BIOCHEMICAL SOCIETY
TRANSACTIO NS

1980
Volume 8

Managing Editor D. C. WATTS

London: The Biochemical Society © 1980
This journal contains unedited reports of the formal presentations of data and comments communicated to the Biochemical Society at Meetings and Colloquia organized by the Society or by Groups of the Society.
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wisdom, G. B.</td>
<td>430, 431, 441</td>
</tr>
<tr>
<td>Wiseman, A.</td>
<td>98, 99, 200, 573, 711, 712, 713</td>
</tr>
<tr>
<td>Withy, R. M.</td>
<td>181</td>
</tr>
<tr>
<td>Wolff, S.</td>
<td>644</td>
</tr>
<tr>
<td>Wong, S. T.</td>
<td>286</td>
</tr>
<tr>
<td>Wood, J.</td>
<td>70</td>
</tr>
<tr>
<td>Wood, J. N.</td>
<td>615</td>
</tr>
<tr>
<td>Woodhams, P.</td>
<td>614</td>
</tr>
<tr>
<td>Woodhead, J. L.</td>
<td>90, 634</td>
</tr>
<tr>
<td>Woods, L. F. J.</td>
<td>98, 99, 200</td>
</tr>
<tr>
<td>Woodward, D. F.</td>
<td>150</td>
</tr>
<tr>
<td>Woolley, J.</td>
<td>115</td>
</tr>
<tr>
<td>Worcester, D. L.</td>
<td>717</td>
</tr>
<tr>
<td>Wrigglesworth, J.</td>
<td>75</td>
</tr>
<tr>
<td>Wrigglesworth, J. M.</td>
<td>78</td>
</tr>
<tr>
<td>Wright, J. K.</td>
<td>279</td>
</tr>
<tr>
<td>Wyke, A. W.</td>
<td>164</td>
</tr>
<tr>
<td>Wylie, B. A.</td>
<td>61</td>
</tr>
<tr>
<td>Woodhead, J. L.</td>
<td>90, 634</td>
</tr>
<tr>
<td>Young, J. D.</td>
<td>317</td>
</tr>
<tr>
<td>Young, J. L.</td>
<td>306, 386</td>
</tr>
<tr>
<td>Yousef, A. M.</td>
<td>74</td>
</tr>
<tr>
<td>Yonelan, T.</td>
<td>637</td>
</tr>
<tr>
<td>Woodhead, J. L.</td>
<td>90, 634</td>
</tr>
<tr>
<td>Zammit, V. A.</td>
<td>543</td>
</tr>
<tr>
<td>Zelaschi, D.</td>
<td>726, 727</td>
</tr>
<tr>
<td>Ziemiecki, A.</td>
<td>735</td>
</tr>
</tbody>
</table>
Subject Index

Entries prefixed by an asterisk refer to papers represented by title only.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abscisic acid</td>
<td>control of tocopherol oxidase in vitro 186–187</td>
</tr>
<tr>
<td>Acer pseudoplatanus</td>
<td>see Sycamore</td>
</tr>
<tr>
<td>Acetate</td>
<td>adaptation of cells of Chlorella fusca 736–737</td>
</tr>
<tr>
<td>Acetate receptors</td>
<td>see Acetylcholine receptors</td>
</tr>
<tr>
<td>Acetylcholine receptors</td>
<td>antigenic sites 741</td>
</tr>
<tr>
<td>myasthenia gravis</td>
<td>693–694</td>
</tr>
<tr>
<td>protein</td>
<td>693–694</td>
</tr>
<tr>
<td>toxin-binding sites</td>
<td>741</td>
</tr>
<tr>
<td>Acetycholinesterase</td>
<td>erythrocyte 551</td>
</tr>
<tr>
<td>Acetyl-CoA carboxylase</td>
<td>removal of phosphorylation site 387–388</td>
</tr>
<tr>
<td>Acid proteinases</td>
<td>kidney-cortex 596–597</td>
</tr>
<tr>
<td>Actinobacter calcoaceticus</td>
<td>mandelate dehydrogenase 653–654</td>
</tr>
<tr>
<td>Actinomyces israelii</td>
<td>inhibitors of cell culture growth in 137–138</td>
</tr>
<tr>
<td>Actinomycin D</td>
<td>effect on murine tumour 107–108</td>
</tr>
<tr>
<td>liposome-entrapped 107–108</td>
<td></td>
</tr>
<tr>
<td>Active-site titration</td>
<td>trypsin 193–194</td>
</tr>
<tr>
<td>Adenine derivatives</td>
<td>effect on urate biosynthesis 140–141</td>
</tr>
<tr>
<td>Adenosine</td>
<td>binding in brain 141–142</td>
</tr>
<tr>
<td>Adenosine 3':5'-cyclic monophosphate</td>
<td>adenine activation of formation 141–142</td>
</tr>
<tr>
<td>adenylate cyclase activity 139–140</td>
<td></td>
</tr>
<tr>
<td>islet-of-Langerhans</td>
<td>579–580</td>
</tr>
<tr>
<td>protein biosynthesis</td>
<td>613–614</td>
</tr>
<tr>
<td>Adenosine triphosphate synthesis</td>
<td>rat liver mitochondria 454–455</td>
</tr>
<tr>
<td>Adenosine triphosphate synthesis/membrane-fixed-charge relationships</td>
<td>protonmotive force 453–454</td>
</tr>
<tr>
<td>S-Adenosylmethionine</td>
<td>concentration in brain 62–63</td>
</tr>
<tr>
<td>tissue concentration 62–63</td>
<td></td>
</tr>
<tr>
<td>Adenylate cyclase</td>
<td>activation by human choriongonadotropin 386–387</td>
</tr>
<tr>
<td>computer simulation of activity 139–140</td>
<td></td>
</tr>
<tr>
<td>corpus luteum</td>
<td>306–307</td>
</tr>
<tr>
<td>dimethyl 3,3'-dithiobispropionimidate 306–307</td>
<td></td>
</tr>
<tr>
<td>interaction with gangliosides 128–129</td>
<td></td>
</tr>
<tr>
<td>luteal membranes</td>
<td>386–387</td>
</tr>
<tr>
<td>regulation of cytochrome P-450 biosynthesis</td>
<td>712–713</td>
</tr>
<tr>
<td>Adipocytes</td>
<td>see Fat-cells</td>
</tr>
<tr>
<td>Adipose tissue</td>
<td>brown, see Brown adipose tissue</td>
</tr>
<tr>
<td>cholesterol esterase 728–729</td>
<td></td>
</tr>
<tr>
<td>lipid biosynthesis</td>
<td>590–591</td>
</tr>
<tr>
<td>lipolytic agents and fatty acid esterification 362–363</td>
<td></td>
</tr>
<tr>
<td>lipoprotein lipase</td>
<td>74</td>
</tr>
<tr>
<td>regulation of metabolism during lactation 369–370, 370–371</td>
<td></td>
</tr>
<tr>
<td>regulation of metabolism during pregnancy 370–371</td>
<td></td>
</tr>
<tr>
<td>triacylglycerol lipase</td>
<td>728–729</td>
</tr>
<tr>
<td>very-low-density-lipoprotein metabolism</td>
<td>539–540</td>
</tr>
<tr>
<td>xanthine oxidase and lipolysis</td>
<td>363–364</td>
</tr>
<tr>
<td>Adrenal gland</td>
<td>aminoglutethimide inhibition of steroidogenesis 301</td>
</tr>
<tr>
<td>Adrenal-gland cortex</td>
<td>steroid hormone biosynthesis 584–585</td>
</tr>
<tr>
<td>Adrenal medulla</td>
<td>copper deficiency and catecholine synthesis 342</td>
</tr>
<tr>
<td>Adrenaline</td>
<td>effect on Ca(^{2+}) movement in liver 144–145</td>
</tr>
<tr>
<td>(\beta)-Adrenergic receptors</td>
<td>visual-centre 633–624</td>
</tr>
<tr>
<td>Adrenocorticotropic, see Corticotropin</td>
<td></td>
</tr>
<tr>
<td>*Adrenocorticotropic prohormone of endorphin (31000 mol. wt.)</td>
<td>selective processing 413</td>
</tr>
<tr>
<td>Affinity chromatography</td>
<td>aldose reductase 194–195</td>
</tr>
<tr>
<td>Age</td>
<td>cell, see Cell age</td>
</tr>
<tr>
<td>Aggregation</td>
<td>platelet, see Platelet aggregation</td>
</tr>
<tr>
<td>Agrobacterium tumefaciens</td>
<td>mapping of Ti plasmid 173–174</td>
</tr>
<tr>
<td>Alanine</td>
<td>biosynthesis 501–504, 506–509</td>
</tr>
<tr>
<td>hepatic gluconeogenesis</td>
<td>205–213</td>
</tr>
<tr>
<td>hepatocyte</td>
<td>577</td>
</tr>
<tr>
<td>*Adrenocorticotropic prohormone of endorphin (31000 mol. wt.)</td>
<td>metabolism 577</td>
</tr>
<tr>
<td>skeletal muscle 501–504, 574–575</td>
<td></td>
</tr>
<tr>
<td>small intestine 506–509</td>
<td></td>
</tr>
<tr>
<td>synthesis in muscle 205–213</td>
<td></td>
</tr>
<tr>
<td>transport</td>
<td>577</td>
</tr>
<tr>
<td>Albumin</td>
<td>antibodies to, see Anti-albumin antibodies</td>
</tr>
</tbody>
</table>
Anabaena variabilis

Amniotic fluid

Antibodies

Anti-albumin antibodies

Antibodies

anti-albumin, see Anti-albumin antibodies

immunoglobulin G, see Immunoglobulin G antibody

monoclonal, see Monoclonal antibodies

viral, see Viral antibody

Antibody response

influenza virus 257–260

Anticoagulant

sulphated polysaccharides 82–83

Antigens

brain 608

embryonic, see Embryonic antigens

Ehrlich-ascites-tumour-cell, see Ehrlich-ascites-tumour-cell antigens

Antithrombin III

anticoagulant effects 82–83

effect of sulphated polysaccharides on clotting 188–189

inhibition of platelet aggregation 84–85, 85–86

plasmin and 652–653

Aorta

protein phosphorylation during contraction 365–366

Apoferritin

heavy-metal-ion-binding sites 654–655

iron uptake 655–656

Arachidonate

induction of platelet aggregation 726–727

oxygenation during prostaglandin biosynthesis 79–80

Arginine methylase

myelin basic protein 611–612

spinal-cord 611–612

Artemia salina, see Brine shrimp

Arylesulphatase

sheep liver and gut 343–344

Arylesulphatases A and B

inhibition by nucleotides and other anions 450–451

Ascites cells

Krebs II, see Krebs II ascites cells

Ascites tumour

Ehrlich, see Ehrlich ascites tumour

Ascorbic acid starvation

metabolism by cells in culture 678–679

Aspergillus carbonarius

metabolism by cells in culture 197–198

Aspergillus nidulans

deoxyxribonuclease 4 445–446

neutral proteinases 542–543

Astrocytes

brain 604–605

cerebrosides 604–605

Atrophic skeletal muscle

glycosidases 447–448

Auxin

carot-embryo abortion induced by 627–628

Auxins

control of tocopherol oxidase in vitro 186–187

Axons

neurofilaments 484–487

B- and T-lymphocytes

radiochemical assay for glycol-leucine dipeptidase 438–438

Baby-hamster kidney cells (BHK-21/C13)
sulphated glycosaminoglycans 134–136

Bacilli
		
tunicamycin and wall-polymer synthesis 164–166

Bacteria

active transport of peptides 683–685

binding-protein-dependent transport 678–679

proton-coupled transport 678–679

Bacteriorhodopsin

proton pump of Halobacterium halobium 677–678
Balenine
skeletal-muscle 552

Band-3 glycoprotein
monoclonal antibodies 334–335

Barley (Hordeum vulgare) leaves
lipid metabolism 534

Basic protein
myelin 491–493, 601–602, 603–604, 611–612

Bean (Vicia faba)
enzyme activities in subcellular fractions 425–453

cis-Benzenediol
phenol production 425–453

Benzoate
Desulfuibrio vulgaris 624–625
Pseudomonas aeruginosa 624–625

Benzolalpyrene
N-Benzyloxycarbonyltyrosine
p-nitrophenyl ester
plasmin 583–584

Bile
effect of somatostatin on flow of 53–54
exterokinase excretion 55
transport of proteins into 114

