothenia coriiceps_XP_010781265	MALASVL-SS	DCAKFSFDNC	EPDSFGCAPG	QSG-LGFD-A	TPGDGLSFSV	R--NPLCA - V	DEDGVERKIE 64			
Consensus 100\%	MALASVL-SX	DSAXFSMPNX	QSXAFGCGPG	QXX-LGXG-X	TXGDGLSFXV	P--NPLCA-G	EXDGVERKIE			
Conservation \%	$\llbracket \square \square \square \square \square \square \square \square$		$\square \square \square \square \square \square \square \square \square \square \square$			-	$\square \square \square$			
Sequence logo 0,0bits										
							1			
Caenorhabditis elegans_NP_493558	FRKGTTTLAF	VYEPATPADK	GGIIVAVDSR	ASSGEYISSK	SVMK ILDIGD	RMVATMAGGA	ADCQFWTRIV 130			
Drosophila melanogaster_NP_652014	FDHGTTTLGF	KF- . . - K	GGVLLAVDSR	ATGGSYIGSQ	SMKK IVEINQ	FMLGTLAGGA	ADCVYWDRVL 132			
Arabidopsis thaliana_NP_172765	HAKGTTTLAF		GGVMVAADSR	ASMGGY\|SSQ	SVKKIIEINP	YMLGTMAGGA	ADCQFWHRNL 116			
Xenopus laevis_NP_001084323	PWHGTTTLAF	KF-.... Q	HGVIVAVDSR	ASAGSYISTI	KFNKVIEINP	YLLGTMSGSA	ADCQYWERLL 125			
Mus musculus_NP_035316	MLHGTTTLAF	KF	HGVIVAADSR	ATAGAYIASQ	TVKKVIEINP	YLLGTMAGGA	ADCSFWERLL 118			
Homo sapiens_NP_002788	MLHGTTTLAF	KF-....	HGVIVAADSR	ATAGAYIASQ	TVKKVIEINP	YLLGTMAGGA	ADCSFWERLL 118			
Danio rerio_NP_571226	FLHGTTTLAF	KF...... Q	HGVIVAVDSR	ATAGAYIASQ	TVKKVIEINP	YLLGTMAGGA	ADCSFWERLL 124			
Oreochromis niloticus_XP_003457456	FLHGTTTLAF	KF-.... Q	HGVIVAVDSR	ATAGSYIASQ	TVKKVIEINP	YLLGTMAGGA	ADCSFWERLL 127			
Trematomus bernacchii	FLHGTTTLAF	KFF..... Q	HGVIVAVDSR	ATAGAYIASQ	TVKKVIEINP	YLLGTMAGGA	ADCSFWERLL 127			
Notothenia coriiceps_XP_010781265	FLHGTTTLAF	KF $\cdots \cdots$ - ${ }^{\text {C }}$	HGVIVAVDSR	ATAGAYIASQ	TVKKVIEINP	YLLGTMAGGA	ADCSFWERLL 127			
Consensus	FLHGTTTLAF	KF-----Q	HGV I VAVDSR	ATAGAYIASQ	TVKKVIEINP	YLLGTMAGGA	ADCS FWERLL			
Conservation		\square			$\square \square \\| \square \square \square \mid \square$	$\square \square \square \square \square$	$\triangle \square \square^{\square}\\| \\|^{\square}$			
Sequence logo 0,0bits	FLHGTTUF		GGI'TVADDSR		$5 \bar{T} V K V I E / N$	YLGGTMĀGCA	ADČSFNEREL			

Caenorhabditis elegans_NP_493558	AKYCTLYELR	EKTSITVSAA	SKYFANTLYG	YRGQGLSVGS	MVAGYDKKGP	Q1FKVDSEGD	RCQLKVCSVG 200	
Drosophila melanogaster_NP_652014	SKECRLHELR	NKERISVAAA	SKIMANIAHE	YKGMGLSMGM	MLAGYDKRGP	GLYYVDSEGS	RTPGNLFSVG 202	
Arabidopsis thaliana_NP_172765	GIKCRLHELA	NKRRISVSGA	SKLLANMLYS	YRGMGLSVGT	M I AGWDETGP	GLYYVDNEGG	RLKGDRFSVG 186	
Xenopus laevis_NP_001084323	AKECRLYQLR	NNSRISVSAA	SKLMCNMMLQ	YRGTGLSVGS	MICGWDKKGP	GLYYVDDNGT	RLCGDIFSTG 195	
Mus musculus_NP_035316	ARQCRIYELR	NKERISVAAA	SKLLANMVYQ	YKGMGLSMGT	MICGWDKRGP	GLYYVDSEGN	RISGTAFSVG 188	
Homo sapiens_NP_002788	ARQCR I YELR	NKERISVAAA	SKLLANMVYQ	YKGMGLSMGT	MICGWDKRGP	GLYYVDSEGN	R ISGATFSVG 188	
Danio rerio_NP_571226	ARQCRIYELR	NKERISVAAA	SKLLANMVYQ	YKGMGLSMGT	MVCGWDKRGP	GLYYVDSEGN	RVCGGLFAVG 194	
Oreochromis niloticus_XP_003457456	ARQCRIYELR	NKERISVAAA	SKLLANMVYQ	YKGMGLSMGT	MVCGWDKRGP	GLYYVDSEGN	RVCGDLFAVG 197	
Trematomus bernacchii	ARQCR I YELR	NKERISVAAA	SKLLANMVYQ	YKGMGLSMG T	MVCGWDKRGP	GLYYVDSEGN	RVCGDLFAVG 197	
Notothenia coriiceps_XP_010781265	ARQCRIYELR	NKERISVAAA	SKLLANMVYQ	YKGMGLSMGT	MVCGWDKRGP	GLYYVDSEGN	RVCGDLFAVG 197	
Consensus	ARQCR I YELR	NKERISVAAA	SKLLANMVYQ	YKGMGLSMGT	MVCGWDKRGP	GL YYVDSEGN	RVCGDLFSVG	
Conservation	$\square \square \\| \square \square \square_{\square}^{\square}$	-	$\square \square \square \square \square \square \square$					
Sequence logo 0,Obits		$\overline{N K} \bar{E} \bar{R} \mid \bar{S} V A \bar{A} A$		$\operatorname{VGGMGLSMOT}$	MVCGWNKNRGO	$G L Y V D R E G E$		

