EDITORIAL BOARD

Chairman
J. T. Dingle

Deputy Chairmen
J. A. Lucy
A. P. Ryle
C. I. Pogson
A. J. Kenny

Editorial Manager
A. G. J. Evans

P. M. Bayley*
J. W. Bradbeer
R. C. Bray
J. W. Bridges
D. N. Brindley
H. G. Britton
R. B. Cain
M. Cannon
J. B. Clark
A. J. Cornish-Bowden
D. D. Davies
R. M. Denton
F. M. Dickinson
G. J. Dutton
J. L. Gordon
D. E. Griffiths
L. A. Grivell
M. R. Hollaway

R. C. Hughes
P. Lund
R. M. Marchbanks
K. B. M. Reid
D. Robinson
D. Schulster
J. E. Scott
S. P. Spragg*
D. R. Stanworth
M. J. A. Tanner
R. T. Walker

*Nominated by the British Biophysical Society

Overseas Advisory Panel

H. Beinert (U.S.A.), H. F. DeLuca (U.S.A.), W. Fiers (Belgium), R. W. Hanson (U.S.A.),
O. Hayashi (Japan), B. Hess (Germany), D. B. Keech (Australia), T. C. Laurent (Sweden),
L. F. Leloir (Argentina), R. Ross (U.S.A.), M. Schramm (Israel), A. Tissières (Switzerland),
D. Trentham (U.S.A.), A. D. Vinogradov (U.S.S.R.), O. Wieland (Germany)

London: The Biochemical Society
THE BIOCHEMICAL SOCIETY

OFFICERS AND COMMITTEE, 1978–79

Chairman of the Committee
R. R. Porter, F.R.S.

Treasurer
D. F. Elliott

General Secretary
J. B. Lloyd

Publications Secretary
R. M. C. Dawson

Meetings Secretary
H. F. Bradford

Committee
G. B. Ansell
J. R. Bronk
E. G. Brown
N. G. Carr
J. T. Dingle†
P. F. Fottrell
C. Green
M. I. Gurr
F. W. Hemming
H. K. King
J. C. Metcalfe

J. Mowbray*†
I. H. M. Muir, F.R.S.
J. W. Porteous, F.R.S.E.
B. E. Ryman

*Ex officio Member of Committee.
†Representative of Group Secretaries.

Executive Secretary
A. I. P. Henton (7 Warwick Court, London WC1R 5DP)

The Biochemical Society exists to advance the science of biochemistry through meetings and publications. Several meetings a year are held, each at a different place; original papers are presented and special topics are discussed at symposia and colloquia.

Persons interested in biochemistry are eligible for election as Members. Details of further facilities accorded to Members, and forms of application for membership, are available from the Executive Secretary, The Biochemical Society, 7 Warwick Court, London WC1R 5DP [01-242 1076 (4 lines)].

NOTICE FOR CONTRIBUTORS

The Biochemical Journal places emphasis on the prompt publication of both full-length papers (on average about 6 months after receipt) and rapid papers (on average 10–12 weeks after receipt).

For detailed instructions on the preparation of papers contributors (who need not be members of the Biochemical Society) should refer to Policy of the Journal and Instructions to Authors [Biochem. J. (1978) 169, 1–27] (obtainable free on request, in booklet form, from the Executive Secretary, the Biochemical Society, 7 Warwick Court, London WC1R 5DP).

Papers submitted for publication should be addressed to the Editorial Manager, Biochemical Journal, 7 Warwick Court, London WC1R 5DP.

Contributors should note that the Biochemical Journal makes no manuscript handling charges, no page charges and no charges for plates. Reprints are available at modest cost at about the same time as publication, and, if an author is a member of the Biochemical Society, 50 reprints are provided free of charge.

Second-class postage paid at New York, NY, U.S.A.