Bile acids
subcellular distribution 111–112

Bile salts
binding to rat liver ligandin 372
membrane damage 126–127

Binding
cytchrome c oxidase 78–79
haemoproteins 75–76, 78–79

Proton-dependent, see Proton-dependent binding

Bioactivation
post-translational proteolysis 411–412

Biochemical response curves
bifurcation diagrams 313–315

Biodegradation
catechol 452–453

methanogenic, see Methanogenic degradation

Biotechnology
green-cell cultures 475–482
photosynthetic cells 481–482
solar energy 481–482

Birds
lipid metabolism 295–296

Blood
storage and NADH–ferricyanide reductases 325, 326

Blood plasma, see Plasma

Blood platelets, see Platelets

Blue–green algae
minor nucleotides in tRNA 87–88

Bone
inhibitor of collagenase 112–113

Book Reviews and Publications Received 157–161, 229–240, 401–408, 467–474, 669–674, 767–776

Brachial plexus
cortical protein synthesis after activation of 65–66

Brain
adenosine binding 141–142
adenylate cyclase 128–129
amino acid uptake 609–610

antigens 608

astrocytes 604–605
calmodulin 487–489
calmodulin-binding proteins 487–489
cyclic AMP phosphodiesterase 128–129
demyelination 483–494

diamagnetic-cation detection by chlorotetracycline fluorescence 340–341

enolase 489–491
gangliosides 128–129
gastrin-like immunoreactive peptide 50–51
glycine-cleavage system 504–506
methylenetetrahydrofolate reductase 392–393
mitochondria and synaptosomal Ca2+ transport 264–266

myelin 600–601, 603–604, 604–605, 618–619

neurofilaments 484–487, 614–615, 615–616

neurons 604–605

oligodendrocytes 604–605

oligodendroglia 612–613

polypeptide composition of cells during development 335–336

protein 14–3–2 489–491

protein 14–3–3 617–618

protein biosynthesis 613–614

proteins 494–496, 608, 616–617, 620–621

synapses 483–484, 619–620

thromboplastin 133

thyroliberin deaminase 424
triacetylgluceral formation and hydrolysis during myelination 368–369

tubulin 725
visual centres 652–624

Brain cortex, see Cerebral cortex

Brain tissue
synaptosomal-membrane preparations 423

thyroliberin pyroglutamyl peptidase 423

Branched-chain 2-0x acid dehydrogenase
phosphorylation in intact mitochondria 374

Breast cancer
aminoalglutethimide 301

Breeding
plant, see Plant breeding

Brine shrimp
uracil-DNA glycosylase 730–731

Brown adipose tissue
Ca2+ activation of mitochondrial isocitrate dehydrogenase
(NAD+) 339

cold-acclimation and fatty acid synthesis 375

Bruceantin
protein-synthesis-initiation inhibitor 357–359

Brush border membranes, see Brush-border membranes

Brush-border membrane vesicles
glucose uptake 318

Brush border membranes
disease 688–690

a-Bungarotoxin
binding component from Musca domestica 742–743

C4 compounds
microbial assimilation I–10

Cadmium ions
inhibition of synaptosomal dopamine uptake 68

Calcitonin
immunoreactive material from tumour cells 340

Calcium-binding glycoprotein
mitochondrial Ca2+ uptake 338

Calcium-binding protein
small-intestine 528–529

Vol. 8
Calcium ions
accumulation by mammary Golgi-rich fraction 337–338
activation of mitochondrial isocitrate dehydrogenase (NAD\(^+\)) 339
cellular regulation 261–270
effect of adrenaline in liver cells 144–145
effect of glucagon in liver cells 144–145
effect on glutamate release from rat striatum 109–110
Golgi-vesicle 525–526
5-hydroxytryptamine secretion 530–531
initiation of lymphocyte growth 721–722
mammary-gland 525–526
membrane ion permeability 268–270
mercurial-stimulated mitochondrial efflux 336–337
mitochondria and transport in synaptosomes 264–266
mitochondrial cycle with Na\(^+\) 262–264
mitochondrial influx and efflux 262–264
mitochondrial uptake and Ca\(^{2+}\)-binding glycoprotein 338
pancreatic acinar cells 268–270
regulation of mitochondrial metabolism 266–268
thromboxane B\(_2\) biosynthesis 530–531
transport 525–526
brain 487–489
phosphorylase kinase subunit binding 387
posterior-pituitary-gland 557–558
Calmodulin-binding proteins brain 487–489
Cancer
breast 301
Candida lipolytica extracellular-esterase uptake by membrane vesicles 320–321
Canine-distemper virus large- and small plaque 428–429
neurovirulence for hamsters 428–429
Carbohydrates
Carbon dioxide partial pressure
Carbon disulphide
Carbonic anhydrase
Carboxylic acids
fatty acid biosynthesis 562–563
Carcinoma
immunoreactive calcitonin 340
Walker 256, see Walker 256 carcinoma
Cardiac muscle
initiation by ribosomes 360–361
insulin pretreatment and ribosomes 359–360
plasma-membrane fraction containing interrelated discs 328
Carotenoid shift
light-harvesting pigment–protein complexes in Rhodopseudomonas spheroides 198
Carraagenan
induction of platelet aggregation 84–85
Carrot (Daucus carota) embryos auxin-induced abortion 627–628
Cartilage glycosaminoglycans
comparison of solvent extractions 446–447
10\(\mu\)m-thick sections 432–433
Casein kinases
Krebs II ascites cells 347
Castration
effect on drug metabolism 342–343
Catechol
methanogenic biodegradation by microbial consortium 452–453
Catecholamines
adrenal synthesis and copper deficiency 342
Cathepsins
kidney-cortex 596–597
Catecholamines
adrenal synthesis and copper deficiency 342
Caudate nucleus
\(^{3}H\)spiroperidol binding 181–182
Cell age
malondialdehyde formation in erythrocytes in vitro 195–196
Cell culture
Actinomyces israelii 137–138
endothelial cells 719–720, 720
green, see Green-cell cultures
muscle 741
plants, see Plant cultures
reticulocyte 548–550
thyroid, see Thyroid-cell culture
Cell division
membrane phospholipids 30–32
Cell organelles
heterogeneity 515–516, *597
monocyte 594–596
Cells
ascites-tumour, see Ascites-tumour cells
BH-K-21/C13, see Baby-hamster kidney cells (BH-K-21/C13)
Chinese-hamster ovary, see CHO cells
Ehrlich ascites-tumour, see Ehrlich ascites-tumour cells
endothelial, see Endothelial cells
interphase, see Interphase cells
Leukaemia L1210, see Leukaemia L1210 cells
mumps-virus-infected, see Mumps-virus-infected cells
pancreatic acinar, see Pancreatic acinar cells
partitioning in aqueous polymer two-phase systems 118–119
peritoneal mast, see Peritoneal mast cells
separation 518
SV-40-transformed 3T3, see SV-40-transformed 3T3 cells
*transport 647
Central nervous system
immunoglobulin G 609
multiple-sclerosis 609
myelin 601–602
myelin basic protein 491–493
Centrifugation
isopycnic 511–513, 513–515
rate-sonal 511–513
subcellular fractionation 515–516
whole-cell separation 518
Cerebellum
proteins 620–621
synaptic membranes 109
Cerebral cortex
monoamine oxidase 607–608
polypeptide composition of cells during development 335–336
protein synthesis 65–66
Cerebroside
biosynthesis 604–605
brain 604–605
1980
SUBJECT INDEX

Chemiluminescence
- polymorphonuclear leucocytes 723–725
- Chemotaxis proteins
 - methyl accepting, see Methyl-accepting chemotaxis proteins
Chicken
 - lipid metabolism 295–296
Chloramphenicol
 - see Methyl-accepting chemotaxis proteins
 - Polymorphonuclear leucocytes 723–725
 - methyl-accepting
Chloroplasts
 - see Algal (Chlorella) photosynthesis
 - Glucose uptake 681–683
 - Chlorella fusca var. vacuolata
 - acetate adaptation 736–737
 - polyadenylated RNA 736–737
 - Glucose 6-phosphatase 541–542
 - Barley-leaf 534
 - Differentiation 534
Chlorpromazine
 - Cytochrome P-450-dependent hydroxylation 122–123
Chloroplasts
 - see Algal (Chlorella) photosynthesis
 - Lipid metabolism 295–296
 - Cytochrome P-450 degradation
 - see Algal (Chlorella) photosynthesis
Chlorpromazine
 - see Algal (Chlorella) photosynthesis
 - Lipid metabolism 295–296
Chorionic gonadotropin
 - Activation of luteal adenylate cyclase
Chromatography
 - Thin-layer, see Thin-layer chromatography
Chromatography
 - Countercurrent partition
 - dextran/poly(ethylene glycol) 76–77
 - Creatine kinase BB isoenzyme assay 621–622
Cromoglycate
 - see Algal (Chlorella) photosynthesis
 - Lipid metabolism 295–296
Chromotetracycline
 - Detection of diaphragmatic cations in tissue 340–341
 - Fluorescence 340–341
CHO cells
 - Glycolysis 631–632
 - Lactate utilization 632–633
 - Maltose utilization 633–634
 - Starch utilization 633–634
 - Cytochrome P-450-dependent hydroxylation 122–123
 - Distribution across myelin membrane bilayer 717
 - Ehrlich ascites-tumour-cell 545
 - Erythrocyte membranes 131
 - Incorporation into liver microsomal fraction 122–123
 - Metabolism 545
 - Side-chain-damage enzyme complex 129
Cholesterol esterase
 - Adipose tissue 728–729
Cholesterol 7α-hydroxylase
 - 14C Choline
 - Synaptosomal uptake 138
 - Choriongonadotropin
 - Activation of luteal adenylate cyclase 386–387
Chromatography
 - Thin-layer, see Thin-layer chromatography
 - Chronic lymphocytic leukaemia
 - Lymphocyte α-d-fucosidase 439–440
 - Chymotrypsin
 - Glutamate dehydrogenase digestion 649
Clotting
 - Sulphated polysaccharides and antithrombin-III-deficient plasma 188–189
Cobra
 - Erabutoxins and related neurotoxins 753–755
 - Coenzymes
 - Nicotinamide, see Nicotinamide coenzymes
 - Cold acclimation
 - Fatty acid synthesis 375
Coliphage φX174
 - DNA transcription 740
 - Collagen
 - A, B and C α-chains 324–325
 - Foetus and placenta 324–325
 - Induction of platelet aggregation 726–727
 - Non-basement membrane 324–325
 - Synthesis in muscle 74–75
 - Types V and VI 324–325
Collagenase
 - Inhibitor 112–113
 - Collagenase zymogen activation 647–648
 - Colorimetric assay
 - Mucous glycoproteins 72
 - Colpoda steinii
 - Protein-linked polyamines in cyst coat 335
 - Common shore crab (Carcinus maenas)
 - Muscle phosphofructokinase 142–143
 - Phosphofructokinase 560–561, 561–562
 - Pyruvate kinase 143–144
 - Skeletal muscle 560–561, 561–562
 - Complement
 - Stimulation of polymorphonuclear leucocyte chemiluminescence 723–725
 - Compound BASF 13–338
 - Computer-assisted sequencing
 - Peptide mass spectra 176–177
 - Computer simulation
 - Adenylate cyclase activity 139–140
 - Cyclic AMP concentration changes 139–140
 - Concanavalin A–Sepharose binding of collagenase inhibitor 112–113
 - Concepts
 - Culture in vitro 434–435
 - Connective tissue
 - Hormones 662–667
 - Prostaglandins 662–667
 - Uterine-cervix 662–667
 - Copper deficiency
 - Adrenal-medulla catecholamine synthesis 342
 - Corpus callosum
 - 2',3'-cyclic nucleotide phosphodiesterase 610–611
 - Corpus luteum
 - Cholesterol side-chain-cleavage enzyme complex 129
 - Choriongonadotropin activation of adenylate cyclase 386–387
 - Dimethyl 3,3'-dithiobispropionimidate and adenylate cyclase 306–307
 - Preparation of isolated cells 305
 - Site of lutropin action 305
 - Corticotropin mRNA coding for precursor 749–751
 - Corticotropin-containing peptides
 - Anterior-pituitary-gland cell 585–586
 - Cortisol plasma 587–588
 - Cytidined cucumber 535–536
 - Fatty acid biosynthesis 535–536
 - Coumarin hepatotoxicity 96–97
 - Metabolism 96–97
 - Countercurrent partition
 - Dextran/poly(ethylene glycol) 76–77
 - Creatine kinase BB isoenzyme assay 621–622
 - Crithidia fasciculata (trypanosomatid flagellate)
 - Transmembrane proton electrochemical gradient 307–308
 - Cromoglycate
 - Cyclic nucleotide phosphodiesterase 199–200
Crossed immunoelectrophoresis

