Subscribing organizations are encouraged to copy and distribute this table of contents for non-commercial purposes

Biochemical Society Annual Symposium No. 77

Organelle Biogenesis and Positioning in Plants

University of Chester, U.K., 16–18 December 2009

Edited by David Evans and Chris Hawes (Oxford Brookes University, U.K.).

Edited by David Evans and Chris Hawes (Oxford Brookes University, U.K.).	
Organelle Biogenesis and Positioning in Plants David E. Evans and Chris Hawes	729-732
Targeting proteins to the plant nuclear envelope Iris Meier, Xiao Zhou, Jelena Brkljacić, Annkatrin Rose, Qiao Zhao and Xianfeng Morgan Xu	733-740
Nuclear envelope proteins and their role in nuclear positioning and replication Katja Graumann, John Runions and David E. Evans	741-746
Networking in the endoplasmic reticulum Lawrence R. Griffing	Multimedia 747-753
Trafficking of the cellulose synthase complex in developing xylem vessels Raymond Wightman and Simon Turner	755-760
Biogenesis of the plant Golgi apparatus Chris Hawes, Jennifer Schoberer, Eric Hummel and Anne Osterrieder	761-767
Tonoplast intrinsic proteins and vacuolar identity Stefano Gattolin, Mathias Sorieul and Lorenzo Frigerio	769-773
Malaria, <i>Plasmodium falciparum</i> and its apicoplast Ming Kalanon and Geoffrey I. McFadden	775-782
The complexity and evolution of the plastid-division machinery Jodi Maple and Simon Geir Møller	783-788
Mitochondrial fusion, division and positioning in plants David C. Logan	789-795
Plant dynamin-related protein families DRP1 and DRP2 in plant development Sebastian Y. Bednarek and Steven K. Backues	797-806
Peroxisome biogenesis and positioning Alison Baker, Imogen A. Sparkes, Laura-Anne Brown, Catherine O'Leary-Steele and Stuart L. Warriner	**************************************
Peroxisome division and proliferation in plants Kyaw Aung, Xinchun Zhang and Jianping Hu	817-822

Correction

Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers

Tijs Ketelaar, Hannie S. van der Honing and Anne Mie C. Emons

Relationships at the nuclear envelope: lamins and nuclear pore complexes in animals and plants

Jindriska Fiserova and Martin W. Goldberg

Motoring around the plant cell: insights from plant myosins

Imogen A. Sparkes

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from plant myosins

***Image of the plant cell insights from p

839