Biochemical Journal Volume 340, part 1 15 May 1999

First published on the Internet 10 May 1999

Review Article Structure, function and regulation of pyruvate carboxylase by S.J. Jitrapakdee and J.C. Wallace		1–16
Research Papers		
Proteins		
Microheterogeneity of beta-2 glycoprotein I: implications for binding to anionic phospholipids	T.A. Brighton, YP. Dai, P.J. Hogg and C.N. Chesterman	59–67
Angiostatin inhibits endothelial and melanoma cellular invasion by blocking matrix-enhanced plasminogen activation	M.S. Stack, S. Gately, L.M. Bafetti, J.J. Enghild and G.A. Soff	77–84
Fibrillin degradation by matrix metalloproteinases: implications for connective tissue remodelling	J.L. Ashworth, G. Murphy, M.J. Rock, M.J. Sherratt, S.D. Shapiro, C.A. Shuttleworth and C.M. Kielty	171–181
Interactions between a single immunoglobulinbinding domain of protein L from $Peptostreptococcus\ magnus\ and\ a\ human\ \kappa\ light\ chain$	J.A. Beckingham, S.P. Bottomley, R. Hinton, B.J. Sutton and M.G. Gore	193–199
Inhibition of fibril formation in β -amyloid peptide by a novel series of benzofurans	D.R. Howlett, A.E. Perry, F. Godfrey, J.E. Swatton, K.H. Jennings, C. Spitzfaden H. Wadsworth, S.J. Wood and R.E. Markwell	283–289
Isolation, characterization, molecular cloning and molecular modelling of two lectins of different specificities from bluebell (<i>Scilla campanulata</i>) bulbs	L.M. Wright, E.J.M. van Damme, A. Barre, A.K. Allen, F. van Leuven, C.D. Reynolds, P. Rouge and W.J. Peumans	299–308
Sequence-divergent units of the ABA-1 polyprotein array of the nematode <i>Ascaris suum</i> have similar fatty-acid- and retinol-binding properties but different binding-site environments	J. Moore, L. McDermott, N.C. Price, S.M. Kelly, A. Cooper and M.W. Kennedy	337–343
Oxidative refolding of recombinant prochymosin	C. Wei, B. Tang, Y. Zhang and K. Yang	345–351
Enzymes		
Expression and alteration of the S ₂ subsite of the <i>Leishmania major</i> cathepsin B-like cysteine protease	V.J. Chan, P.M. Selzer, J.H. McKerrow and J.A. Sakanari	113–117
Granule-bound starch synthase I in isolated starch granules elongates malto-oligosaccharides processively	K. Denyer, D. Waite, S. Motawia, B.L. Møller and A.M. Smith	183–191
Purification of xyloglucan endotransglycosylases (XETs): a generally applicable and simple method based on reversible formation of an enzyme—substrate complex	N.M. Steele and S.C. Fry	207–211
Inhibition of ATPase, GTPase and adenylate kinase activities of the second nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator by genistein	C. Randak, E.A. Auerswald, I. Assfalg-Machleidt, W.W. Reenstra and W. Machleidt	227–235
Enhancing activity and phospholipase $\rm A_2$ activity: two independent activities present in the enhancing factor molecule	S. Kadam and R. Mulherkar	237–243
Complex formation between deoxyhypusine synthase and its protein substrate, the eukaryotic translation initiation factor 5A (eIF5A) precursor	Y.B. Lee, Y.A. Joe, E.C. Wolff, E.K. Dimitriadis and M.H. Park	273–281