Escherichia coli methyl-accepting chemotaxis proteins 441
Cucumber (Cucumis sativus) cotyledons
fatty acid biosynthesis 535–536
Cucumis sativus, see Cucumber
Cucurbita pepo, see Vegetable marrow

Cyanogen bromide
N-terminal fragment of phosphoglycerate kinase 730
Cyclic adenosine 3',5'-monophosphate, see Adenosine 3',5'-cyclic monophosphate

Cyclic AMP phosphodiesterase
inhibition by cyclic nucleotides and drugs 380–381
lung and brain 380–381

Cyclic GMP phosphodiesterase
inhibition by cyclic nucleotides and drugs in lung 380–381

Cyclic guanosine 3',5'-monophosphate, see Guanosine 3',5'-cyclic monophosphate
2':3' Cyclic nucleotide phosphodiesterase
corpus callosum 610–611
3':5' Cyclic nucleotide phosphodiesterase
inhibition by cromoglicate 199–200
interaction with gangliosides 128–129

Cycloheximide
cytochrome P-450 degradation 711–712
Cyclo-oxygenase inhibitors 726–727

Cyst coat
protein-linked polyamines in _Colpoda steinii_ 335
Cystine
lysosomal accumulation 571
Cytidine
concentration in foetal calf serum 139
Cytochrome bc, complex
mitochondrial inner membrane 332
Cytochrome c

 cytochrome c peroxidase 637–638
 methanol 638–639
Cytochrome c oxidase
cytochrome c complex 652
ligand binding 78–79

Cytochrome c peroxidase

Cytochrome P-450
binding of benzaldehyde 200–201
biosynthesis in _S. cerevisiae_ 712–713
biosynthesis 573–574
cholesterol 7a-hydroxylase dependence 102–103
cholesterol hydroxylation 122–123
degradations in _S. cerevisiae_ 711–712
dexamethasone-induced 344–345
haemoprotein redox potential 101–102
incorporation of 1H-labelled amino acids 98–99
neonatal-rat liver 344–345
n.m.r. spectroscopy of interaction with benzaldehyde 99–100

yeast 573–574

Cytochromes
crystallization 757
Cytoplasm
oestrogen receptors 304–305
polypeptide-initiation inhibitor in resting lymphocytes 355–356

Cytosol
insulin 592–593
lithocholic acid binding in trout liver 371–372
liver 592–593

Daucus carota, see Carrot
Dehydrogenases
flavins and flavoproteins 246–257

Demethylation
myelin proteins 493–494

Deoxyribonuclease 4

Aspargillus nidulans 445–446
inhibition by orthophosphate 445–446

Deoxyribonucleic acid
ATP-requiring restriction enzymes 396–397
binding site on RNA polymerase 91
binding to endodeoxyribonuclease EcoR1 90–91
mapping of Ti plasmid from _Agrobacterium tumefaciens_ 173–174
purification of restriction fragments by liquid countercurrent chromatography 173
recognition sequences for restriction endonucleases 397–398
restriction-endonuclease EcoR1 specificity 399–400
sequence determination of restriction endonuclease recognition sites 398–399
transcription in coliphase aX174 740
use of restriction enzyme fragments for human globin–gene mapping 172

Deoxyribonucleic acid synthesis
interferon inhibition 353–354

2'-Deoxythymidylyl-(3',5')-2'-deoxyadenosine
unusual photoreactivity 440–441

Desulfovibrio vulgaris
benzoyl metabolism 624–625
Detergents
UDP-glucuronyltransferase activation 116–117
Deuterium labelling
myelin membrane bilayer structure 717
Development
dexamethasone-induced cytochrome P-450 344–345
hepatocyte glucokinase induction 384–385
lipid metabolism in birds 295–296
mammal lipid metabolism 289–290
polypeptide composition of brain cells 335–336

Dexamethasone

 cytochrome P-450 induction 344–345
 Dextran/poly(ethylene glycol) counter-current partition 76–77

Diabetes
granulocyte insulin degradation 299
obese–hyperglycaemic (ob/ob) mice 58–59
protein synthesis 282–283, 283–285

Diamagnetic cations
detection in tissues with chlorotetrazacycline 340–341

Diazepam
neurotransmitter metabolism 59–60

Dicyostelium discoideum

 CTP-independent phosphatidylinositol biosynthesis 375–376
developmental changes in tRNA 90

Diet
protein content and protein synthesis 357
protein-free and protein synthesis 361–362

Diffusion
oscillation 309–311
potentials in systems far from thermodynamic equilibrium 309–310
reaction mechanism 311–312

Dihydrofolate reductase, see Tetrahydrofolate dehydrogenase

Dihydropteridine reductase
liver 565–566

Dihydrostreptomycin
induction of abnormal protein in _E. coli_ 103–104

L-3,4-Dihydroxypenylanilane
S-adenosylmethionine concentrations in brain 62–63
methionine concentrations in brain 62–63
SUBJECT INDEX

Dimethyl 3,3'-dithiobispropionimidate 306–307
Dimethyl suberimidate 714–715
development of penicillinase activity 711–712
Dinitrophenol 185–186
development of P-450 degradation
Dinoseb 241–242
Disulphide bridges 246–247, 257–257
Dithiothreitol 257–260
action on trypsin 193–194
Dixon, Malcolm enzymes (80th birthday tribute) 241–242
Embryo 242–245, 246–257
Elastase 257, 257–260
Dodecyl sulphate 260
phosphatidylcholine vesicles 555–556
Dopamine uptake in synaptosomes 67–68, 68
Dopamine β-hydroxylase copper deficiency 342
Drugs 342–343
Duchenne muscular dystrophy erythrocyte ATPase 718

Ehrlich ascites tumour protein synthesis in host 354
Ehrlich-ascites-tumour-cell antigens physico-chemical characteristics 436–437
Ehrlich-ascites-tumour cells amino acid starvation and initiation factor eIF 2 348
cholesterol metabolism 545
decacylated tRNA and polypeptide-chain initiation 349–350
embryonic antigens 437–438
interferon and protein degradation 352–353
lipid metabolism 546
polypeptide-chain initiation and amino acid starvlation 350–351
protein synthesis 286–287
proteinase 647–648
trypsin inhibitor 650–651
Elastase inhibition by reducing and oxidizing agents 80–81
storage effects on inhibition by serum 392
Electrical stimulation cerebral amino acid release 63–64
Embryo pinocytosis 434–435
Embryonic antigens Ehrlich ascites tumour cells 437–438
Endocrine cells peptides 14–15
Endocytic vesicles protein transport into bile 114
Endodeoxyribonuclease EcoRl cation-dependence 634
non-specific binding to the DNA 90–91
plasmid R124 mutants 395–396
specificity 399–400
Endonucleases restriction. see Restriction endonucleases
Endoplasmic reticulum interphase cells 459–465
nuclear membrane 459–465
β Endorphin peptides related to 751–753

Endorphin
adrenocorticotropic prohormone, see *Adrenocorticotropic prohormone of endorphin
Endothelial cells biochemistry in culture 719–720
prostacyclin production 720
Energy solar, see Solar energy
Energy coupling in transport 271–281
Enkephalin γ-aminobutyrate release 61–62
[methionine] 61–62
Enolase brain 489–491
Enterocytes glucose uptake by brush-border membrane vesicles 318
Enterokinase assay 54
biliary excretion 55
Enzyme kinetics computer programs 652
Enzymes flavins and flavoproteins 246–257
function and kinetic mechanism 242–245
Malcolm Dixon 241–242
membrane-bound 40–42
membrane lipids and functions of 32–34
phosphatidylinositol linkage to 43
phospholipid-converting 40–42
Epididymal fat-pads very-low-density lipoprotein metabolism 539–540
Equilibrium gel filtration binding of benzyl(a)pyrene to cytochrome P-450 200–201
Erythrocyte 'ghosts' adenosine triphosphate proteins 553
species-specific characteristics 536–537
Erythrocyte membranes band-3 protein 308–309
glucose-pentapeptides and glucose transport 315–316
integrity and NADH-ferricyanide reductase 325
monoclonal antibodies to glycophorin A and Band 3
glycoprotein 334–335
nitrobenzylthioinosine binding 317
proteins 553
two NADH-ferricyanide reductases 326
Erythrocytes acetylcholinesterase release 551
aldose reductase 194–195, 644–645
chlorotriethylphosphinegold(1) binding 635–636
cholesterol in membranes 131
effect of ouabain on ATPase 718
l- and l-lactate exchange 646–647
malonaldehyde formation in utro 195–196
nucleoside transport 317
polypehosphoinositide phosphodiesterase 127
sodium-pump activity 132
Escherichia coli *anaerobic respiratory chain 308
degradation of dihydrostreptomycin-induced abnormal protein 103–104
DNA-binding site on RNA polymerase 91
gene-fusion studies 738
lactose permease 675–676
lactose/proton symport 704
lactose transport 276–278, 279–281, 706–707
maltodextrin transport 680–681
methyl accepting chemotaxis proteins 441
modified tRNA 89–90
nitrate reductase 329–330, 331

Vol. 8
Escherichia coli—continued
osmotic pressure and amino acid transport 319
peptide-transport mutants 704–705
peptide-transport system 704–705
processing of exported proteins 413–415
purification of isocitrate dehydrogenase 390–391
ribosomal/RNA polymerase operon 738
RNA polymerase genes 731–732, 732–733
uptake systems for nucleic acid bases 703
Esterase
uptake by membrane vesicles 320–321
 Estradiol, see Oestradiol
Ethanol
hepatocytes 525
metabolism 525
control of tocopherol oxidase in vitro 186–187
Ethynyl-oestradiol
 glucose 6-phosphate dehydrogenase 606
monoamine oxidase 607–608
uptake in synaptosomes 66–67
Ethylene
Ethynyl-oestradiol
Polyunsaturated fatty acids
spinach-leaf 535–536
unsaturated, see Unsaturated fatty acids
uptake by mammary cells 333–334
Fat
milk, see Milk fat
Fat-cells
inhibitor-I of ‘general phosphatase’ 382–383
lyosomal sugar accumulation 316
Fatty acid synthesis
adipose tissue during lactation 369–370, 370–371
brown adipose tissue 375
cold-acclimated mice and hamsters 375
developing mammals 289–290
monogastric and ruminant animals 291–292
Fatty acids
biosynthesis 535–536, 562–563
cucumber-cotyledon 535–536
elongation in germinating pea 120–121
hepatocyte 547, 562–563, 572
cold-acclimated mice and hamsters 375
developing mammals 289–290
monogastric and ruminant animals 291–292
liver 544, 547
metabolism 544, 572
metronidazole 535–536
milk 292–294
pea seed 535–536
peroxisomal 572
polyunsaturated, see Polyunsaturated fatty acids
spinach-leaf 535–536
unsaturated, see Unsaturated fatty acids
uptake by mammary cells 333–334
Ferritin
apo-, see Apoferritin
iron uptake 655–656, 656–657
isoferrihins 656–657
metal-ion-binding sites 655–656
Fetuin
metabolism by cells in culture 197–198
Fibrin
plasmin 583–584
Fibrinolyis, see Plasmin
Fibroblasts
ribosomal-protein phosphorylation 347
skin, see Skin fibroblasts
Fish
lipid metabolism 296–297
Fishes
teleost, see Teleost fishes
Flavins
active-site probes 246–257
spectroscopy 246–257
Flavoproteins
active-site probes 246–257
enzyme functions 246–257
Flight muscle
locust 532–533
octopamine 532–533
Foetus
mammary lipid metabolism 289–290
ruminant fatty acid synthesis 291–292
Folates
biosynthesis 567–568
liver 567–568
metabolism 568–569
small-intestine 567–568, 589–590
transfer 589–590
Walker 256 carcinoma 567–568
Fructose
ethanol metabolism 525
liver 641
metabolism 641
Fucose
uptake in synaptosomes 66–67
α-L-Fucosidase
normal and chronic-lymphocytic-leukaemia lymphocytes 439–440
Fungus
D protein glycosylation and tunicamycin 166–168
Fusarium
pellagra 147–150
toxic metabolites 147–150
β-Galactosidase
liver 569–570
β-Galactosidase permease
lactose transport in Escherichia coli 276–278, 279–281
Galactosyltransferases
assay 558–559
Gangliosides
interaction with adenylate cyclase 128–129
interaction with cyclic AMP phosphodiesterase 128–129
Gap junctions
cardiac plasma-membrane fraction 328
Gastric emptying
regulation of postprandial insulin release 55–56
Gastric juice
mucus glycoproteins 52–53
Gastric mucus
protein and glycoprotein 388–389
Gastrin-like immunoreactive peptide
brain 50–51
Gastrointestinal hormones
chemistry 11–14
clinical disorders 22–23
isolation 11–14
*pharmacology 22
physiology 15–17
purification 11–14
Gastrointestinal tract
arylsulphatase 343–344
Gel filtration
equilibrium, see Equilibrium gel filtration
Gene-dosage effect
heterozygous (ob/+) mice 588–589
General phosphatase
possible inhibitor-I in fat cells 382–383
*Genetics
leaf-cell and protoplast culture 477
Gluconeogenesis

