Biochemical Journal Volume 344, part 1 15 November 1999

First published on the Internet 8 November 1999

Research Communication Normal prion protein has an activity like that of	D.R. Brown, BS. Wong, F. Hafiz, C. Clive, S.J. Haswell,	1–5
superoxide dismutase	I.M. Jones	
Research Papers		
Proteins		
Molecular characterization of <i>Oryza sativa</i> 16.9 kDa heat shock protein	LS. Young, CH. Yeh, YM. Chen and CY. Lin	31–38
Histone H1- and other protein- and amino acid-hydroperoxides can give rise to free radicals which oxidize DNA	C. Luxford, B. Morin, R.T. Dean and M.J. Davies	125–134
Central modules of the vaccinia virus complement control protein are not in extensive contact	M.D. Kirkitadze, C. Henderson, N.C. Price, S.M. Kelly, N.P. Mullin, J. Parkinson, D.T.F. Dryden and P.N. Barlow	167–175
Functional analysis of the human NRAMP family expressed in fission yeast	M. Tabuchi, T. Yoshida, K. Takegawa and R. Kishi	211–219
Nitric oxide induces Zn ²⁺ release from metallothionein by destroying zinc-sulphur clusters without concomitant formation of S-nitrosothiol	C.T. Aravindakumar, J. Ceulemans and M. de Ley	253–258
Enzymes		
Evidence that pyruvate dehydrogenase kinase belongs to the ATPase/kinase superfamily	M. Bowker-Kinley and K.M. Popov	47–53
Aggrecanase versus matrix metalloproteinases in the catabolism of the Interglobular domain of aggrecan <i>in vitro</i>	C.B. Little, C.R. Flannery, C.E. Hughes, J.S. Mort, P.J. Roughley, C. Dent and B. Caterson	61–68
Polycitone A, a novel and potent general inhibitor of retroviral reverse transcriptases and cellular DNA polymerases	S. Loya, A. Rudi, Y. Kashman and A. Hizi	85–92
An approach to optimizing the active site in a glutathione transferase by evolution in vitro	L.O. Hansson, M. Widersten and B. Mannervik	93–100
Binding energy and specificity in the catalytic mechanism of yeast aldose reductases	B. Nidetzky, P. Mayr, P. Hadwiger and A.E. Stütz	101–107
Identification of residues essential for a two-step reaction by malonyl-CoA synthetase from Rhizobium trifolii	J.H. An, G.Y. Lee, JW. Jung, W. Lee and Y.S. Kim	159–166
Reversible alkaline inactivation of lignin peroxidase involves the release of both the distal and proximal site calcium ions and bishistidine co-ordination of the haem	S.J. George, M. Kvaratskhelia, M.J. Dilworth and R.N.F. Thorneley	237–244
Mutation of aspartic acid residues in the fructosyltransferase of <i>Streptococcus salivarius</i> ATCC 25975	D.D. Song and N.A. Jacques	259–264
Cloning and molecular characterization of a soluble epoxide hydrolase from <i>Aspergillus niger</i> that is related to mammalian microsomal epoxide hydrolase	M. Arand, H. Hemmer, H. Dürk, J. Baratti, A. Archelas, R. Furstoss and F. Oesch	273–280
Carbohydrates and lipids		
Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose	P.J. Thornalley, A. Langborg and H.S. Minhas	109–116