Caenorhabditis elegans_NP_493558		- ADELGRDI	TYNPVE 284
Drosophila melanogaster_NP_652014	- QE	QLKQQAAK -	- 282
Arabidopsis thaliana_NP_172765	YPVAPATAEQ	VMEEATAE	274
Xenopus laevis_NP_001084323		- - TEEKNM -	271
Mus musculus_NP_035316		- - SSVSVP	264
Homo sapiens_NP_002788		- - SGSTP -	263
Danio rerio_NP_571226		- - QSEKA -	269
Oreochromis niloticus_XP_003457456		- -KDQA	271
Trematomus bernacchii	-------	- KSQA -	271
Notothenia coriiceps_XP_010781265		KSQA	271
Consensus 100\%	- -	- - KSQAA -	
Conservation $\begin{array}{r} 0 \% \\ \text { 4,3bits } \end{array}$		$\checkmark \square \square \square \square \square \square \square \square$	
Sequence logo			

		1	2	3	4	5	6	7	8	9	10
Caenorhabditis elegans_NP_493558	1		37,25	38,61	35,49	35,27	34,93	36,43	36,43	36,43	36,43
Drosophila melanogaster_NP_652014	2	111		47,59	46,29	49,65	49,65	51,42	53,55	52,13	52,13
Arabidopsis thaliana_NP_172765	3	117	138		45,96	50,87	51,92	49,30	50,35	49,30	49,30
Xenopus laevis_NP_001084323	4	104	131	131		52,90	52,54	55,43	55,80	53,62	53,26
Mus musculus_NP_035316	5	103	140	146	146		92,80	69,74	71,17	70,44	70,44
Homo sapiens_NP_002788	6	102	140	149	145	245		69,63	70,33	68,86	68,86
Danio rerio_NP_571226	7	106	145	141	153	189	188		80,51	80,88	80,51
Oreochromis niloticus_XP_003457456	8	106	151	144	154	195	192	219		88,93	89,30
Trematomus bernacchii	9	106	147	141	148	193	188	220	241		99,63
Notothenia coriceps_XP_010781265	10	106	147	141	147	193	188	219	242	270	

Figure S4. MUSCLE alignment of proteasome subunit beta 5 amino acid sequences, with species names and accession numbers. The consensus sequence, the conservation histogram and the sequence logo are shown at the bottom of the alignment. The Table in the last page contains the pairwise comparison of the sequences, with the number of identities (below the diagonal) and percent identity (above the diagonal).

		1	2	3	4	5	6	7	8	9	10
Drosophila melanogaster_NP_651843	1		44,88	50,78	50,76	51,89	52,27	52,65	52,65	52,27	51,89
Arabidopsis thaliana_NP_188850	2	114		55,34	56,49	56,11	56,11	55,73	55,73	56,11	56,49
Caenorhabditis elegans_NP_491520	3	130	140		62,84	63,22	63,60	62,84	63,22	62,84	62,45
Xenopus laevis_NP_001089811	4	134	148	164		96,55	96,93	93,87	93,49	95,40	95,40
Mus musculus_NP_036096	5	137	147	165	252		98,85	93,87	93,49	95,79	95,79
Homo sapiens_NP_002780	6	138	147	166	253	258		93,10	92,72	95,79	96,17
Notothenia coriiceps_XP_010770288	7	139	146	164	245	245	243		99,62	96,93	95,79
Trematomus bernacchii	8	139	146	165	244	244	242	260		96,55	95,40
Oreochromis niloticus_XP_003450834	9	138	147	164	249	250	250	253	252		98,85
Danio rerio_NP_999862	10	137	148	163	249	250	251	250	249	258	

Figure S5. MUSCLE alignment of proteasome subunit alpha 4 amino acid sequences, with species names and accession numbers. The consensus sequence, the conservation histogram and the sequence logo are shown at the bottom of the alignment. The Table in the last page contains the pairwise comparison of the sequences, with the number of identities (below the diagonal) and percent identity (above the diagonal).