Glucose-transport system

Glucose transport

Glucose 6-phosphate dehydrogenase

Glucose 6-phosphatase

Glucose-pentapeptides

Gluconeogenesis

Gluconeogenesis hepatic 205–213

Gluconeogenesis hepatocyte 547

Gluconeogenesis muscle alanine synthesis 205–213

Glucose

Glucose adenosine 3′:5′ cyclic monophosphate accumulation 579–580

Glucose amino acid transport in Trypanosoma 273–275

Glucose lipid biosynthesis 590–591

Glucose metabolism in monogastric and ruminant animals 291–292

Glucose metabolism in small intestine 56

Glucose transport by brush-border membrane vesicle 318

Glucose uptake by Chlorella vulgaris 681–683

Glucose yeast growth 573–574

Glucose-pentapeptides erythrocyte-membrane glucose transport 315–316

Glucose 6-phosphatase liver 541–542, 586–587

Glucose purification from rabbit liver microsomal fraction 389–390

Glucose 6-phosphate dehydrogenase hypothalamus 606

Glucose liver 606

Glucose transport glucose-pentapeptides in erythrocyte membranes 315–316

Glucose-transport system purification from rat jejunum 318

1. Glutamate binding to cerebellar synaptic membranes 109

Glutamate calcium ion transport 525–526

Glutamate Ca2+ dependent release from rat striatum 109–110

Glutamate dehydrogenase α-chymotryptic digestion 649

Glutaminase liver 576

Glutaminase mitochondrial 576

Glutamine phosphate-dependent 576

Glutamine biosynthesis 501–504

Glutamine metabolism 506–509

Glutamine skeletal-muscle 501–504, 509–510

Glutamine small-intestine 506–509

γ-Glutamyltransferase purification from normal rat liver 77

Gluconate 3′:5′ cyclic monophosphate platelet function 531–532

Glutathione S-transferases nature of multiple forms 451–452

Glyceraldehyde inhibition of ligand binding to haemoproteins 75–76

Glycine metabolism 504–506

Glycogen synthase kinase cyclic AMP- and Ca2+-independent 526–527

Glycogenolysis glucose 593–594

Glycogenolysis liver 593–594

Glucagon poly(adenosine diphosphate ribose), see Poly(adenosine diphosphate ribose) glycohydrolase

Glycosylation

Glycosylation defect in membrane 698–700

Glycosylation inhibition of synthesis and secretion by tunicamycin 190–191

Glycosylation mitochodrial-membrane 619–620

Glycosylation mucus, see Mucous glycoproteins

Glycosylation myelin 69–70

Glycosylation plasma-membrane 619–620

Glycosylation structure of gastric mucus gel 716

Glycosylation sulphated, see Sulphated glycoprotein

Glycosaminoglycans cartilage, see Cartilage glycosaminoglycans

Glycosaminoglycans sulphated, see Sulphated glycosaminoglycans

Glycosidases normal and atrophic skeletal muscle 447–448

Glycosylation effects of tunicamycin 166–168

Glycosylation protein 166–168

Glycine leucine dipeptidase radiochemical assay 438–439

Golden hamster (Mesocricetus auratus) fatty acid synthesis in brown adipose tissue 375

Golgi apparatus Ca2+ accumulation in mammary tissue 337–338

Golgi vesicles calcium ion transport 525–526

Golgi vesicles mammary gland 525–526

Granulocytes insulin degradation 299

Green cell cultures biotechnology 475–482

Greening plant cultures 475–477

Guanine 3′:5′ cyclic monophosphate platelet function 531–532

SUBJECT INDEX
SUBJECT INDEX

Guanosine diphosphatase
stimulation of initiation factor eIF-2 351–352

Gut
evolution of peptides 14–15
glucagon-like polypeptides 51–52
insulin secretion 17–19
neuroendocrine system 19–22
peptide hormones 19–22
peptides from nerves 14–15
peptides in endocrine cells 14–15

Gut wall
aryl sulphatase 343–344

Haemoglobin
denaturation in dilute solution 393–394
effect on inhibition of prostaglandin synthase 198–199

Haemoglobin S
polymerization 556–557

Haemoproteins
binding 75–76
lign binding to 78–79
redox potential of cytochrome P-450 101–102

Halobacterium halobium
bacteriorhodopsin proton pump 677–678
Na+/K+ gradient and amino acid transport 275–276

Halothane
effect on 14C-serine incorporation into phospholipid 124–125

Haptoglobin
effect on arachidonate oxygenation during prostaglandin biosynthesis 79–80
inhibition of prostaglandin synthase 379–380

Heart
[14C]lactose and ribonucleotides metabolism 134
mitochondrial Na+/Ca2+ cycle 261–262
muscle ribosome initiation activity 360–361
muscle ribosomes and insulin pretreatment 359–360
myocardial infarction and protein release 657
myosin light-chain phosphorylation 364–365
plasma-membrane fraction with intercalated discs 328
protein-synthesis regulation 282–283
[14C]testosterone metabolites 134

Heart cells
lactate dehydrogenase release 582, 583

Hemicorpus
hormones and muscle protein synthesis 367–368

Heparin
inhibition of platelet aggregation 85–86
interaction with very-low-density lipoproteins 373
platelet protein neutralizing 726
very-low-density-lipoprotein metabolism 539–540

Hepatocarcinogenesis
developmental-specific enzyme activities 94

Hepatocytes
alanine metabolism 577
alanine transport 577
cytosol 570
deradation of insulin 300
ethanol metabolism 525
fatty acid biosynthesis 562–563
fatty acid metabolism 547, 572
glucomannan induction in neonatal rats 384–385
gluconeogenesis 547
nicotinamide–adenine dinucleotide 570
nicotinamide coenzymes 183–184
oleate metabolism 591–592
peroxisomes 572
stability of nucleotides and nucleoside diphosphate sugars 189–190

Hepatocytes and glycogen synthase and secretion 190–191
urate biosynthesis 140–141

Hepatoma
diethylaminoinduced 563–564
different cell types 108–109
peroxidation 563–564

High-density lipoproteins
rat plasma 73

Histamine
acute inflammation 150–155
release from peritoneal mast cells 435

Histamine receptors
agonists 150–155
H2 150–155
H3 150–155

Histidine residue
active site of nuclear-envelope nucleoside triphosphatase 321

Histones
folding 637

Hordeum vulgare, see Barley

Hormones
control of steroid and drug metabolism 342–343
effect on energy production in S180 sarcoma 105
protein-synthesis regulation 282–283, 283–285
uterine-cervix connective tissue 662–667

Human immunoglobulin anti-D (Rhd)
production for intravenous administration 178–179

Hydrocortisone, see Cortisol

Hydrogen ions, see Protons

Hydroperoxyeicosatetraenoic acid
activator of prostaglandin synthase 449–450

Hydroxylation
cholesterol 122–123
3-Hydroxy-3-methyl-glutaryl coenzyme A lyase
liver 543–544

5-Hydroxytryptamine
platelet 530–531
secretion 530–531

Hymenolepis diminuta, see Rat tapeworm

Hyperthermia
malignant, see Malignant hyperthermia

Hypoglycim
alanine release 574–575

Hypophysectomy
effect on drug metabolism 342–343
protein-synthesis regulation 282–283

Hypothalamus
glucose 6-phosphate dehydrogenase 606
monooamine oxidase 607–608

Hypothalamic
pregnancy 538–539

Hysteresis
biochemical response curves 313–315

Ileum
[14C]serine incorporation into phospholipid 124–125

Immunoaffinity purification
rabbit anti-albumin antibodies 430–431

Immunelectrophoresis
crossed, see Crossed immunelectrophoresis

Immunolectrophoresis
human anti-D (Rhd), see Human immunoglobulin anti-D (Rhd)
value of tunicamycin for studies on biosynthesis 168–170

Immunoglobulin G
central-nervous-system 609

Immunoglobulin G antibody
labelling with peroxidase 431–432

1980
Jejunum
Japanese quail
Isoprenoids
Kidney cortex
Isocitrate dehydrogenase (NAD+)
Isocitrate dehydrogenase
Vol.
Islets of Langerhans
Iron
Intracytoplasmic membrane
Interphase cells
insulin receptors
adipose tissue during lactation
Interferon
DNA synthesis in lymphoblastoid cells
protein turnover in Ehrlich ascites-tumour cells
thymidine uptake in lymphoblastoid cells
Interphase cells
nuclear-membrane/endoplasmic reticulum relationship
Intestine
small, see Small intestine
Intracytoplasmic membrane
reaction-centre subunits
Intracytoplasmic membranes
light-harvesting complexes of Rhodopseudomonas capsulata
Ionomycin
T-lymphocyte growth
Iron
ferritin uptake
liver
Iron (trace amounts)
acid-resistant binding of nucleoside triphosphates
Islets of Langerhans
adenosine 3':5'-cyclic monophosphate accumulation
peptide-hormone biosynthesis
Isocitrate dehydrogenase
purification from Escherichia coli
purification using immobilized dyes
Isocitrate dehydrogenase (NAD+)
Ca++ activation in mitochondria
Isoprenoids
biosynthesis in Micrococcus luteus
Japanese quail
retinol-binding-protein synthesis
Jejunum
glucose-transport system
Kidney
ammonia metabolism
glycine-cleavage system
Kidney cortex
acid proteinases
lysosomes
Kinetics
aldose reductase
mechanism and enzyme function
Kinetic
control of tocopherol oxidase in vitro
Krebs II ascites cells
ribosomal protein kinases
Lactate
CHO-cell
differentiated sheep thyroid-cell culture
utilization
Lactate dehydrogenase
heart-cell
Lactate dehydrogenase isoenzymes
pyridoxal 5'-phosphate
[1H]lactate/[1H]lactate exchange
erthrocyte
Lactation
adipose tissue metabolism
Ca++ accumulation by mammary Golgi-rich fraction
Leaves
barley
chloroplast differentiation
fatty acid biosynthesis
lipid metabolism
spinach
lecithin, see Phosphatidylcholine
Lectins
lymphocyte protein synthesis
Lens
aldose reductase
Leucine
transport in SV-40-transformed 3T3 cells
Leucocytes
mononuclear, see Monocytes
polymorphonuclear, see Polymorphonuclear leucocytes
Leukaemia
chronic lymphocytic, see Chronic lymphocytic leukaemia
Leukaemia L1210 cells
accumulation and binding of porphyrins
Ligandin
 bile-salt binding in liver
Ligands
binding to cytochrome c oxidase
binding to haemoproteins
Light
control of tocopherol oxidase in vitro
Light harvesting complexes
carotenoid shift in Rhodopseudomonas sphaeroides
intracytoplasmic membranes of Rhodopseudomonas capsulata
Lipid metabolism
birds
developing monogastric mammals
marine animals
monogastric and ruminant animals
Lipid vesicles
fusion of
Lipids
adipose-tissue
Subject Index
Lipids—continued
barley-leaf 534
biosynthesis 590–591
comparative biochemistry 289–297
effect on ATPase activity 38–40
Ehrlich-ascites-tumour-cell 546
membrane 25–27
*membrane-protein function 46
metabolism 533, 534, 546
milk 292–294
(Na+ + K+)-dependent ATPase activity 38–40
peroxidation by singlet oxygen 196–197
subsequent for cholesterol-side-chain-cleavage enzyme 129
synthesis in membranes of photosynthetic tissues 119–120
teleost fish 547–548
thin-layer chromatography 113
wheat-seed 533