Alteration of substrate specificity by a naturally-occurring aldolase B mutation (Ala $^{337} \rightarrow \text{Val}$) in fructose intolerance	P. Rellos, M. Ali, M. Vidailhet, J. Sygusch and T.M. Cox	321–327
Kinetic evidence for the formation of a Michaelis-Menten-like complex between horseradish peroxidase compound II and di-(<i>N</i> -acetyl-L-tyrosine)	W. Wang, S. Noël, M. Desmadril, J. Guéguen and T. Michon	329–336
Carbohydrates and lipids		
Inositol acylation of glycosylphosphatidylinositols in the pathogenic fungus <i>Cryptococcus neoformans</i> and the model yeast <i>Saccharomyces cerevisiae</i>	S.P. Franzot and T.L. Doering	25–32
When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid	M. Bagnati, C. Perugini, C. Cau, R. Bordone, E. Albano and G. Bellomo	143–152
Gene structure and expression		
Efficient transcription of the human angiotensin II type 2 receptor gene requires intronic sequence elements	C. Warnecke, T. Willich, J. Holzmeister, S.P. Bottari, E. Fleck and V. Regitz-Zagrosek	17–24
Glucocorticoid inhibition of human SP-A1 promotor activity in NCI-H441 cells	R.R. Hoover, K.H. Thomas and J. Floros	69–76
Structure, alternative splicing and chromosomal localization of the cystatin-related epididymal spermatogenic gene	G.A. Cornwall, N. Hsia and H.G. Sutton	85–93
CLN3 expression is sufficient to restore G ₁ -to-S-phase progression in Saccharomyces cerevisiae mutants defective in translation initiation factor eIF4E	P. Danaie, M. Altmann, M.N. Hall, H. Trachsel and S.B. Helliwell	135–141
Fish macrophages express a cyclo-oxygenase-2 homologue after activation	J. Zou, N.F. Neumann, J.W. Holland, M. Belosevic, C. Cunningham, C.J. Secombes and A.F. Rowley	153–159
Inhibition of interleukin-6 promoter activity by the 24 kDa isoform of fibroblast growth factor-2 in HeLa cells	I. Delrieu, JC. Faye, F. Bayard and A. Maret	201–206
Human stearoyl-CoA desaturase: alternative transcripts generated from a single gene by usage of tandem polyadenylation sites	L. Zhang, L. Ge, S. Parimoo, K. Stenn and S.M. Prouty	255–264
Inducible gene expression of moricin, a unique antibacterial peptide from the silkworm (<i>Bombyx mori</i>)	S. Furukawa, H. Tanaka, H. Nakazawa, J. Ishibashi, T. Shono and M. Yamakawa	265–271
Regulation of metabolism		
Energy metabolism and protein phosphorylation during apoptosis: a phosphorylation study of tau and high-molecular-weight tau in differentiated PC12 cells	P.K. Davis and G.V.W. Johnson	51–58
Cloning and expression of rat pancreatic β -cell malonyl-CoA decarboxylase	N. Voilley, R. Roduit, R. Vicaretti, C. Bonny, G. Waeber, J.R.B. Dyck, G.D. Lopaschuk and M. Prentki	213–217
Receptors and signal transduction		
Ligand-specific, transient interaction between integrins and calreticulin during cell adhesion to extracellular matrix proteins is dependent upon phosphorylation/dephosphorylation events	M.G. Coppolino and S. Dedhar	41–50
Phospholipase D-derived phosphatidic acid is involved in the activation of the CD11b/CD18 integrin in human eosinophils	A.T.J. Tool, M. Blom, D. Roos and A.J. Verhoeven	95–101
The activity of the activation function 2 of the human hepatocyte nuclear factor 4 (HNF-4 α) is differently modulated by F domains from various origins	L. Suaud, P. Formstecher and B. Laine	161–169

		Contents	V
Mode of regulation of the extracellular signal-regulated kinases in the pancreatic β -cell line MIN6 and their implication in the regulation of insulin gene transcription	C. Benes, V. Poitout, JC. Marie, J. Martin-Perez, MP. Roisin and R. Fagard		219–225
Inhibition of human platelet adenylate cyclase activity by adrenaline, thrombin and collagen: analysis and reinterpretation of experimental data	A. Juška and R.W. Farndale		245–253
Cell biology and development			
Reactive oxygen species activate a Ca ²⁺ -dependent cell death pathway in the unicellular organism <i>Trypanosoma brucei brucei</i>	E.L. Ridgley, Z. Xiong and L. Ruben		33–40
Selective tetraspan-integrin complexes (CD81/ α 4 β 1, CD151/ α 3 β 1, CD151/ α 6 β 1) under conditions disrupting tetraspan interactions	V. Serru, F. Le Naour, M. Billard, D.O. Azorsa, F. Lanza, C. Boucheix and E. Rubinstein		103–111
An IKLLI-containing peptide derived from the laminin $\alpha 1$ chain mediating heparin-binding, cell adhesion, neurite outgrowth and proliferation, represents a binding site for integrin $\alpha 3\beta 1$ and heparan sulphate proteoglycan	K. Tashiro, A. Monji, I. Yoshida, Y. Hayashi, K. Matsuda, N. Tashiro and Y. Mitsuyama		119–126
Inhibition of ubiquitin-proteasome pathway activates a caspase-3-like protease and induces Bcl-2 cleavage in human M-07e leukaemic cells	X. Zhang, H. Lin, C. Chen and B. DM. Chen		127–133
Protection against hydrogen peroxide cytotoxicity in Rat-1 fibroblasts provided by the oncoprotein Bcl-2: maintenance of calcium homoeostasis is secondary to the effect of Bcl-2 on cellular glutathione	M.M. Rimpler, U. Rauen, T. Schmidt, T. Möröy and H. de Groot		291–297
Secretion of glutathion S-transferase isoforms in the seminiferous tubular fluid, tissue distribution and sex steroid binding by rat GSTM1	S.B. Mukherjee, S. Aravinda, B. Gopalakrishnan, S. Nagpal, D.M. Salunke and C. Shaha		309–320