Re-evaluation of plant sulpholipid labelling from UDP-[14C]glucose in pea chloroplasts	A.B. Roy and J.L. Harwood	185–187
Gene structure and expression		
Role of cysteine in the dietary control of the expression of 3-phosphoglycerate dehydrogenase in rat liver	Y. Achouri, M. Robbi and E. van Schaftingen	15–21
Essential roles for the products of the <i>napABCD</i> genes, but not <i>napFGH</i> , in periplasmic nitrate reduction by <i>Escherichia coli</i> K-12	L.C. Potter and J.A. Cole	69–76
Identification and molecular characterization of acyl-CoA synthetase in human erythrocytes and erythroid precursors	K.T. Malhotra, K. Malhotra, B.H. Lubin and F.A. Kuypers	135–143
DNA-binding activity of the transcription factor upstream stimulatory factor 1 (USF-1) is regulated by cyclin-dependent phosphorylation	E. Cheung, P. Mayr, F. Coda-Zabetta, P.G. Woodman and D.S.W. Boam	145–152
Cloning and characterization of two nuclear receptors from the filarial nematode <i>Brugia pahangi</i>	J. Moore and E. Devaney	245–252
Regulation of metabolism		
Apolipoprotein serum amyloid A down-regulates smooth-muscle cell lipid biosynthesis	B.M. Schreiber, M. Veverbrants, R.E. Fine, J.K. Blusztajn, M. Salmona, A. Patel and J.D. Sipe	7–13
Haem oxygenase shows pro-oxidant activity in microsomal and cellular systems: implications for the release of low-molecular-mass iron	N.J. Lamb, G.J. Quinlan, S. Mumby, T.W. Evans and J.M.C. Gutteridge	153–158
Regulation of glycogen synthesis in rat skeletal muscle after glycogen-depleting contractile activity: effects of adrenaline on glycogen synthesis and activation of glycogen synthase and glycogen phosphorylase	J. Franch, R. Aslesen and J. Jensen	231–235
Membranes and bioenergetics		
Amyloid precursor protein, although partially detergent-insoluble in mouse cerebral cortex, behaves as an atypical lipid raft protein	E.T. Parkin, A.J. Turner and N.M. Hooper	23–30
Competition between <i>Escherichia coli</i> strains expressing either a periplasmic or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth?	L.C. Potter, P. Millington, L. Griffiths, G.H. Thomas and J. A. Cole	77–84
Dynamics of glycolipid domains in the plasma membrane of living cultured neurons, following protein kinase C activation: a study performed by excimer-formation imaging	M. Pitto, P. Palestini, A. Ferraretto, S. Flati, A. Pavan, D. Ravasi, M. Masserini and G. Bottiroli	177–184
Cysteine residues in the Na ⁺ /dicarboxylate co-transporter, NaDC-1	A.M. Pajor, S.J. Krajewski, N. Sun and R. Gangula	205–209
Transport activity of AE3 chloride/bicarbonate anion-exchange proteins and their regulation by intracellular pH	D. Sterling and J.R. Casey	221–229
Receptors and signal transduction		
Cellular activation by Ca ²⁺ release from stores in the endoplasmic reticulum but not by increased free Ca ²⁺ in the cytosol	D.S. Strayer, J.B. Hoek, A.P. Thomas and M.K. White	39–46
Type 3 inositol trisphosphate receptors in RINm5F cells are biphasically regulated by cytosolic Ca ²⁺ and mediate quantal Ca ²⁺ mobilization	J.E. Swatton, S.A. Morris, T.J.A. Cardy and C.W. Taylor	55–60
Extracellula regulated kinase (ERK) interaction with actin and the calponin homology (CH) domain of actin-binding proteins	B.D. Leinweber, P.C. Leavis, Z. Grabarek, CL.A. Wang and K.G. Morgan	117–123

		Contents v
Characterization of the structure and regulation of two novel isoforms of serum- and glucocorticoid- induced protein kinase	T. Kobayashi, M. Deak, N. Morrice and P. Cohen	189–197
lonotrophic 5-hydroxytryptamine type 3 receptor activates the protein kinase C-dependent phospholipase D pathway in human T-cells	N.A. Khan and A. Hichami	199–204
Transmembrane signalling mechanisms regulating expression of cationic amino acid transporters and inducible nitric oxide synthase in rat vascular smooth muscle cells	A.B. Baydoun, S.M. Wileman, C.P.D. Wheeler-Jones, M.S. Marber, G.E. Mann, J.D. Pearson and E.I. Closs	265–272