Subscribing organizations are encouraged to copy and distribute this table of contents for non-commercial purposes

Novartis Medal Lecture

Decoding the SUMO signal

Ronald T. Hay 463–473

Colworth Medal Lecture

Mechanisms of microbial escape from phagocyte killing

Leanne M. Smith and Robin C. May

475-490

Independent Meeting

Topological Aspects of DNA Function and Protein Folding

Isaac Newton Institute for Mathematical Sciences, Cambridge, U.K., 3–7 September 2012

Edited by Andrew Bates (University of Liverpool, U.K.), Dorothy Buck (Imperial College London, U.K.), Sarah Harris (University of Leeds, U.K.), Andrzej Stasiak (University of Lausanne, Switzerland) and De Witt Sumners (Florida State University, U.S.A.).

Topological Aspects of DNA Function and Protein Folding

Andrzej Stasiak, Andrew D. Bates, Dorothy E. Buck, Sarah A. Harris and De Witt Sumners

491-493

Insights into chromatin fibre structure by *in vitro* and *in silico* single-molecule stretching experiments

Rosana Collepardo-Guevara and Tamar Schlick

494-500

Topological similarity between the 2μ m plasmid partitioning locus and the budding yeast centromere: evidence for a common evolutionary origin?

Makkuni Jayaram, Keng-Ming Chang, Chien-Hui Ma, Chu-Chun Huang, Yen-Ting Liu and Soumitra Sau

501-507

A model of the large-scale organization of chromatin

Mariano Barbieri, Mita Chotalia, James Fraser, Liron-Mark Lavitas, Josée Dostie, Ana Pombo and Mario Nicodemi

508-512

The thermodynamics of DNA loop formation, from J to Z Stephen D. Levene, Stefan M. Giovan, Andreas Hanke and Massa J. Shoura	513-518
Topological features in stretching of proteins Marek Cieplak and Mateusz Sikora	519-522
Knotting pathways in proteins Joanna I. Sułkowska, Jeffrey K. Noel, César A. Ramírez-Sarmiento, Eric J. Rawdon, Kenneth C. Millett and José N. Onuchic	523-527
Influence of chain stiffness on knottedness in single polymers Peter Virnau, Florian C. Rieger and Daniel Reith	528-532
Identifying knots in proteins Kenneth C. Millett, Eric J. Rawdon, Andrzej Stasiak and Joanna I. Sułkowska	533-537
Knot localization in proteins Eric J. Rawdon, Kenneth C. Millett, Joanna I. Sułkowska and Andrzej Stasiak	538-541
Co-operative roles for DNA supercoiling and nucleoid-associated proteins in the regulation of bacterial transcription Charles J. Dorman	542-547
DNA thermodynamics shape chromosome organization and topology Andrew A. Travers and Georgi Muskhelishvili	548-553
Dynamical simulations of DNA supercoiling and compression David Swigon, Sookkyung Lim and Yongsam Kim	554-558
Structural insights into the role of architectural proteins in DNA looping deduced from computer simulations Wilma K. Olson, Michael A. Grosner, Luke Czapla and David Swigon	559-564
Small DNA circles as probes of DNA topology Andrew D. Bates, Agnes Noy, Michael M. Piperakis, Sarah A. Harris and Anthony Maxwell	565-570
Studies of bacterial topoisomerases I and III at the single-molecule level Ksenia Terekhova, John F. Marko and Alfonso Mondragón	571-575
Crossing-sign discrimination and knot-reduction for a lattice model of strand passage Chris Soteros and Michael Szafron	576-581
Effect of DNA conformation on facilitated diffusion Chris A. Brackley, Mike E. Cates and Davide Marenduzzo	582-588
The topology of plasmid-monomerizing Xer site-specific recombination Sean D. Colloms	7589-594
Simple topology: FtsK-directed recombination at the <i>dif</i> site lan Grainge	595-600

Determining the topology of stable protein–DNA complexes Isabel K. Darcy and Mariel Vazquez	601-605
New biologically motivated knot table Reuben Brasher, Rob G. Scharein and Mariel Vazquez	606-611
Topological constraints and chromosome organization in eukaryotes: a physical point of view Angelo Rosa	612-615
Amino acid distribution rules predict protein fold Alexander E. Kister and Vladimir Potapov	616-619
Tight knots in proteins: can they block the mitochondrial pores? Piotr Szymczak	620-624
Comparison of linear and ring DNA macromolecules moderately and strongly confined in nanochannels Zuzana Benková and Peter Cifra	625-629
Effective interactions of knotted ring polymers Arturo Narros, Angel J. Moreno and Christos N. Likos	630-634
Framed curves and knotted DNA Gregory S. Chirikjian	635-638
Denaturation transition of stretched DNA Andreas Hanke	639-645
The benefit of DNA supercoiling during replication Jorge B. Schvartzman, María-Luisa Martínez-Robles, Pablo Hernández and Dora B. Krimer	646-651
Enumeration of RNA complexes via random matrix theory Jørgen E. Andersen, Leonid O. Chekhov, Robert C. Penner, Christian M. Reidys and Piotr Sułkowski	652-655
Irish Area Section Meeting	
Regulation of Metabolism in Cancer and Immune Cells Trinity Biomedical Sciences Institute, Dublin, Ireland, 8–9 November 2012	
Edited by Richard Porter (Trinity College Dublin, Ireland).	
The impact of hypoxia on cell death pathways Colin R. Lenihan and Cormac T. Taylor	657-663
Parallels between embryo and cancer cell metabolism Danielle G. Smith and Roger G. Sturmey	664-669
Metabolomics in nutrition research: current status and perspectives Lorraine Brennan	670-673
Sedoheptulose kinase regulates cellular carbohydrate metabolism by sedoheptulose 7-phosphate supply Csörsz Nagy and Arvand Haschemi	674-680

Correction	695
AMPK: opposing the metabolic changes in both tumour cells and inflammatory cells? Madhumita Dandapani and D. Grahame Hardie	687-693
mTORC1 regulates CD8+ T-cell glucose metabolism and function independently of PI3K and PKB David K. Finlay	681-686