Supplemental Table 1. Bibliographic data of *in planta* characterizations of Arabidopsis *hma6/paa1*, *hma8/paa2* and *hma1* mutants.

Shikanai et al., 2003 [20]:

Six independent mutants obtained by EMS in Arabidopsis Ler and Col ecotypes:

- Severe growth-rate phenotype partially rescued by addition of Cu.
- High light-sensitivity.
- Reduced Cu content and Cu/ZnSOD activity in chloroplasts from mutants.
- Defect in photosynthetic electron transport, plastocyanin level are reduced drastically.
- => PAA1/HMA6 is a critical component of a Cu transport system in chloroplasts responsible for cofactor delivery to plastocyanin and Cu/ZnSOD.

Abdel-Ghany et al., 2005 [21]:

Two independent mutants obtained by EMS in Arabidopsis Col ecotype:

- Pale green leaf color, growth rate unaffected.
- Reduced Cu content in thylakoids.
- Defect in photosynthetic electron transport, plastocyanin level are reduced drastically.
- => PAA2/HMA8 is required for Cu delivery to the thylakoid lumen.

Seigneurin-Berny et al., 2006 [22]:

Two independent insertional mutants in Arabidopsis Ws ecotype:

- No phenotype in normal culture conditions.
- High light-sensitivity, independent of Cu or Zn content.
- Reduced Cu content and Cu/ZnSOD activity in chloroplasts from mutants.
- In the chloroplast envelope from plants overexpressing AtHMA1, ATPase activity is enhanced by Cu.
- => AtHMA1 is an alternative pathway for Cu import into the chloroplast, essential in high light conditions

Kim et al., 2009 [25]

Two independent insertional mutants in Arabidopsis Col-0 ecotype and one mutant in Ws ecotype:

- No phenotype in normal culture conditions.
- Col-0 *hma1* mutants are more sensitive to excess Zn, accumulate more Zn in their shoots and chloroplasts. Chloroplast Cu concentration is not affected.
- => AtHMA1 contributes to Zn detoxification by reducing Zn concentrations in Arabidopsis plastids

Boutigny et al., 2014 [23]:

Characterization of paa1 mutant overexpressing HMA1 and hma1 paa1 double mutant lines:

- Evidence for an alternative Cu import route in chloroplasts that is neither HMA1 nor PAA1.
- The lack of HMA1 reinforces the phenotype of the *paa1* mutant (slower growth rate and decreased Cu/ZnSOD activity).
- Overexpression of HMA1 in a paa1 mutant background induces Cu-dependent photosensitivity.
- HMA1 and PAA1 behave as distinct pathways for Cu import and targeting to the chloroplast.
- => New evidence for the role of AtHMA1 in chloroplast Cu homeostasis. Evidence for a third envelope transporter involved in regulating chloroplast Cu homeostasis.

Supplemental Figure 1

Supplemental Figure 1. Catalytic cycle of P_{IB} -type ATPases. The bold arrows correspond to the forward cycle of P-type ATPases. E, E.Me, E~P.Me, E-P represent the major catalytic intermediates of the enzyme. The four steps are reversible. Me represents the transported metal. Me $_{in}$ and Me $_{out}$ represent the cytosolic and extracellular/luminal metal respectively.

Supplemental Figure 2

Supplemental Figure 2. Metal dependence of HMA8 phosphorylation from [γ -32P]ATP. A. Membrane preparations containing HMA8 (150 μg) were phosphorylated without added metal (Ø, lanes 1 to 3), with 1 μM of CuSO₄ (lanes 4 to 6) or with 1 μM of ZnCl₂ (lanes 7 to 9). In each condition, BCA/BCS (lanes 2, 5 and 8) or EGTA (lanes 3, 6 and 9) was added as indicated in the figure. **B.** Membrane fractions (150 μg) containing HMA8 were incubated with various concentrations of AgNO₃ or ZnCl₂. The arrows indicate HMA8 phosphorylation signals.

Supplemental Figure 3. Coomassie blue stained gels corresponding to the phosphorylation gels of the Figures 3 and 4. See Figures 3 and 4 for the legends.

Supplemental Figure 4. Coomassie blue stained gels corresponding to the phosphorylation gels of the Figures 5B and 6A. See Figures 5B and 6A for the legends.