3-hydroxy-3-methylglutaryl-coenzyme A lyase 543–544
iron content 550–551
lithocholic acid binding in trout cytosol 371–372
lysosomal sugar accumulation 316
methionine metabolism 540–541
MgATP2–dependent phosphorylase phosphatase 78
microanalytical subcellular fractionation 76–77
microsomal fraction 648–649
microsomal glucose 6-phosphatase 389–390
mitochondria 576
mitochondrial Ca2+ transport 262–264
mitochondrial steady-state ATP synthesis 454–455
monoamine oxidase 607–608
3-oxo acid coenzyme A-transferase 543–544
peroxidation 563–564
14Cphenol binding 117–118
phosphate-dependent glutaminase 576
protein biosynthesis 613–614
protein synthesis regulation 282–283, 283–285
steroid and drug metabolism 342–343
Liver cells, see Hepatocytes
Locust (Schistocerca americana gregaria) flight muscle 532–533
Lung

tumour cells producing immunoreactive calcitonin 340
Luteinizing hormone, see Lutropin
Lutropin

site of action in corpus luteum 305
Lymphoblastoid (Daudi) cells interferon, thymidine uptake and DNA synthesis 353–354
Lymphocyes
B and T, see B- and T-lymphocytes
Ca2+ effect on growth 721–722
cyclic nucleotide phosphodiesterase 199–200
cytoplasmic polypeptide-initiation inhibitor 355–356
E-fucosidase 439–440
normal and chronic-lymphocytic leukaemia 439–440
phosphoproteins of plasma membrane 182–183
protein synthesis during mitogen activation 288
T-, see T-lymphocytes
Lymphoid cells
influenza virus 257–260
Lysozymes

cystine accumulation 571
donation 597–598
kidney cortex 597–598
skin fibroblast 571
sugar accumulation 316
Macronuclei

RNA synthesis by Tetrahymena pyriformis 739–740
Macrophones

cyclic nucleotide phosphodiesterase 199–200
Malignant hyperthermia peripheral substrate exchange 575
Malonaldehyde formation in vitro in erythrocytes 195–196
Maldextrin

transport in E. coli 680–681
Malose

binding proteins in E. coli 680–681
CHO-cell 633–634
utilization 633–634
Mammary cells

membrane-bound lipoprotein lipase 333–334
triacylglycerol hydrolysis and fatty acid uptake 333–334
Mammary gland
calcium ion transport 525–526
Golgi vesicles 525–526
lactating 525–526
Mammary gland—continued
milk fat synthesis 292–294
Mammary tissue
Ca²⁺ accumulation by Golgi-rich fraction 337–338
Mandelate dehydrogenase
Acinetobacter calcoaceticus 653–654
Manganous ions
inhibition of synaptosomal dopamine uptake 67–68
Mass spectra
peptide, see Peptide mass spectra
Mast cells
cyclic nucleotide phosphodiesterase 199–200
peritoneal, see Peritoneal mast cells
Measles-virus-induced polypeptides
analysis by limited proteolysis 428
Membrane potential
lactose transport in Escherichia coli 279–281
transmembrane proton electrochemical gradient 307–308
Membrane proteins
band-3 of erythrocytes 308–309
Membrane proteins
*isolation 46
*lipid replacement 46
*lipids in the function of 46
*reconstitution 46
Membrane vesicles
extracellular esterase uptake 320–321
Membranes
bifurcation diagrams and biochemical response curves 313–315
bound polyribosomes and diet 361–362
brush-border-membrane disease 688–690
Ca²⁺ and ion permeability 268–270
cytochrome bc, complex in mitochondria 332
damage caused by bile salts 126–127
defects in muscular dystrophy 690–692
dynamics and membrane disease 686–688
enzyme functions in relation to lipids 32–34
erythrocyte, see Erythrocyte membrane
erythrocyte band-3 protein 308–309
Escherichia coli nitrate reductase 329–330, 331
fixed charge 453–454
fluidity and phospholipid exchange 322–323
fluidizing agents 132
glycoprotein defects 698–700
Halobacterium halobium 275–276
integrity and NADH-ferricyanide reductase properties 392–393
interfacial properties 110–111
intrasynaptic, see Intrasyntaptic membranes
ion and solute transport 271–273, 275–276
junctions in skeletal muscle 327
lipid-metabolizing enzymes 25–27
lipids 32–34, 38–40
lipoprotein lipase in mammary cells 333–334
mitochondrial, see Mitochondrial membrane
nuclear, see Nuclear membranes
phosphatidylinositol 27–30
phospholipids 30–32
plasma, see Plasma membrane
presynaptic, see Presynaptic membranes
proteins, see Membrane proteins
proton electrochemical gradient 307–308
role of sterols in function of 34–37
role of unsaturated fatty acids in functions of 34–37
simple reaction-diffusion example 311–312
synaptosomal, see Synaptosomal membrane
tumour metastasis 695–697
virus-induced disease 700–702
Mercurial
ubiquione and mitochondrial Ca²⁺ efflux 336–337
Mersalyl
action on trypsin 193–194
Mesorocetus auratus, see Golden hamster
Messenger ribonucleic acid
coding corticoterone/β-lipotropin precursor 749–751
Messenger ribonucleic acid synthesis
mumps virus-infected cells 441–442
Metabolic control
potentials and oscillations 309–311
Metabolism
fetuin and asialo-fetuin 197–198
Metastasis
tumour cell-surface properties 695–697
Methane
microbial formation of 625–627
Methanogenic biodegradation
catechol 452–453
Methanol
cytochrome c and 638–639
Methanol dehydrogenase
Methylophilus methylotrophus 639–640
Methionine
concentration in brain 62–63
liver 540–541
liver protein synthesis 361–362
metabolism of 540–541
tissue concentration 62–63
tRNA accepting 88–89
Methy]-accepting chemotaxis proteins
Escherichia coli 441
Methylenetetrahydrofolate reductase
properties 392–393
purification from ox brain 392–393
Methylhistidine
muscle protein degradation 355
N²-Methylhistidine-containing dipeptide
skelatal-muscle 552
Methylphilus methylotrophus
methanol dehydrogenase of 639–640
Metronidazole
fatty acid biosynthesis 535–536
MgATP²⁺-dependent phosphorylase phosphatase
dog liver 78
mechanism of activation 78
Michaelis–Menten equation
enzymes 242–245
Microbial consortium
catechol biodegradation 452–453
Micrococcus luteus
isopropenyl biosynthesis 125–126
tunicamycin and wall-polymer synthesis 163–164
Microsomal fraction
liver 648–649
liver glucose 6-phosphatase purification 389–390
phospholipid metabolism 648–649
steroid UDP-glucurononyltransferase latency 345–346
Milk fat
biosynthesis in ruminants and non-ruminants 292–294
composition in ruminants and non-ruminants 292–294
Mineral metabolism
human foetus and newborns 136–137
Mitochondria
brown adipose tissue 339
Ca²⁺ activation of isocitrate dehydrogenase (NAD⁺) 339
Ca²⁺ binding glycoprotein and Ca²⁺ uptake 338
Ca²⁺ influx and efflux 262–264
Ca²⁺ regulation of metabolism 266–268
electron-transfer chain cytochromes 757
inner-membrane cytochrome bc, complex 332
liver 576
Vol. 8
Mitochondria—continued