Caenorhabditis elegans_NP_492765	MFLTRSEYDR	GVNTFSPEGR	LFQVEYAIEA	VKLgStsIgl	KTSEGVLLAA	STSKLMV	NDA		
Arabidops is thaliana_NP_188046	MFLTRTEYDR	GVNTFSPEGR	LFQVEYAIEA	IKLGStalgV	KTKEGVVLAV	EKRITSPLLE	PSSVEKIMEI 70		
Drosophila melanogaster_NP_-725669	MFLTRSEYDR	GVNTFSPEGR	LFQVEYAIEA	IKLGStAIGI	CTPEGVVLAV	EKRITSPLMV	PSTVEKIVEV 70		
Mus musculus_NP_036097	MFLTRSEYDR	GVNTFSPEGR	LFQVEYAIEA	IKLGStAIGI	QTSEGVCLAV	EKRITSPLME	PSSIEKIVEI 70		
Homo sapiens_NP_002781	MFLTRSEYDR	GVNTFSPEGR	LFQVEYAIEA	IKLASTAIGI	QTSEGVCLAV	EKRITSPLME	PSSIEKIVEI		
Xenopus laevis_BADP2871	MFLTRSEYDR	GVNTFSPEGB	LFQVEYAIEA	IKLGStAIGI	QTAEGVCLAV	EKRITSPLME	PSSIEKIVEI		
Trematomus bernacchii	MFLTRSEYDR	GVNTFSPEGR	LFQVEYAIEA	IKLGStAIGI	QTSEGVCLAV	EKRITSPLME	PNSIEKIVEI 70		
Notothenia coriiceps_XP_010766620	MFLTRSEYDR	GVNTFSPEGR	LFQVEYAIEA	IKLGStAIGI	QTSEGVCLAV	EKRITSPLME	PNSIEKIVEI 70		
Danio rerio_NP_991271	MFLTRSEYDR	GVNTFSPEGR	LFQVEYAIEA	IKLGStAIGI	QTSEGVCLAV	EKRITSPLME	PSSIEKIVEI 70		
Oreochromis niloticus_XP_003441568	MFLTRSEYDR	GVNTFSPEGB	LFQVEYAIEA	IKLGSTAIGI	QTSEGVCLAV	EKRITSPLME	PNSIEKIVEI 70		
Consensus	MFLTRSEYDR		LFQVEYAIEA		QTSEGVCLAV	EKRITSPLME	PSSIEKIVEI		
Conservation									
Sequence $\underset{\substack{4.3 \text { ghis } \\ \text { o.bobits }}}{\substack{0 \% \\ \hline}}$		$G J N T F D E C R$	FQNEVA\|EA	$\|K\| \hat{G} S T \bar{A}\|G\|$	QTEEGVELA	KRTTSDGM	PISSYEX\|VEF		
							140 1		
Caenorhabditis elegans_NP_492765 Arabidopsis thaliana NP 188046	DQHIGVTFAG	LIADSRTLVE	RAQIEAQNFW	FTYNRKIRVE	DVTQSVANLA	LQFGDDDVKA	SMSRPFG 137		
	DDHIGCAMSG	LIADARTLVE	HARVETQNHR	FSYGEPMTVE	StTQALCDLA	LRFGEGEEE-	SMSRPFG 136		
Arabidopsis thaliana_NP_188046 Drosophila melanogaster_NP_725669	DKHIGCATSG	LMADARTLIE	RARVECQNHW	FVYNERMSIE	SCAQAVSTLA	1QFGDSGDSD	GAAAMSRPFG 140		
Drosophila melanogaster_NP_725669 Mus musculus_NP_036097	DAHIGCAMSG	LIADAKTLID	KARVETQNHW	FTYNETMTVE	SVTQAVSNLA	LQFGEEDADP	G - AMSRPFG 138		
Homo sapiens_NP_002781	DAHIGCAMSG	LIADAKTLID	KARVETQNHW	FTYNETMTVE	SVTQAVSNLA	LQFGEEDADP	G- - AMSRPFG 138		
Xenopus laevis_BĀD42871	DAHIGCAMSG	LIADAKTLID	KARVETQNHW	FTYNETMTVE	SVTQAVSNLA	LQFGEEDADP	G- AMSRPFG 138		
Trematomus bernacchii	DTHIGCAMSG	LIADAKTLID	KARVETQNHW	FTYNETMTVE	SVTQAVSNLA	LQFGEEDADP	G- AMSRPFG 138		
	DTHIGCAMSG	LIADAKTLID	KARVETQNHW	FTYNETMTVE	SVTQAVSNLA	LQFGEEDADP	G - AMSRPFG 138		
Danio rerio_NP_991271Oreochromis niloticus_XP_003441568	DSHIGCAMSG	LIADAKTLID	KARVETQNHW	FTYNETMTVE	SVTQAVSNLA	LQFGEEDADP	G - AMSRPFG 138		
	DSHIGCAMSG	LIADAKTLID	KARVETQNHW	FTYNETMTVE	SVTQAVSNLA	LQFGEEDADP	G - AMSRPFG		
