
Sedimentation in liquid medium:  

1. Preparing the organisms: For fluorescence microscopy, test strains are labelled with 

fluorescent markers such as Green or red fluorescent proteins.    

2. Overnight growth: Grow the test organisms overnight preferably with shaking.  

3.  Determine the optical density of test organism(s): Take the initial OD600nm reading of 

the overnight broth culture or making an emulsion of the test organism’s colonies (1) to 

a predetermined OD600nm. 

Modification 

OD adjustment step: This is achieved by diluting overnight culture (2–10).  Dilution with 

a fresh medium can lead to an increase in growth and alter readings. Thus, after diluting 

with fresh medium, most setups involve agitated incubation to the early exponential 

phase of test bacterium (roughly OD600nm =0.25) before the transfer of test organisms 

into test tubes. 

Alternatively, OD can be adjusted by concentrating harvested, washed and resuspended 

cells from the overnight culture in non-growth medium eg PBS or pure water to a 

predetermined OD600nm (1,10–18).  

OD600nm levels are determined by researchers to have the same starting OD600nm for all 

organisms to be tested or for all replicates and are determined based on the growth 

kinetics of the test organism(s). 

Note of caution: Test organisms with curli should be prepared without centrifugation or 

vortexing to minimise curli detachment(19) 

4. Transfer of test organism(s): Transfer a known volume (eg 10ml) of the test organisms 

into a round bottom test tube, a round-bottom microtitre well or a cuvette and 

incubated statically (20).  

Modification 

Two tube setup: Test organisms are transferred into two tubes –one labelled static the 

other vortex. Both are incubated statically. The control (vortex)tube will be vortexed 

before sample optical densities are measured. (4,6,8) 

5. Take time interval(s) absorbance reading(s): After allowing to stand and at the 

predetermined time interval(s), the optical density of the sample is measured at the top 

or bottom of the tube/well.  

Top reading: A volume of the static culture is taken from the top of the medium into the 

cuvette (2) or microtitre plates (4,6). Volumes varies from 0.5ml (8) to 1ml  (2) and 2mL 

(21) and are taken from 1cm (21) or 2cm from the top(8).  

For a one-tube set-up, after taking the static reading, vortex the tube and take final or 

vortexed OD reading. While for a two-tube set-up, the control tube is vortexed before 

sample is taken and OD determined(4,6,8). 

Bottom reading: Alternatively, bottom absorbance readings can be taken at 

predetermined time intervals throughout the experiments (22). This measures the 

increasing optical density at the bottom of the tube due to sedimenting cells; there is no 

vortexing. 

6. Image acquisition: At the end of the experiment pictures of the test tubes are taken 

(macroscopic) (Figure 1a). For microscopic evaluation, the sediments at the bottom of 



the tubes are viewed by taking a sample of the sediment at the bottom of the tube onto 

a glass slide or direct viewing of the titre well. Alternatively, sediments to be viewed can 

be placed on microscope slides coated with a thin agarose pad (3). A more accurate 

quantification can be achieved by the use of fixed-volume-gridded-well slides e.g. 

hemocytometers such that sample volume is fixed and counting is accurate (Figure 1b).  

Sediments can be viewed using different microscopes (bright field, Phase-contrast or 

fluorescence microscopy) depending on the fixing and staining methods applied (23,24). 

Acquired image can be qualitatively or quantitatively analysed using ImageJ (3,25–27). 

The aggregate diameter should be predetermined and guided by the size of the 

bacterium queried and autoaggregation can be expressed as the percentage of positive 

aggregates in total particles in the field. (27) 

  

 

Suppl Figure 1 Paired ‘static and vortexted tubes late in an autoaggregation settling experiment  

When microtitre plates are used the wells can be viewed using an inverted microscope 

and or round glass slips can be placed at the bottom of the well throughout the 

experiment. The glass slide can be removed and stained appropriately (5,26).  

7. Calculate the autoaggregation percentage: Autoaggregation is calculated as the change 

in the initial or pre-vortexed optical density (28) (29). 
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]) (30)  

Or  

     (  [
                                          

                        
])(1,4,6,7,9–14,31).  

If multiple readings (ideally at least five) were taken over time, plot autoaggregation 

curve. Additionally, the rate of sedimentation can be calculated by dividing 

autoaggregation calculated by time(32). 
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