location of adenylate cyclase 712–713
Na+/Ca2+ cycle 261–262
phosphate-dependent glutaminase 576
phosphorylation of branched-chain 2-oxo acid dehydrogenase 374
regulation of K+ movements 743
steady-state ATP synthesis 454–455
synaptosome Ca2+ transport 264–266
ubiquinone and mercurial-stimulated Ca2+ efflux 336–337
*Mitochondrial coupling sites
protein turnover 455
Mitochondrial membrane
glycoproteins of 619–620
synapse 619–620
Mitogens
protein synthesis during lymphocyte activation 288
Monoamine oxidase
cerebral cortex 607–608
hypothalamus 607–608
Monoconal antibodies
erthrocyte-membrane glycoproteins 334–335
Monocyte factor
prostaglandin E biosynthesis and 527–528
Monocytes
neutral proteinases 594–596
subcellular fractionation 594–596
Morbillivirus polypeptide synthesis
suppression by viral antibody 427
Mucus
structure of gastric mucus gel 716
Mucus glycoproteins
Alcian Blue colorimetric assay 72
gastric juice 52–53
role of disulphide bridges in structure 715–716
Mumps-virus-infected cells
mRNA synthesis 441–442
Musca domestica
α-bungarotoxin-binding component 742–743
Muscle
acetylcholine receptor in cultured cells 741
alanine synthesis 205–213
atrophic skeletal, see Atrophic skeletal muscle
cardiac, see Cardiac muscle
fat content and composition 296
flight, see Flight muscle
glucagon and protein synthesis 367–368
host protein synthesis and Ehrlich ascites tumour 354
lysosomal sugar accumulation 316
3-methylhistidine and protein degradation 355
phosphofructokinase 142–143
protein and collagen synthesis 74–75
skeletal, see Skeletal muscle
smooth, see Smooth muscle
striated, see Striated muscle
tension changes in vitro 74–75
Muscular dystrophy
surface membrane defects 690–692
Myasthenia gravis
acetylcholine receptor protein 693–694
Myelin
central-nervous system 601–602
cerebrosides 604–605
cholesterol in membrane bilayer 717
demyelination and proteins 493–494
glycoprotein 618–619
glycoprotein composition 69–70
lipid composition 69–70
peripheral nervous system 69–70
phospholipids 600–601
Myelination
triclyglycerol formation and hydrolysis in oligodendroglia 368–369
Myocardial infarction
heart protein release and 657
Myosin light chains
phosphorylation in aorta during contraction 365–366
phosphorylation in perfused heart 364–365
Myosin subfragment 1
actin and 650
Myxovirus
activation of glycoproteins 419–422
NADH–ferricyanide reductase
crypticity and membrane integrity 325
NADH–ferricyanide reductases
two in human erythrocyte membranes 326
Neisseria gonorrhoeae
tunicamycin and wall-polimer synthesis 163–164
Neocortex
Nervous system
central, see Central nervous system
Neurofilaments
proteins 615–616
structure 484–487
Neuroleptic drugs
Neurotoxins
Neuron
brain 604–605
cerebrosides 604–605
Neutron diffraction
myelin membrane bilayer structure 717
Nicotiana tabacum, see Tobacco
Nicotinamide
myosin membrane bilayer structure 717
N. tabacum
neurotransmitter metabolism 59–60
Nicotinamide–adenine dinucleotide
cytosol 570
hepatocyte 570
Nicotinamide–adenine dinucleotide (reduced), see NADH
Nicotinamide coenzymes
hepatocyte culture conditions 183–184
Nitrates
Escherichia coli 329–330, 331
ferrocyanide 329–330
β-subunit 331
Nitrates
nitrosylated 642
sycamore-cell 628–629
Vegetable-marrow 642
Nitrobenzylthioinosine
binding to erythrocyte membranes 317
Nitrogenases
aerobic bacteria 185–186
lack of inhibition by Dinooseb 185–186
Non-histone proteins
* folding 637
Noradrenaline
copper deficiency and adrenal-medulla content 342
lipolysis and esterification 362–363
Nuclear envelope
nucleo-cytoplasmic RNA transport 321
Nuclear magnetic resonance spectroscopy
cytochrome P-450 98–99
interaction of cytochrome P-450 and benzolalpyrene 99–100
Nuclear membranes
interphase-cell endoplasmic reticulum 459–465
Nuclear proteins
adenosine diphosphate ribosylation 215–227
changes during cell cycle 759–766
interphase studies in the liver 759–766
phosphoproteins 737–738
protein changes in the cell cycle
see also Nuclear proteins
Nucleic acid bases
uptake systems in *E. coli* 357
Nucleoside diphosphate sugars
stability in isolated rat hepatocytes
Nucleoside transport
human erythrocytes 317
Nucleotide sequences
restriction endonuclease recognition
Nucleotides
inhibition of arolysulphatases A and B 450–451
stability in isolated rat hepatocytes 189–190
Obese hyperglycaemic (ob/ob) mice
A-cell function regulation by insulin
58–59
glucose metabolism in small intestine 56
glucose transport in small intestine 56
immunoreactive glucagon concentrations 57–58
Obesity
granulocyte insulin degradation 299
Octopamine
extraction and identification
flight muscle
Oestradiol-17β
small-intestine folate transfer 589–590
Oestrogen receptors
cytoplasmic 304–305
oestrous cycle 304–305
Oestrogens
cytoplasmic binding sites 304–305
UDP-glucuronotransferase latency 345–346
Oestrous cycle
cytoplasmic oestrogen receptors 304–305
Olate
hepatoocyte 591–592
metabolism 591–592
Oligodendrocytes
brain 604–605
Oligodendroglia
brain 612–613
plasmalogensenase 612–613
triacylglycerol formation and hydrolysis during myelination 368–369
Oncogenesis
*post-translational modification of proteins 422
Orthophosphate
inhibition of *Aspergillus nidulans* deoxyribonuclease 4 445–446
Oscillations
diffusion and metabolic control
Osmotic pressure
Escherichia coli 319
proline transport 319
Ouabain
effect on erythrocyte ATPase 718
Ovaricectomy
small-intestine folate transfer 589–590
Oxidizing agents
inhibition of elastase 80–81
inhibition of fibrinolysis 80–81
3-Oxo acid coenzyme A-transferase
liver 543–544
2-Oxo acid dehydrogenase
branched chain, see Branched-chain 2-oxo acid dehydrogenase
Oxoglutarate dehydrogenase
Ca**+** regulation in mitochondria 266–268
Oxygen
lipid peroxidation 196–197
reaction with flavins and flavoproteins 246–257
Oxygen partial pressure
algal photosynthesis 479–481
Pancreas
adenosine diphosphate ribosylation of proteins 192
Pancreatic acinar cells
Ca**+** and membrane ion permeability 268–270
Partial pressure
CO₂ and O₂ 479–481
Partition
countercurrent 76–77
Parturition
prostaglandins 659–662
uterine cervix 662–667
Pea (*Pisum sativum* L.)
*fatty acid elongation
Pea (*Pisum sativum*) seeds
*fatty acid biosynthesis 535–536
storage protein 658
Pellagra
toxic metabolites of *Fusarium* 147–150
Penicillinase
substrate-induced inactivation 714–715
Pentagastrin
effect of infusion on gastric juice composition 52–53
Pentane
UDP-glucuronotransferase towards phenols 346–347
Pentapeptides
glucose, see Glucose-pentapeptides
Peptide-chain initiation
amino acid starvation in *Ehrlich* ascites-tumour cells 350–351
cardiac muscle ribosomes 360–361
deacylated tRNA 349–350
GDPase stimulation of initiation factor eIF-2 351–352
inhibitor from resting lymphocyte cytoplast 355–356
inhibitor in *Ehrlich* ascites cells 286–287
protein-synthesis regulation 282–283, 286–287
Peptide hormones
rat islets of Langerhans 411–413
Vol. 8
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypeptides</td>
</tr>
<tr>
<td>Vol. 8</td>
</tr>
<tr>
<td>Plasma — continued</td>
</tr>
<tr>
<td>sulphated polysaccharides and clotting 188–189</td>
</tr>
<tr>
<td>very-low density lipoproteins 373</td>
</tr>
<tr>
<td>Plasma lipoproteins</td>
</tr>
<tr>
<td>separation 516–518, 598–599</td>
</tr>
<tr>
<td>Plasma membrane</td>
</tr>
<tr>
<td>adenine 3':5'-cyclic monophosphate phosphodiesterase 537–538</td>
</tr>
<tr>
<td>antisera raised against 115–116</td>
</tr>
<tr>
<td>cardiac fraction with intercalated discs 328</td>
</tr>
<tr>
<td>concanavalin A binding 553–554</td>
</tr>
<tr>
<td>glycoproteins 619–620</td>
</tr>
<tr>
<td>liver 537–538</td>
</tr>
<tr>
<td>lymphocyte phosphoproteins 182–183</td>
</tr>
<tr>
<td>polymorphonuclear leucocyte 553–554</td>
</tr>
<tr>
<td>proteins 483–484</td>
</tr>
<tr>
<td>synapse 483–484, 619–620</td>
</tr>
<tr>
<td>Plasmagleninase</td>
</tr>
<tr>
<td>oligodendroglia 612–613</td>
</tr>
<tr>
<td>Plasmin PMB9</td>
</tr>
<tr>
<td>RNA polymerase binding sites 738–739</td>
</tr>
<tr>
<td>Plasmin R124</td>
</tr>
<tr>
<td>endodeoxyribonuclease EcoRI 395–396</td>
</tr>
<tr>
<td>Plasmin</td>
</tr>
<tr>
<td>antithrombin III and 652–653</td>
</tr>
<tr>
<td>N-benzoyloxycarbonyltyrosine p-nitrophenyl ester and 583–584</td>
</tr>
<tr>
<td>fibrin and 583–584</td>
</tr>
<tr>
<td>inhibition by reducing and oxidizing agents 80–81</td>
</tr>
<tr>
<td>Platelet aggregation</td>
</tr>
<tr>
<td>age and sex differences 180–181</td>
</tr>
<tr>
<td>Platelets</td>
</tr>
<tr>
<td>aggregation 726–727</td>
</tr>
<tr>
<td>aggregation. prostacyclinc and sulphated polysaccharides 377–379</td>
</tr>
<tr>
<td>congenital disorders 698–700</td>
</tr>
<tr>
<td>guanosine 3':5' cyclic monophosphate 531–532</td>
</tr>
<tr>
<td>heparin-neutralizing protein 726</td>
</tr>
<tr>
<td>human platelet factor 4 726</td>
</tr>
<tr>
<td>5 hydroxytryptamine secretion 530–531</td>
</tr>
<tr>
<td>inhibition of induced aggregation 84–85, 85–86</td>
</tr>
<tr>
<td>membrane glycoprotein defects 698–700</td>
</tr>
<tr>
<td>prostaglandin pathway 727–728</td>
</tr>
<tr>
<td>thromboxane B2, biosynthesis 530–531</td>
</tr>
<tr>
<td>Poly(adenosine diphosphate ribose) glycohydrolase</td>
</tr>
<tr>
<td>inhibitor in germinating wheat embryos 192–193</td>
</tr>
<tr>
<td>Poly(adenosine diphosphate ribose) ribonucleotidase</td>
</tr>
<tr>
<td>effect of phenones 175–176</td>
</tr>
<tr>
<td>Poly(adenosine diphosphate ribosylated) protein</td>
</tr>
<tr>
<td>mouse L1210 cells 174–175</td>
</tr>
<tr>
<td>rat pancreas 192</td>
</tr>
<tr>
<td>Polamines</td>
</tr>
<tr>
<td>Colpoda steinii protein cyst coat 335</td>
</tr>
<tr>
<td>Poly(ethylen glycol)/dextran</td>
</tr>
<tr>
<td>countercurrent partition 76–77</td>
</tr>
<tr>
<td>Poly(ethylen glycol)-palmitate</td>
</tr>
<tr>
<td>partition of cells in two-phase systems 118–119</td>
</tr>
<tr>
<td>Polymorphonuclear leucocytes</td>
</tr>
<tr>
<td>chemiluminescence 723–725</td>
</tr>
<tr>
<td>concanavalin A binding 553–554</td>
</tr>
<tr>
<td>plasma membrane 553–554</td>
</tr>
<tr>
<td>Poly(adenosine diphosphate ribosylated) protein</td>
</tr>
<tr>
<td>initiation</td>
</tr>
<tr>
<td>mechanism of control 457–458</td>
</tr>
<tr>
<td>reticulocytes 457–458</td>
</tr>
<tr>
<td>Polypeptide composition</td>
</tr>
<tr>
<td>cells of developing cerebral cortex 335–336</td>
</tr>
<tr>
<td>Polypeptide synthesis</td>
</tr>
<tr>
<td>morbillivirus, see Morbillivirus polypeptide synthesis</td>
</tr>
<tr>
<td>Polypeptides</td>
</tr>
<tr>
<td>measles virus-induced 428</td>
</tr>
<tr>
<td>Neurofilament 614–615, 615–616</td>
</tr>
<tr>
<td>somatostatin-like, see Somatostatin-like polypeptides</td>
</tr>
<tr>
<td>Polyphosphoinositide phosphodiesterase assay 127</td>
</tr>
<tr>
<td>erythrocyte membrane 127</td>
</tr>
<tr>
<td>Polymers</td>
</tr>
<tr>
<td>two phase systems of aqueous 118–119</td>
</tr>
<tr>
<td>Polysomes</td>
</tr>
<tr>
<td>heart muscle and insulin pretreatment 359–360</td>
</tr>
<tr>
<td>protein-free diet and methionine 361–362</td>
</tr>
<tr>
<td>Polysaccharides</td>
</tr>
<tr>
<td>antithrombin III and 652–653</td>
</tr>
<tr>
<td>sulphated, see Sulphated polysaccharides</td>
</tr>
<tr>
<td>Polyunsaturated fatty acids</td>
</tr>
<tr>
<td>free living and domesticated animals 294</td>
</tr>
<tr>
<td>marine animals 296–297</td>
</tr>
<tr>
<td>Porphyrins</td>
</tr>
<tr>
<td>binding by murine leukaemia L1210 cells 100–101</td>
</tr>
<tr>
<td>Post-heparin plasma</td>
</tr>
<tr>
<td>lipoprotein lipase 74</td>
</tr>
<tr>
<td>Post-translational proteolysis</td>
</tr>
<tr>
<td>activation of myxovirus glycoproteins 419–422</td>
</tr>
<tr>
<td>biosactivation 411–422</td>
</tr>
<tr>
<td>Potassium ions</td>
</tr>
<tr>
<td>regulation of movements in mitochondria 743</td>
</tr>
<tr>
<td>transport in A. variabilis 708–709, 709–710</td>
</tr>
<tr>
<td>Potentials</td>
</tr>
<tr>
<td>chemical systems far from thermodynamic equilibrium 309–311</td>
</tr>
<tr>
<td>Pregnancy</td>
</tr>
<tr>
<td>hypothyroidism and 538–539</td>
</tr>
<tr>
<td>insulin receptors and adipose-tissue metabolism 370–371</td>
</tr>
<tr>
<td>plasma cortisol 587–588</td>
</tr>
<tr>
<td>small-intestine folate transfer 589–590</td>
</tr>
<tr>
<td>starvation 538–539</td>
</tr>
<tr>
<td>uterine cervix 662–667</td>
</tr>
<tr>
<td>Presynaptic membranes</td>
</tr>
<tr>
<td>neurotransmitter release 60–61</td>
</tr>
<tr>
<td>protein phosphorylation 60–61</td>
</tr>
<tr>
<td>Progestosterone</td>
</tr>
<tr>
<td>lutropin and biosynthesis in corpus luteum 305</td>
</tr>
<tr>
<td>retinol binding protein synthesis 302–303</td>
</tr>
<tr>
<td>Progestogens</td>
</tr>
<tr>
<td>glucose 6-phosphate dehydrogenase and 606</td>
</tr>
<tr>
<td>monoamine oxidase and 607–608</td>
</tr>
<tr>
<td>Prohormones</td>
</tr>
<tr>
<td>adrenocorticotropic, see *Adrenocorticotropic hormone</td>
</tr>
<tr>
<td>of endorphin (31000 mol.wt.) 31000</td>
</tr>
<tr>
<td>Proline transport</td>
</tr>
<tr>
<td>osmotic pressure 319</td>
</tr>
<tr>
<td>11β-H</td>
</tr>
<tr>
<td>structural and functional identity 179</td>
</tr>
<tr>
<td>Prostacyclin (prostaglandin I2)</td>
</tr>
<tr>
<td>production by cultivated endothelium 720</td>
</tr>
<tr>
<td>sulphated polysaccharides and platelet aggregation 377–379</td>
</tr>
<tr>
<td>Prostaglandin E</td>
</tr>
<tr>
<td>biosynthesis 527–528</td>
</tr>
<tr>
<td>gingival-cell 527–528</td>
</tr>
<tr>
<td>Prostaglandin endoperoxides</td>
</tr>
<tr>
<td>arachidonate-induced platelet aggregation 726–727</td>
</tr>
<tr>
<td>Prostaglandin synthase</td>
</tr>
<tr>
<td>hydroperoxyesoseterenoic acid 449–450</td>
</tr>
<tr>
<td>inhibition by anti-inflammatory drugs 198–199</td>
</tr>
<tr>
<td>inhibition by serum, haptaglobin and albumin 379–380</td>
</tr>
<tr>
<td>inhibition in S180 sarcoma 106–107</td>
</tr>
<tr>
<td>seminal vesicles 379–380</td>
</tr>
<tr>
<td>Prostaglandins</td>
</tr>
<tr>
<td>amniotic-fluid 659–662</td>
</tr>
<tr>
<td>biosynthesis 79–80</td>
</tr>
<tr>
<td>effect of sulphipyrazone 727–728</td>
</tr>
<tr>
<td>parturition 659–662</td>
</tr>
</tbody>
</table>
SUBJECT INDEX