Consensus D	DAHIGCAMSG LIADAKTLID		KARVETQNHW	ftynetmive	SVTQAVSNLA	LQFGEEDADP G--AMSRPFG			
Conservation ${ }^{\text {100\% }}$									
$\text { Sequence } \begin{gathered} 4,3 \mathrm{sbits} \\ 0,0 \mathrm{bbits} \\ \hline \end{gathered}$	$D_{\underline{2}}^{n} \\| G C A \bar{M} \hat{S} G$	TADARTLYE	KARVE TQNTHIN				G A AMSRDFG		
Caenorhabditis elegans_NP_492765Arabidopsis thaliana NP 188046	VAMLFAGVDQ	EGAKLFHLDP	SGTFIDCKAK	SIGAASDGAE	QNLKEQYHDA	LTIKEGLKMA	LAILKQVMEE 207		
	VSLLIAGHDE	NGPSLYYTDP	SGTFWQCNAK	AIGSGSEGAD	SSLQEQFNKD	1TLQEAETIA	VSILKQVMEE 206		
	VAILFAGIEA	GQPQLWHMDP	SGTFVRHGAK	AIGSGSEGAQ	QNLQDLFRPD	LTLDEAIDIS	LNTLKQVMEE 210		
Drosophila melanogaster_NP_725669 Mus musculus_NP_036097	VALLFGGVDE	KGPQLFHMDP	SGTFVQCDAR	AIGSASEGAQ	SSLQE VYHKS	MTLKEAIKSS	LIILKQVMEE 208		
Homo sapiens_NP_002781	VALLFGGVDE	KGPQLFHMDP	SGTFVQCDAR	AIGSASEGAQ	SSLQE VYHKS	MTLKEAIKSS	LIILKQVMEE 208		
Xenopus laevis_BADP42871	VALLFGGADE	KGPQLFHMDP	SGTFVQCDAR	AIGSASEGAQ	SSLQEVYHKS	MTLKEAIKSS	LTILKQVMEE 208		
Trematomus bernacchii	VALLFGGFDE	KGPQLYHMDP	SGTFVQCDAR	AIGSASEGAQ	SSLQEIYHKS	MTLKDAIKSS	LTILKQVMEE 208		
Notothenia coriiceps_XP_010766620	VALLFGGFDE	KGPQL YHMPP	SGTFVQCDAR	AIGSASEGAQ	SSLQEIYHKS	MTLKDAIKSS	LTILKQVMEE 208		
Danio rerio_NP_991271	VALLFGGVDE	KGPQLYHMDP	SGTFVQCDAR	AIGSASEGAQ	SSLQEVYHKS	MTLKDAIKSS	LTILKQVMEE 208		
	VALLFGGVDE	KGPQLYHMDP	SGTFVQCDAR	AIGSASEGAQ	SSLQEVYHKS	MTLKEAIKSS	208		
- Consensus	VALLFGGVDE	KGPQL YHMDP	SGTFVQCDAR	AIGSASEGAQ	SSLQEVYHKS	MTLKEAIKSS	LTILKQVMEE		
Conservation	$\square\\|\square\\| \square \square \square \square \square$				\square				
	$\sqrt{A L L} \text { FGGEV }$	KGPQ LGHMDP	SGTFVQNEAR	Ā\|Ĝ̃ASEGAQ					
Caenorhabditis elegans_NP_492765 Arabidops is thaliana NP 188046	KLNSANVEVV	VIKPTVDAKG	BPIGEFTRVS	NEELDQVITS	L- 248				
	KVTPNNVDIA	KVAP - .-. A	YHLYT	PQEVEAVISR	- 237				
	KLNSTNVEVM	TMTK-.- - E	BE- - FYMFT	KEEVEQHIKN	1A 244				
Drosophila melanogaster_NP_725669 Mus musculus_NP_036097	KLNATNIELA	TVQP-.-. ${ }^{\text {G }}$	QN - - FHMFT	KEELEEVIKD	1-241				
Homo sapiens_NP_002781	KLNATNIELA	TVQP	QN - - FHMFT	KEELEEVIKD	1-241				
Xenopus laevis_BADP42871	KLNATNIELA	TIEP	KK- - FHMYC	KEELEEVIKD	1-241				
Trematomus bernacchii K	KLNATNIELA	IVEP--.-G	KT-- FHMFS	KEELEDVIKD	1-241				
Notothenia coriceps_XP_010766620	KLNATNIELA	IVEP-..-G	KT- - FHMFS	KEELEDVIKD	241				
Canio rerio_NP_991271	KLNATNIELA	TVEP--- - G	KT- - FHMYT	KEELEDVIKD	241				
	KLNATNIELA	TVEP---G		KEELEEVIKD	241				
	KLNATNIELA	TVEP----G	KT- - FHMFT	KEELEEVIKD					
Conservation			$\square_{\square} \quad \square \square \square \square \square$						
quence logo	KLNAATVYEL								

