Subscribing organizations are encouraged to copy and distribute this table of contents for non-commercial purposes

Biochemical Society Focused Meetings

A. Perino, A. Ghigo, F. Damilano and E. Hirsch

Compartmentalization of Cyclic AMP Signalling King's College, Cambridge, U.K., 29–30 March 2006	
Edited by D. Cooper (Cambridge, U.K.)	
Compartmentalized cAMP signalling: a personal perspective J.D. Scott	465-467
Use of single-cell imaging techniques to assess the regulation of cAMP dynamics D. Willoughby and D.M.F. Cooper	468-471
Peptides for disruption of PKA anchoring C. Hundsrucker, W. Rosenthal and E. Klussmann	472-473
Phosphodiesterase-4 gates the ability of protein kinase A to phosphorylate G-protein receptor kinase-2 and influence its translocation M.D. Houslay and G.S. Baillie	474-475
The molecular machinery for cAMP-dependent immunomodulation in T-cells K. Taskén and A.J. Stokka	476-479
Layers of organization of cAMP microdomains in a simple cell A.C.L. Martin and D.M.F. Cooper	480-483
Functional localization of cAMP signalling in cardiac myocytes G. Vandecasteele, F. Rochais, A. Abi-Gerges and R. Fischmeister	484-488
Compartmentalized cAMP signalling is important in the regulation of Ca ²⁺ cycling in the heart B. Lygren and K. Taskén	489-491
Soluble adenylate cyclase reveals the significance of compartmentalized cAMP on endothelial cell barrier function S. Sayner and T. Stevens	492-494
Restricted diffusion of a freely diffusible second messenger: mechanisms underlying compartmentalized cAMP signalling M. Zaccolo, G. Di Benedetto, V. Lissandron, L. Mancuso, A. Terrin and I. Zamparo	495-497
cAMP oscillations restrict protein kinase A redistribution in insulin-secreting cells O. Dyachok, J. Sågetorp, Y. Isakov and A. Tengholm	498-501
Identification of the macromolecular complex responsible for PI3K γ -dependent regulation of cAMP levels	

502-503

cAMP phosphodiesterase-4A1 (PDE4A1) has provided the paradigm for the intracellular targeting of phosphodiesterases, a process that underpins compartmentalized cAMP signalling E. Huston, T.M. Houslay, G.S. Baillie and M.D. Houslay	504-509
A complex phosphodiesterase system controls β -adrenoceptor signalling in cardiomyocytes M. Mongillo and M. Zaccolo	510-511
cGMP signalling in a transporting epithelium SA. Davies and J.P. Day	512-514
Signalling from parathyroid hormone S.C. Tovey, S.G. Dedos and C.W. Taylor	515-517
Meiosis and the Causes and Consequences of Recombination University of Warwick, U.K., 29–31 March 2006	
Edited by D. Monckton (Glasgow, U.K.)	
Why have sex? The population genetics of sex and recombination S.P. Otto and A.C. Gerstein	519-522
Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation S. Keeney and M.J. Neale	523-525
The distribution and causes of meiotic recombination in the human genome S. Myers, C.C.A. Spencer, A. Auton, L. Bottolo, C. Freeman, P. Donnelly and G. McVean	526-530
Meiotic recombination hotspots in plants C. Mézard	531-534
Human polymorphism around recombination hotspots C.C.A. Spencer	535-536
Crossover promotion and prevention A. Lorenz and M.C. Whitby	537-541
Control of meiotic recombination in <i>Arabidopsis</i> : role of the MutL and MutS homologues F.C.H. Franklin, J.D. Higgins, E. Sanchez-Moran, S.J. Armstrong, K.E. Osman, N. Jackson and G.H. Jones	542-544
Initiation of homologous chromosome pairing during meiosis P. Jordan	545-549
Factors directing telomere dynamics in synaptic meiosis H. Scherthan	550-553
Balancing the checks: surveillance of chromosomal exchange during meiosis G.V. Börner	554-556
Analysis of a cross between green and red fluorescent trypanosomes W. Gibson, L. Peacock, V. Ferris, K. Williams and M. Bailey	557-559

Effects of intra-gene fitness interactions on the benefit of sexual recombination R.A. Watson, D.M. Weinreich and J. Wakeley	560-561
Sex-ratio meiotic drive in Drosophila simulans: cellular mechanism, candidate genes and evolution C. Montchamp-Moreau	562-565
Why Mendelian segregation? F. Úbeda	566-568
Genetic conflicts during meiosis and the evolutionary origins of centromere complexity H.S. Malik and J.J. Bayes	569-573
Meiosis in mammals: recombination, non-disjunction and the environment P.A. Hunt	574-577
Relationship of recombination patterns and maternal age among non-disjoined chromosomes 21 S.L. Sherman, N.E. Lamb and E. Feingold	578-580
Intra-allelic mutation at human telomeres B. Britt-Compton and D.M. Baird	581-582
Differential mitotic checkpoint protein requirements in somatic and germ cells K.B. Jeganathan and J.M. van Deursen	583-586
Neurotrophins: Mechanisms in Disease and Therapy School of Chemistry, Bristol, U.K., 6 April 2006	
Edited by D. Dawbarn (Bristol)	
NGF receptor TrkAd5: therapeutic agent and drug design target D. Dawbarn, M. Fahey, J. Watson, S. Tyler, D. Shoemark, R. Sessions, R. Zhang, L. Brady, C. Willis and S.J. Allen	587-590
Neuro–immune interaction in allergic asthma: role of neurotrophins C. Nassenstein, J. Kutschker, D. Tumes and A. Braun	591-593
The contribution of neurotrophins to the pathogenesis of allergic asthma S. Rochlitzer, C. Nassenstein and A. Braun	594-599
Brain-derived neurotrophic factor and control of synaptic consolidation in the adult brain J. Soulé, E. Messaoudi and C.R. Bramham	600-604
Structural and functional properties of mouse proNGF F. Paoletti, P.V. Konarev, S. Covaceuszach, E. Schwarz, A. Cattaneo, D. Lamba and D.I. Svergun	605-606
Mechanisms of neurotrophin receptor signalling N. Zampieri and M.V. Chao	607-611
Functional mimetics of neurotrophins and their receptors I. Peleshok and H.U. Saragovi	612-617