Pyruvate kinase
inhibition by phenylalanine and ATP 385–386
inhibition of type M form 143–144
skeletal muscle (M₄ type) 385–386

Radiochemical assay
glycyl leucine dipeptidase 438–439
Rainbow trout (Salmo gairdnerii) lipoprotein lipase 74
lithocholic acid binding by liver cytosol 371–372
Ranitidine
metabolism 93
Rat tapeworm (Hymenolepis diminuta)
Fraction with tubulin-like properties 71–72
Reaction-centre subunits
Rhodopsseudomonas intracytoplasmic membrane 184–185
Reactions
diffusion 311–312
Receptors
histamine, see Histamine receptors
oestrogen, see Oestrogen receptors
pancreatic acinar cell membrane and Ca²⁺ 268–270
Red blood cells, see Erythrocytes
Reducing agents
inhibition of elastase 80–81
inhibition of fibrinolysin 80–81
Reserpine
effect on cerebral amino acids 63–64
Respiratory chain
* anaerobic, of Escherichia coli 308
Restriction endonucleases
* applications 400
differential reactivities 734–735
recognition sequences in DNA 397–398
sequence determination of recognition sites 398–399
use of fragments of cloned deoxyribonucleic acid for human
globin gene mapping 172
Restriction enzymes
ATP-requiring 396–307
Restriction/modification systems
genetics 395–396
Reticulocytes
brucelain inhibition of protein synthesis 357–359
carboxy anhydrase biosynthesis 548–550
control of polypeptide chain initiation 457–458
intracellular proteinolysis 81–82
Retinol-binding protein
synthesis in Japanese quail liver 302–303
Rhodopsseudomonas capsulata
light harvesting complexes in intracytoplasmic membranes 329
reaction-centre subunits in intracytoplasmic membrane 184–185
Rhodopsseudomonas sphaeroides
carotenoid shift and light harvesting pigment-protein complex 188
reaction-centre subunits in intracytoplasmic membrane 184–185
Ribonucleic acid
messenger, see Messenger ribonucleic acid
nucleo–cytoplasmic transport by nuclear-envelope enzyme 321
polyadenylated 736–737
synthesis by Tetrahymena pyriformis 739–740
thyroid status and skeletal muscle 366–367
transfer, see Transfer ribonucleic acid
Ribonucleic acid polymerase
binding sites on the bacterial plasmid pMB9 738–739
DNA-binding site 91
gene mutants in E. coli 737–733
mapping of genes in E. coli for 731–732
operon of E. coli 738
salt sensitivity of transcription 740
Ribosomal protein S6
phosphorylation 347
Ribosomal proteins
kinases from Krebs II ascites cells 347
Ribosomes
cardiac muscle and initiation 360–361
decacylated RNA and polypeptide chain initiation 349–350
heart muscle and insulin pretreatment 359–360
initiation factor eIF-2 and amino acid starvation 348
phosphorylation of ribosomal protein S6 347
rifampicin
effect on protein degradation in E. coli 103–104
Rous-sarcoma virus
transformed cells 735–736
Rous-sarcoma-virus-transformed cells
src gene product pp60vsrc 735–736
Rubidium ions
transport in A. variabilis 709–710
Ruminants
lipid metabolism 291–292
milk fat composition and biosynthesis 292–294
S180 sarcoma
drug-induced necrosis 105
energy production 106–107
energy production in vitro 105
Saccharomyces cerevisiae
cytochrome P-450 biosynthesis 573–574
cytochrome P-450 degradation 711–712
growth 573–574
intracellular pH 580–581
lipid mutants 34–37
regulation of cytochrome P-450 biosynthesis 712–713
solubilization of microsomal cytochrome P-450 713–714
see also Yeast
Salmo gairdnerii, see Rainbow trout
Sarcoplasmic reticulum
junction with transverse tubules 327
membrane lipids 38–40
phospholipid exchange and membrane fluidity 322–323
α-SB globulin
reaction with antisera to plasma membrane 115–116
Scenedesmus obliquus
purification of tRNA almost 88–89
Schistocerca americana gregaria, see Locust
Sea snake
erabutoxins and related neurotoxins 753–755
Secondary tumours, see Metastasis
Secretin
effect of infusion on gastric juice composition 52–53
Seeds
fatty acid biosynthesis 535–536
lipid metabolism 533
pea 535–536, 658
storage protein 658
wheat 533
Seminal vesicles
prostaglandin synthase 379–380
Sequencing
computer-assisted, see Computer-assisted sequencing
Serine
metabolism 504–506
¹⁴C]serine
incorporation into phospholipid 124–125
Serotonin, see 5-Hydroxytryptamine
Sperm
anti-elastolytic properties 392
Vol. 8
SUBJECT INDEX

Serum albumin
- bile-salt binding 372

Skeletal muscle
- actin 650
- alanine biosynthesis 501–504
- alanine release 574–575
- amino acid metabolism 497–499
- amino acid turnover 499–501
- [4-14C]androstenedione metabolites 134
- atrophic, see Atrophic skeletal muscle
- balenine 552
- carbonic anhydrase 643
- crab 560–561, 561–562
- glutamine biosynthesis 506–509
- glutamine release 509–510
- glyconeogenesis 203–204
- nuclear phosphoproteins 737–738
- phosphofructokinase 560–561, 561–562
- protein degradation 499, 499–501
- protein turnover 499–501
- [4-14Cltestosteron metabolites 134
- thyroid status and protein metabolism
- transverse-tubule/sarcoplasmic-reticulum junction 327

Skin fibroblasts
- cystine accumulation 571
- lysosomes 571

Slime mould (Dictyostelium discoideum)
- CTP-independent phosphatidylinositol biosynthesis 375–376

Small intestine
- alanine biosynthesis 506–509
- alkaline phosphatase 645–646
- calcium-binding protein 528–529
- folate biosynthesis 567–568
- glucose metabolism 56
- glucose transport 56
- glutamine metabolism 506–509
- mucus glycoproteins 715–716
- protein synthesis 283–285

Smooth muscle
- alkaline proteinases 564–565
- protein phosphorylation and contraction 365–366

Sodium ions
- gradients and solute transport 271–273, 275–276
- mitochondrial cycle with Ca2+ 261–262
- pump activity in erythrocytes 132

Solar energy
- biotechnology of photosynthetic cells

Somatostatin
- effect on bile flow 53–54

Somatostatin-like polypeptides
- plasma of somatostatin-producing tumour patient 425–426

Somatostatin-producing tumour
- plasma somatostatin-like polypeptides 425–426

Soya bean (Glycine max)
- oxidant of lipoxygenase-1 121–122

Sperm breakdown by ultrasonication 130

Spermidine
- Colpoda steiniti protein cyst coat 335
- Spinach (Spinacia oleracea) leaves chloroplasts of 535–536
- fatty acid biosynthesis in 535–536
- Spinacia oleracea, see Spinach

Spinal cord
- arginine methylase of 611–612
- [3H]Spiropiperidol
- binding in bovine caudate nucleus 181–182

sclerotic, see Sclerotic skeletal muscle
- carbonic anhydrase 643
- folate biosynthesis 567–568
- glucose metabolism 56
- glucose transport 56
- glutamine metabolism 506–509
- mucus glycoproteins 715–716
- protein synthesis 283–285

alkaline proteinases 564–565
- protein phosphorylation and contraction 365–366

arginine methylase of 611–612
- binding in bovine caudate nucleus 181–182

Spores
- Aspergillus carbonarius 429–430

Starch
- CHO-cell 633–634
- utilization 633–634

Starvation
- pregnancy 538–539
- protein synthesis 283–285

Steroid hormones
- adrenal-gland-cortex 584–585
- biosynthesis 584–585

Steroids
- hormonal control of metabolism 342–343
- metabolism of C19 134
- UDP-glucuronyltransferase latency 345–346

Sterols
- membrane function 34–37

Streptococcus faecalis
- peptid transport systems 705–706

Sirtiated muscle
- growth and turnover 447–448

Striatum
- Ca2+-dependent glutamate release 109–110

Strontium ions
- 5-hydroxytryptamine secretion 530–531
- thromboxane B1 biosynthesis 530–531

Subcellular fractionation
- microanalytical 76–77
- poly(ethylene glycol)/dextran countercurrent partition 76–77
- rat liver homogenates 76–77

Sucrose
- Catheranthus roseus-cell 630–631
- utilization 630–631

Sugars
- lysosomal accumulation 316

Sulphated glycoprotein
- synaptosomal membranes 442–443

Sulphated glycosaminoglycans
- BHK-21/C13 cells 134–136

Sulphated polysaccharides
- clotting of plasma deficient in antithrombin III 188–189
- prostacycl cyclic inhibitor of platelet aggregation 377–379

Sulphinpyrazone
- platelet prostaglandin pathway 727–728
- SV-40 transformed 3T3 cells

Sycamore (Acer pseudoplatanus) cells
- growth and turnover 447–448

Symptomimetics
- effect on energy production in S180 sarcoma 105

Synapses
- brain 483–484, 619–620
- mitochondrial membrane 619–620
- nitrite reductase 628–629

Syntrophins
- binding of L-14Hlglutamate 109

Synaptosomal membranes
- sulphated glycoprotein 442–443
- thyroliberin pyroglutamyl peptidase 423

Synaptosomes
- adenylyl cyclase 128–129
- [14C]choline uptake 138
- cyclic AMP phosphodiesterase 128–129
- dopamine uptake 67–68, 68
- fucose uptake 66–67
- gangliosides 128–129
- mitochondria and Ca2+ transport 264–266

1980
Uraemia
 glucagon and related peptides 426–427
Urate
 effect of adenine derivatives on biosynthesis 140–141
Uridine
 concentration in foetal calf serum 139
Uridine diphosphate glucuronyltransferase
 activated by detergent 116–117
 effect of phospholipase treatment 43–46
 effect of phospholipid depletion 43–46
Uridine triphosphate
 inhibition of alkyl sulphohydrolase induction 92
Urine
 pteroylglutamate metabolites 566–567, 568–569
Uterine cervix
 connective tissue 662–667
 hormones 662–667
 parturition 662–667
 pregnancy 662–667
 prostaglandins 662–667