		1	2	3	4	5	6	7	8	9	10
Caenorhabditis elegans_NP_492765	1		52,82	55,95	60,64	60,24	60,24	59,84	59,84	59,84	60,64
Arabidops is thaliana_NP_188046	2	131		61,07	68,05	67,63	67,63	67,22	67,22	68,46	68,05
Drosophila melanogaster_NP_725669	3	141	149		70,08	69,67	69,26	68,44	68,44	69,26	68,85
Mus musculus_NP_036097	4	151	164	171		99,59	96,27	94,61	94,61	96,27	96,27
Homo sapiens_NP_002781	5	150	163	170	240		95,85	94,19	94,19	95,85	95,85
Xenopus laevis_BAD42871	6	150	163	169	232	231		94,61	94,61	96,27	96,68
Trematomus bernacchii	7	149	162	167	228	227	228		100,00	97,10	97,10
Notothenia coriceps_XP_010766620	8	149	162	167	228	227	228	241		97,10	97,10
Danio rerio_NP_991271	9	149	165	169	232	231	232	234	234		98,34
Oreochromis niloticus_XP_003441568	10	151	164	168	232	231	233	234	234	237	

Figure S6. MUSCLE alignment of proteasome subunit alpha 5 amino acid sequences, with species names and accession numbers. The consensus sequence, the conservation histogram and the sequence logo are shown at the bottom of the alignment. The Table in the last page contains the pairwise comparison of the sequences, with the number of identities (below the diagonal) and percent identity (above the diagonal).

		1	2	3	4	5	6	7	8	9	10
Caenorhabditis elegans_NP_492360	1		50,20	54,51	59,68	60,08	60,08	57,65	57,65	58,04	57,65
Drosophila melanogaster_NP_650910	2	128		51,57	58,17	57,77	58,17	59,52	59,52	60,56	61,35
Arabidopsis thaliana_NP_190694	3	139	131		65,61	66,01	66,01	65,75	65,75	66,54	65,75
Xenopus laevis_NP_001081054	4	151	146	166		96,37	96,77	87,30	87,30	87,25	87,65
Homo sapiens_NP_002783	5	152	145	167	239		98,79	86,90	86,90	86,85	88,05
Mus musculus_NP_036099	6	152	146	167	240	245		87,30	87,30	87,25	88,45
Notothenia coriiceps_XP_010783619	7	147	150	167	220	219	220		100,00	96,03	95,63
Trematomus bernacchii	8	147	150	167	220	219	220	252		96,03	95,63
Oreochromis niloticus_XP_003438172	9	148	152	169	219	218	219	242	242		98,01
Danio rerio_NP_998331	10	147	154	167	220	221	222	241	241	246	

Figure S7. MUSCLE alignment of proteasome alpha 7 subunit amino acid sequences, with species names and accession numbers. The consensus sequence, the conservation histogram and the sequence logo are shown at the bottom of the alignment. The Table in the last page contains the pairwise comparison of the sequences, with the number of identities (below the diagonal) and percent identity (above the diagonal).

Arabidopsis thaliana_NP_193216 Drosophila melanogaster NP- 609804 Homo sapiens_NP_002785 Mus musculus NP- 036100 Xenopus laevis_NP_00-038476 Trematomus bernacchi Notothenia coriiceps_XP_010789577 Danio rerio_NP_001002609 Oreochromis niloticus XP 003447226 Caenorhabditis elegans_NP_498806 Arabidops is thaliana_NP_191641 Xenopus laevis_NP_001080435 Mus musculus_NP_035315 Homo sapiens_NP_002784 Danio rerio_NP_001003889 Oreochromis niloticus_XP-003454565 Trematomus bernacch ch Notothenia coriiceps_XP 010781254 Caenorhabditis elegans_NP_493271 Thermoplasma acidophilum_NP_394085 Drosophila melanogaster_NP_652031 Caenorhabditis elegans_NP_493558 Drosophila melanogaster_NP_652014 Arabidopsis thaliana NP 172765 Xenopus laevis NP 00108432 Mus musculus_NP_035316 Homo sapiens_NP_002788 Danio rerio_NP_571226 Oreochromis niloticus_XP_003457456 Trematomus bernacchii Notothenia coriiceps_XP_010781265 Consensus Conservation

Sequence logo

Arabidopsis thaliana_NP_193216 Drosophila melanogaster_NP_609804 Homo sapiens_NP_002785 Mus musculus_NP_036100 Xenopus laevis_NP_001084761 Trematomus bernacch coriiceps XP 010789577 Danio rerio_NP_001002609 Oreochromis niloticus_XP_003447226 Caenorhabditis elegans_NP_498806 Arabidopsis thaliana_NP_19164 Xenopus laevis_NP_001080435

Mus musculus NP 035315
Homo sapiens NP-00278
Danio rerio_NP_001003889 Oreochromis niloticus_XP_003454565 Trematomus bernacch Notothenia coriiceps_XP_010781254 Caenorhabditis elegans_NP_493271 Thermoplasma acidophilum_NP_394085 Drosophila melanogaster_NP-652031 Caenorhabditis elegans_NP_-493558 Drosophila melanogaster_NP_652014 Arabidopsis thaliana_NP_172765 Xenopus laevis_NP_001084323

Mus musculus_NP_035316 Homo sapiens NP 002788 Danio rerio NP 571226 niloticus_XP_003457456 Oreochromis niloticus_XP_003457456
Trematomus bernacchii
Notothenia coriiceps XP 010781265 Consensus Conservation Sequence logo

80

$V E$	FGLVG - - - NGFAIVAA	DTSAVHS-IL	M	A	
- - METL	LGIKG - . - - PDFVMLAA	DTTHARS-11	VMKEDQNKIH	KVSDSLLIST	VGESGDTEQF 56
-MEYL	IGIQG $\cdots \cdots$ - - PDYVLVAS	DRVAASN-IV	QMKDDHDKMF	KMSEKILLLC	VGEAGDTVQF 56
- - MEYL	IGIQG - . - - PDYVLVAS	DRVAASN-1V	QMKDDHDKMF	KMSEKILLLC	VGEAGDTVQF 56
MF	IG\|QG $-\cdots-$ NDFVLVAA	DTVCANS	QMKHDMDKMF	KMSEKILLLC	VGEAGDTVQF 56
$\cdots \mathrm{MEYL}$	VGIQG - PNFVLVAA	DNVAASS	QMKHDQDKMF	KLSEKILLLC	VGEAGDTAQF 56
EYL	VG\|QG - . - - PDFVLVAA	DNVAASS	QMKHDQDKMF	KLSEK ILLLC	VGEAGDTAQF 56
	IGIQG - . - - PDFVLVAA	DNVAASS	QMKHD YDKM	KLSEKILLLC	VGEAGDTVQF 56
EYL	IGIQG $\cdots \cdot \cdots$	DNVAASS	QMKHDYDKM	KLSEKILLLC	VGEAGDTVQF 56
-.-GGST CA	CAISG- . - - ENFAIVAS	DTRMTQNDIN	ILTRDAEKIQ	ILNDNIILTT	SGFYGDVLQL 107
GTC	VAIAG - . - - SDYCVIAA	DTRMSTG - YS		KLADRAVLSS	SGFQADVKAL 70
G T	LALAG - . . - DDFALVAS	DTRLSEG - YS	1HSRNTPKC	KLTDKTVIGC	TGFHADCLTL 90
G	LA\|AG $\cdots \cdots$ - - EDFSIVAS	DTRLSEG-FS	IHTRDSPKC	KLTDKTVIGC	SGFHGDCLTL 91
-.-GGTI L	LA\|AG - . - - EDFA IVAS	DTRLSEG - FS	1 HTRDSPKC	KLTDKTVIGC	SGFHGDCLTL 92
- - GG	LAVAG - . - - EDFAIVAS	DTRLSEG - YS	1HSRDSPKC	KLTDTTVLGC	SGFHGDCLTL 88
.....GGTV L	LAVAG - . - - EDFA IVAS	DTRLSEG - YS	1HSRDSPKC	KLTDTTVLGC	SGFHGDCLTL 88
- - GGTV L	LAVAG - . - - EDFAIVAS	DTRLSEG - YS	$1 H S R D S P K C$	KLTDTTVIGC	SGFHGDCLTL 88
..... GGTV L	LAVAG - . - - EDFAIVAS	DTRLSEG - YS	1HSRDSPKC	KLTDTTVIGC	SGFHGDCLTL 88
V	VAVAF- - - - KGGLVMGA	DSRATAG	I ADKHCEKVH	KLTESIYACG	AGTAADLDQV 101
T	VGITL - . - - KDAVIMAT	ERR	1 MHKNGKKL	QIDTYTGMTI	AGLVGDAQVL 63
M	MAVEF - . - - - DGGVVIGA	DSRTSS	VANRVTDKLT	RITDKVYCCR	SGSAADTQAI 70
SMQFRKGTTT L	LAFVYEPATP ADKGGIIVAV	DSRASS	ISSKSVMKIL	DIGDRMVATM	AGGAADCQFW
KINFDHGTTT L	LGFKF- - - - KGGVLLAV	DSRATGG - SY	IGSQSMKK IV	EINQFMLGTL	AGGAADCVYW
MLKHAKGTTT	LAFIF- . - - KGGVMVAA	DSRASMG - GY	ISSQSVKKI	EINPYMLGTM	AGGAADCQFW
KIEPWHGTTT	LAFKF- - - - QHGVIVAV	DSRASA	ISTIKFNKV	EINPYLLGTM	SGSAADCQYW
RIEMLHGTTT	LAFKF- . - - LHGVIVAA	DSRATAG - AY	IASQTVKKVI	EINPYLLGTM	AGGAADCSFW
GIEMLHGTTT	LAFKF - . . - RHGVIVAA	DSRATAG - AY	IASQTVKKV	EINPYLLGTM	AGGAADCSFW
KIEFLHGTTT	LAFKF - . . - QHGVIVAV	DSRATAG - AY	I ASQTVKKV	EINPYLLGTM	AGGAADCSFW
KIEFLHGTTT	LAFKF-... - QHGVIVAV	DSRATAG - SY	IASQTVKKVI	EINPYLLGTM	AGGAADCSFW 123
KIEFLHGTTT	LAFKF - QHGVIVAV	DSRATAG - AY	IASQTVKKV	EINPYLLGTM	AGGAADCSFW
KIEFLHGTTT	LAFKF- . - - QHGVIVAV	DSRATAG - AY	IASQTVKKVI	EINPYLLGTM	AGGAADCSFW
-GTTT L	LAIXG--- - EDFVIVAA	DXRASXG-IY	IMSRDVXKVX	KLNDKILLTC	XGXAGDCLQX
					$\square \square \square \square$