Vasopressin
 oleate metabolism 591–592
Vegetable marrow (*Cucurbita pepo*)
 nitrite reductase 642
Very-low-density lipoproteins
 interaction with immobilized heparin 373
 metabolism 539–540
 pig and rat plasma 373
 plasma 539–540
Vicia fabia, see Bean
Vincristine
 interaction with tubulin 725
Viral antibody
 suppression of morbillivirus polypeptide synthesis 427
Viral replication
 limited replication 417–419
Virus
 canine-distemper, see Canine distemper virus
 measles, see Measles virus

mediation of cellular permeability 700–702
mumps, see Mumps virus
Visual centres
 brain 623–624
Vitamin D
 supplementation in foetus and newborns 136–137
Walker 256 carcinoma
 folate biosynthesis 567–568
Wax esters
 marine animals 296–297
Wheat embryos
 inhibitor of poly(adenosine diphosphate ribose) glycohydro-
 lase 192–193
Wheat (*Triticum aestivum*) seeds
 lipid metabolism in 533
Xanthine oxidase
 adipose-tissue lipolysis 363–364
Xanthium strumarium L.
 photoperiodic control of tocopherol oxidase 187–188
Xenobiotic metabolism
 induction in guinea pig 95–96
Xylan SP54
 induction of platelet aggregation 84–85
Yeast
 phosphoglycerate kinase 730
Yeast (*Candida lipolytica*)
 extracellular-esterase uptake by membrane vesicles 320–321
Yeast (*Saccharomyces cerevisiae*)
 cytochrome P-450 98–99, 99–100
 cytochrome P-450 biosynthesis 573–574
 growth 573–574
 intracellular pH 580–581
 see also *Saccharomyces cerevisiae*
Yolk sac
 pinocytosis 434–435
Zonal centrifugation
 isolation of myelin subfractions 69–70
INDEX OF AUTHORS

<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams, B.</td>
<td>730</td>
</tr>
<tr>
<td>Allen, A.</td>
<td>715, 716</td>
</tr>
<tr>
<td>Alves, R. A.</td>
<td>704</td>
</tr>
<tr>
<td>Azari, M. R.</td>
<td>713</td>
</tr>
<tr>
<td>Barnekow, A.</td>
<td>735</td>
</tr>
<tr>
<td>Bell, A. E.</td>
<td>716</td>
</tr>
<tr>
<td>Beyreuther, K.</td>
<td>675</td>
</tr>
<tr>
<td>Bieseler, B.</td>
<td>675</td>
</tr>
<tr>
<td>Birch, D. J.</td>
<td>730</td>
</tr>
<tr>
<td>Bird, M.</td>
<td>741</td>
</tr>
<tr>
<td>Blataik, A. A.</td>
<td>711</td>
</tr>
<tr>
<td>Boos, W.</td>
<td>680</td>
</tr>
<tr>
<td>Borghetti, A. F.</td>
<td>710</td>
</tr>
<tr>
<td>Boschek, B. C.</td>
<td>735</td>
</tr>
<tr>
<td>Bramwell, M. E.</td>
<td>697</td>
</tr>
<tr>
<td>Brass, J.</td>
<td>680</td>
</tr>
<tr>
<td>Brownson, C.</td>
<td>739</td>
</tr>
<tr>
<td>Campbell, A. K.</td>
<td>723</td>
</tr>
<tr>
<td>Cattell, K. J.</td>
<td>742</td>
</tr>
<tr>
<td>Chapman, D.</td>
<td>686</td>
</tr>
<tr>
<td>Coles, A. M.</td>
<td>739</td>
</tr>
<tr>
<td>Crane, R. K.</td>
<td>688</td>
</tr>
<tr>
<td>Crompton, M. J.</td>
<td>720, 721</td>
</tr>
<tr>
<td>Deeley, J.</td>
<td>722</td>
</tr>
<tr>
<td>De Loecker, W.</td>
<td>733</td>
</tr>
<tr>
<td>Donnellan, J. F.</td>
<td>742</td>
</tr>
<tr>
<td>Dubois, J. H.</td>
<td>720, 721</td>
</tr>
<tr>
<td>Dupuis, D.</td>
<td>698</td>
</tr>
<tr>
<td>Ehring, R.</td>
<td>675</td>
</tr>
<tr>
<td>Farrer, M.</td>
<td>714</td>
</tr>
<tr>
<td>Ferenci, T.</td>
<td>680</td>
</tr>
<tr>
<td>Galbraith, D. A.</td>
<td>718</td>
</tr>
<tr>
<td>Gehring, C. A.</td>
<td>743</td>
</tr>
<tr>
<td>Glass, R. E.</td>
<td>731, 732</td>
</tr>
<tr>
<td>Gondal, J. A.</td>
<td>711</td>
</tr>
<tr>
<td>Grieser, H.-W.</td>
<td>675</td>
</tr>
<tr>
<td>Hallett, M. B.</td>
<td>723</td>
</tr>
<tr>
<td>Harrison, R.</td>
<td>693, 741</td>
</tr>
<tr>
<td>Hayward, R. S.</td>
<td>738</td>
</tr>
<tr>
<td>Henderson, P. J. F.</td>
<td>678</td>
</tr>
<tr>
<td>Henderson, R. H.</td>
<td>677</td>
</tr>
<tr>
<td>Hutchinson, R.</td>
<td>722</td>
</tr>
<tr>
<td>Inagaki, F.</td>
<td>753</td>
</tr>
<tr>
<td>Izumiya, N.</td>
<td>748</td>
</tr>
<tr>
<td>Koffler, A.</td>
<td>737</td>
</tr>
<tr>
<td>Komor, E.</td>
<td>681</td>
</tr>
<tr>
<td>Kunicki, T. J.</td>
<td>698</td>
</tr>
<tr>
<td>Lee, F.-T.</td>
<td>728</td>
</tr>
<tr>
<td>Legon, S.</td>
<td>740</td>
</tr>
<tr>
<td>Leyman, A. M.</td>
<td>733</td>
</tr>
<tr>
<td>Lunt, G. G.</td>
<td>693, 741</td>
</tr>
<tr>
<td>Luzio, J. P.</td>
<td>723</td>
</tr>
<tr>
<td>Lyall, R. M.</td>
<td>720</td>
</tr>
<tr>
<td>Mace, H. A. F.</td>
<td>740</td>
</tr>
<tr>
<td>Maguire, E. D.</td>
<td>726</td>
</tr>
<tr>
<td>Malcolm, A. D. B.</td>
<td>734, 738</td>
</tr>
<tr>
<td>Malcolm, S.</td>
<td>736</td>
</tr>
<tr>
<td>Mantle, M.</td>
<td>715</td>
</tr>
<tr>
<td>March, C. S.</td>
<td>742</td>
</tr>
<tr>
<td>Massey, D. E.</td>
<td>751</td>
</tr>
<tr>
<td>McBride, N. K.</td>
<td>736</td>
</tr>
<tr>
<td>McEvoy, F. A.</td>
<td>719, 720</td>
</tr>
<tr>
<td>McKee, R. A.</td>
<td>731</td>
</tr>
<tr>
<td>McLachlan, A. D.</td>
<td>677</td>
</tr>
<tr>
<td>McLennan, A. G.</td>
<td>730</td>
</tr>
<tr>
<td>Menez, A.</td>
<td>753</td>
</tr>
<tr>
<td>Mieschendahl, M.</td>
<td>675</td>
</tr>
<tr>
<td>Miyazawa, T.</td>
<td>753</td>
</tr>
<tr>
<td>Moffatt, J. R.</td>
<td>734</td>
</tr>
<tr>
<td>Morris, E.</td>
<td>716</td>
</tr>
<tr>
<td>Mountain, A.</td>
<td>740</td>
</tr>
<tr>
<td>Müller-Hill, B.</td>
<td>675</td>
</tr>
<tr>
<td>Murray, G. J.</td>
<td>692</td>
</tr>
<tr>
<td>Nakanishi, S.</td>
<td>749</td>
</tr>
<tr>
<td>Nene, V.</td>
<td>732</td>
</tr>
<tr>
<td>Neville, D. M., Jr.</td>
<td>692</td>
</tr>
<tr>
<td>Newby, A. C.</td>
<td>723</td>
</tr>
<tr>
<td>Newman, A. J.</td>
<td>738</td>
</tr>
<tr>
<td>Nisbet, T. M.</td>
<td>683, 705</td>
</tr>
<tr>
<td>Numa, S.</td>
<td>749</td>
</tr>
<tr>
<td>Norden, A. T.</td>
<td>698</td>
</tr>
<tr>
<td>Ord, M. G.</td>
<td>759</td>
</tr>
<tr>
<td>Ozawa, T.</td>
<td>757</td>
</tr>
<tr>
<td>Page, M. G. P.</td>
<td>703, 704</td>
</tr>
<tr>
<td>Pain, R. H.</td>
<td>722, 730</td>
</tr>
<tr>
<td>Pasternak, C. A.</td>
<td>700</td>
</tr>
<tr>
<td>Patel, M. K. N.</td>
<td>719, 720</td>
</tr>
<tr>
<td>Pay, G. F.</td>
<td>727</td>
</tr>
<tr>
<td>Payne, J. W.</td>
<td>683, 704, 705</td>
</tr>
<tr>
<td>Pearson, J.</td>
<td>715</td>
</tr>
<tr>
<td>Pennington, R. J. T.</td>
<td>690</td>
</tr>
<tr>
<td>Petronini, P. G.</td>
<td>710</td>
</tr>
<tr>
<td>Pidard, D.</td>
<td>698</td>
</tr>
<tr>
<td>Piedimonte, G.</td>
<td>710</td>
</tr>
<tr>
<td>Poste, G.</td>
<td>695</td>
</tr>
<tr>
<td>Prakash, V.</td>
<td>725</td>
</tr>
<tr>
<td>Pringle, M. J.</td>
<td>686</td>
</tr>
<tr>
<td>Reed, R. H.</td>
<td>707, 708, 709</td>
</tr>
<tr>
<td>Rees, D. A.</td>
<td>716</td>
</tr>
<tr>
<td>Rowell, P.</td>
<td>707, 708, 709</td>
</tr>
<tr>
<td>Ryley, J. F.</td>
<td>739</td>
</tr>
<tr>
<td>Sato, A.</td>
<td>753</td>
</tr>
<tr>
<td>Scott, S. C.</td>
<td>717</td>
</tr>
<tr>
<td>Sheppard, R. C.</td>
<td>744</td>
</tr>
<tr>
<td>Skern, T. R.</td>
<td>738</td>
</tr>
<tr>
<td>Smyth, D. G.</td>
<td>751</td>
</tr>
<tr>
<td>Stewart, W. D. P.</td>
<td>707, 708, 709</td>
</tr>
<tr>
<td>Stocken, L. A.</td>
<td>759</td>
</tr>
<tr>
<td>Swoboda, B. E. P.</td>
<td>739</td>
</tr>
<tr>
<td>Szekely, M.</td>
<td>740</td>
</tr>
<tr>
<td>Takasaki, C.</td>
<td>753</td>
</tr>
<tr>
<td>Tamiya, N.</td>
<td>753</td>
</tr>
<tr>
<td>Timasheff, S. N.</td>
<td>725</td>
</tr>
<tr>
<td>Travers, A. A.</td>
<td>740</td>
</tr>
<tr>
<td>Triesch, I.</td>
<td>675</td>
</tr>
<tr>
<td>Turner, K.</td>
<td>722</td>
</tr>
<tr>
<td>Virden, R.</td>
<td>714</td>
</tr>
<tr>
<td>Wallis, R. B.</td>
<td>726, 727</td>
</tr>
<tr>
<td>Watts, D. C.</td>
<td>718</td>
</tr>
<tr>
<td>West, I. C.</td>
<td>706</td>
</tr>
<tr>
<td>Williams, A. J.</td>
<td>743</td>
</tr>
<tr>
<td>Wiseman, A.</td>
<td>711, 712, 713</td>
</tr>
<tr>
<td>Worcester, D. L.</td>
<td>717</td>
</tr>
<tr>
<td>Yeaman, S. J.</td>
<td>728</td>
</tr>
<tr>
<td>Youle, R. J.</td>
<td>692</td>
</tr>
<tr>
<td>Zelaschi, D.</td>
<td>726, 727</td>
</tr>
<tr>
<td>Ziemiecki, A.</td>
<td>735</td>
</tr>
</tbody>
</table>