 Drosophila melanogaster_NP_609804 Homo sapiens_NP_002785 Mus musculus_NP_036100
Xenopus laevis NP 001084761
Trematomus bernacchi
Notothenia coriiceps XP 010789577 Danio rerio_NP_001002609 Oreochromis niloticus_XP_003447226 Caenorhabditis elegans_NP_498806 Arabidopsis thaliana_NP_191641 Xenopus laevis NP 001080435 Mus musculus_NP_035315 Homo sapiens NP-00278 Danio rerio_NP_001003889 Oreochromis niloticus_XP_003454565

Trematomus bernacchi
Notothenia coriiceps_XP_010781254
Caenorhabditis elegans_NP_493271 Thermoplasma acidophilum_NP_394085 Drosophila melanogaster_NP_-652031 Caenorhabditis elegans NP- 493558 Drosophila melanogaster_NP_-652014 Arabidopsis thaliana_NP_172765 Xenopus laevis_NP_001084323 Mus musculus_NP_035316 Homo sapiens_NP_002788

G	
PVNYAGHGYG	AIFASS
KAPFAAHGYG	AFLTLSILDR
KAPFAAHGYG	AFLTLS
KTRFAAHGYG	AYLTLSILD
KAPFAAHGYG	AFLTLSILDQ
KAPFAAHGYG	AYLTLSILDQ
APFAAHGYG	AFLTLS
KAPFAAHGYG	AYLTLS
RLGYSASGAA	EPMIIPFLDC
RVGYGAQGSG	STLIMPFLDN
RDAYKAGGSA	SAMLQPLLDN
RDSFKAGGSA	SAMLQPLLDN
RDSFKAGGSA	SAMLQPLLDN
RDTYKAGGSA	SAMLQPLLDN
-FPFTAQGSG	SYAAITILER
-DIYASTGSG	SPFVYGVLES
RESCTIGGSG	SSFIYGFVRE
LKVCSV-GSG	SLNAYGILDN
GNLFSV-GSG	SLYAYGVLDS
GDRFSV-GSG	SPYAYGVLDS
GDIFST-GSG	NSYAYGVMDS
GTAFSV-GSG	SVYAYGVMDR
GATFSV-GSG	SVYAYGVMDR
GGLFAV-GSG	SMYAYGVVDS
GDLFAV-GSG	SMYAYGVMDS
GDLFAV-GSG	SMYAYGVIDS
GDLFAV-GSG	SMYAYGVIDS

CILEIRSRLV IAPPNFVIKİ 18 -BSDMS VEEAIELVDK CILEIRSRLV IAPPNFVIKI 181
HPNIT QAEADVFKK CIAEIQRRVV VNLKNFTVAV 182
-TPTIS BEEAVELLAK CLEELKKRFI UNLPTESVRI 182

IAPPNFVIKI 181
VNLKNFTVAV
182 TPTIS EERAVELLRK CLEELQKRFI LNLPTFSVAV 182 KPDLT BEDAVELLKK CISELQKRFI LNLPSFTVAV 182 KPDLT REEAVDLLKK CIEELRKRFI LNLPSETVEI 182 KPDLT REEAVDLLKK CIEELRKRFI MNLPSFTVRL 182 BPDLT EEEAVDLLKK CLEELNKBFI LNLPSETVRL 182 BPDLS EDEAVDLLKK CVEELKKRFI LNLPSFTVAL 182 EGYERPELT LDRAISLMKD SFRGAAEEEI STGDKIHLVI 241 PKQDSNTPLS EAEAVDLVKT VFASATEBDI YTGDKLEIMI 207 QNVEQLPLT LEKALKLIKD VFISAAERDV YTGDALHISI 223
QNVEHVPLT LDRAMRLVKD VFISAAERDV YTGDALRICI 22 QNVEHVPLS LDBAMBLVKD VF EGVEVPLT KDKAVQLVKD V FISAAERDV FISAAERDV FISAAERDV VFISAAERDV VFISAAERDV ALEAGMHGDN AVQHAIYHDG AVQHAIYHDG AIMHATYRDS AIYHATFRDA SIYHATFRDG
AISYATHRDA AIYQATYRDA A IYQATYRDA A IYQATYRDA A I YQATYRDA AIYQATYRDA $A \| Y Q A T Y R D A$
$A I Y Q A T Y R D A$ AIYQATYRDA $\begin{array}{ll:l}1 G B A L R & C & 224 \\ \text { YTGDALR } & C & 225\end{array}$ $\begin{array}{ll:l:l}\text { TGDALR I } & 225 \\ \text { TGDAI KVC: } & 221\end{array}$ $\begin{array}{llll}\text { YTGDALKVC I } & 221 \\ \text { YTGDALR ICV } & 221\end{array}$ YTGDALRLC 221 YTGDALRLCI 221 ASGNSLNLVI 223 ASGGMIDVAV 185 SSGGVVRIGI 193 GSGGVCNLCH 249 YSGGIIRVYH 251 ASGGVASVYH 235 YSGGCVNLYH 244 YSGGAVNLYH 237 YSGGQVNLYR 237 YSGGQVNLYH 246 YSGGQVNLYH 246
YSGGQVNLYH 246 YSGGQVNLYH 246 YSGGAXNXYI

		300	${ }^{320}$			
Arabidopsis thaliana_NP_193216	V- DKDGAREY	GW	RISTADA			199
Drosophila melanogaster_NP_609804	V-DKDGVRDL	PI	SAASLAA			201
Homo sapiens_NP_002785	1-DKNGIHDL	D- .-. - - ${ }^{\text {N }}$	SFPKQGS			201
Mus musculus_NP_036100	1-DKDGIHNL	E- - - - - $\mathrm{N}^{\text {I }}$	AFPKRDS			201
Xenopus laevis_NP_001084761	1-DKDGIHDL	D- - - - - S	PASSL			199
Trematomus bernacchii	1-DKEGIHD	E	KLCSGAK			199
Notothenia coriceps_XP_010789577	1-DKEGIHD	E	KLSSGAK			199
Danio rerio_NP_001002609	1-DKDG\|HD	ME	KLPVGBK			199
Oreochromis niloticus_XP_003447226	1-DKEGIH	DL	EKLTLGAK			199
Caenorhabditis elegans_NP_498806	AEAGKPV	VV	KFLPLRED			258
Arabidops is thaliana_NP_191641	L-KADG	KT	ELMDLRKD			223
Xenopus laevis_NP_001080435	V-TKDGV	RE	ESISLRKD			239
Mus musculus_NP_035315	V-TKEG	RE	ETVPLRKD			240
Homo sapiens_NP_002784	V-TKEG	RE	ETVSLRKD			241
Danio rerio_NP_001003889	V-SKEG	E	EIVPLRKD			237
Oreochromis niloticus_XP_003454565	1-TKEG।	NE	ETIPLRKD			237
Trematomus bernacchii	1-TKEG	NE	QTVPLRKD			237
Notothenia coriceps_XP_010781254	1-TKEGI	NE	QTVPLRKD			237
Caenorhabditis elegans_NP_493271	IEPSETVFKG	PIVPEFCKRP	EPNDLVYKFQ	AGATKVLKHK	TYKYDVVESM	DITH 277
Thermoplasma acidophilum_NP_394085	ITRKDGYVQL		QIESRIRKLG	LIL		211
Drosophila melanogaster_NP_652031	1-TKDGIERR	IFYNTESGAS	AVSSTPSFIS			224
Caenorhabditis elegans_NP_493558	1-TPTEKIRL	P-.-.-. PM	DVSKLWYEFA	DELGRDITYN	PVE	284
Drosophila melanogaster_NP_652014	1-KEDGWVN	S-- - - - NT	DCMELHYMYQ	EQLKQQAAK		282
Arabidopsis thaliana_NP_172765	V-GPEGWTKL	S - - - - - GD	DVGELHYHYY	PVAPATAEQV	MEEATAE	274
Xenopus laevis_NP_001084323	M-KEDGWVK	QF	DVSDLLHKFT	EEKNM -		271
Mus musculus_NP_035316	V-REDGWIRV	S-.-. - - SD	NVADLHDKYS	SVSVP		264
Homo sapiens_NP_002788	V-REDGWIRV	S - - - - - SD	NVADLHEKYS	GSTP		263
Danio rerio_NP_571226	V-HSEGWERV	S - - - - - QE	DVLQLHQKYQ	SEKA		269
Oreochromis niloticus_XP_003457456	V-HSEGWTRI	S - - - - - QD	DVLVLHHQYK	DQA		271
Trematomus bernacchii	V-HSEGWTRV	S - - - - - QE	DVLMLHQQYK	SQA		27
Notothenia coriiceps_XP_010781265	V-HSEGWTRV	S - - - - - QE	DVLMLHQQYK	SQA		--- 271
Consensus	I-DKEGI	NE	XVXSLRKD			
Conservation 0% 4,3bits	"					
equence logo 0,0bits						

Figure S8. MUSCLE alignment of the catalytic proteasome subunits, with species names and accession numbers, utilized for the phylogenetic analysis.

Figure S9. Theoretical assembly of the seven modelled chains of T. bernacchii proteasome (in red, alpha helices; in cyan, beta strands). The assembly is based on the reference structure of mouse whole proteasome (PDB code: 3UNB). The simple backbone (in grey) of the corresponding mouse chains is shown for the remaining chains (not modelled).