(ii)
INDEX OF AUTHORS

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
<th>Author</th>
<th>Page</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abraham, E. P.</td>
<td>459</td>
<td>Gains, N.</td>
<td>697</td>
<td>Östlund-Lindqvist, A.-M.</td>
<td>555</td>
</tr>
<tr>
<td>Alagón, A. C.</td>
<td>603</td>
<td>Gullick, W. J.</td>
<td>593</td>
<td>Palmano, K. P.</td>
<td>549</td>
</tr>
<tr>
<td>Ansari, N. H.</td>
<td>657</td>
<td>Hanson, F. W.</td>
<td>537</td>
<td>Pinna, L. A.</td>
<td>693</td>
</tr>
<tr>
<td>Aoyagi, S.</td>
<td>483</td>
<td>Hawkins, L. A.</td>
<td>657</td>
<td>Possani, L. D.</td>
<td>603</td>
</tr>
<tr>
<td>Arlaud, G. J.</td>
<td>449</td>
<td>Hawthorne, J. N.</td>
<td>549</td>
<td>Rasmussen, R. D.</td>
<td>537</td>
</tr>
<tr>
<td>Baines, B. S.</td>
<td>701</td>
<td>Helle, O.</td>
<td>631</td>
<td>Revell, P. A.</td>
<td>561</td>
</tr>
<tr>
<td>Baldwin, G. S.</td>
<td>459</td>
<td>Hennemann, G.</td>
<td>489</td>
<td>Richter, W. J.</td>
<td>631</td>
</tr>
<tr>
<td>Barel, A. O.</td>
<td>705</td>
<td>Herries, D. G.</td>
<td>593</td>
<td>Ritter, E. J.</td>
<td>715</td>
</tr>
<tr>
<td>Bergstrom, D. E.</td>
<td>537</td>
<td>Hirani, S.</td>
<td>583</td>
<td>Rohde, H.</td>
<td>631</td>
</tr>
<tr>
<td>Berrieman, S.</td>
<td>709</td>
<td>Hubmann, F.-H.</td>
<td>713</td>
<td>Roughan, P. G.</td>
<td>649</td>
</tr>
<tr>
<td>Blumenthal, S. G.</td>
<td>537</td>
<td>Hunt, J. A.</td>
<td>525</td>
<td>Ruebner, B. H.</td>
<td>537</td>
</tr>
<tr>
<td>Brocklehurst, K.</td>
<td>701</td>
<td>Ikeda, R. M.</td>
<td>537</td>
<td>Scott, W. J.</td>
<td>715</td>
</tr>
<tr>
<td>Browse, J.</td>
<td>649</td>
<td>Infante, J. P.</td>
<td>723</td>
<td>Sim, R. B.</td>
<td>449</td>
</tr>
<tr>
<td>Bruce, L. M.</td>
<td>715</td>
<td></td>
<td></td>
<td>Slacks, C. R.</td>
<td>649</td>
</tr>
<tr>
<td>Bruckner, P.</td>
<td>631</td>
<td></td>
<td></td>
<td>Srivastava, S. K.</td>
<td>657</td>
</tr>
<tr>
<td>Campbell, A. J.</td>
<td>497</td>
<td>Johansen, S.</td>
<td>509</td>
<td>Stevens, R. L.</td>
<td>561</td>
</tr>
<tr>
<td>Campbell, I. D.</td>
<td>607</td>
<td>Jones, R. B.</td>
<td>607,623</td>
<td>Swann, D. A.</td>
<td>465</td>
</tr>
<tr>
<td>Campbell, M. T.</td>
<td>473</td>
<td>Juliá, J. Z.</td>
<td>603</td>
<td>Taggart, D. B.</td>
<td>537</td>
</tr>
<tr>
<td>Carey, M. C.</td>
<td>675</td>
<td>Kawasaki, E. S.</td>
<td>525</td>
<td>Timpl, R.</td>
<td>631,643</td>
</tr>
<tr>
<td>Carroll, P.</td>
<td>719</td>
<td>Keech, D. B.</td>
<td>497</td>
<td>Tucker, G. A.</td>
<td>579</td>
</tr>
<tr>
<td>Claridge, R. F. C.</td>
<td>665</td>
<td>Kiener, P. A.</td>
<td>607</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colomb, M. G.</td>
<td>449</td>
<td>Kinsella, J. E.</td>
<td>723</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daley, L. S.</td>
<td>719</td>
<td>Knauer, T. E.</td>
<td>515</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dawson, A. P.</td>
<td>579</td>
<td>Koretsky, A. P.</td>
<td>675</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deana, A. D.</td>
<td>693</td>
<td>Lee, C.-Y.</td>
<td>479</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dickinson, F. M.</td>
<td>709</td>
<td>Leigh Brown, A. J.</td>
<td>479</td>
<td>Varela, M. J.</td>
<td>603</td>
</tr>
<tr>
<td>Docter, R.</td>
<td>489</td>
<td>Little, C.</td>
<td>509</td>
<td>Versée, V.</td>
<td>705</td>
</tr>
<tr>
<td>Dondi, P. G.</td>
<td>573</td>
<td></td>
<td></td>
<td>Visser, T. J.</td>
<td>489</td>
</tr>
<tr>
<td>Dutton, G. J.</td>
<td>473</td>
<td>Matsui, M.</td>
<td>483</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easterbrook-Smith, S. B.</td>
<td>497</td>
<td>Meggio, F.</td>
<td>693</td>
<td>Wachter, E.</td>
<td>631</td>
</tr>
<tr>
<td>Ewins, R. J. F.</td>
<td>561</td>
<td>Mezli, V. A.</td>
<td>525</td>
<td>Waley, S. G.</td>
<td>459,607,623</td>
</tr>
<tr>
<td>Fekkes, D.</td>
<td>489</td>
<td>Mintz, G.</td>
<td>465</td>
<td>Wallace, J. C.</td>
<td>497</td>
</tr>
<tr>
<td>Fletcher, P. L., Jr.</td>
<td>603</td>
<td>Muir, H.</td>
<td>561,573</td>
<td>Whiting, P. H.</td>
<td>549</td>
</tr>
<tr>
<td>French, J. K.</td>
<td>665</td>
<td>Mussell, H.</td>
<td>719</td>
<td>Wiktorowicz, J. E.</td>
<td>657</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Winchester, B.</td>
<td>583</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Winterbourn, C. C.</td>
<td>665</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wood, E. J.</td>
<td>593</td>
</tr>
</tbody>
</table>
NOTICE FOR SUBSCRIBERS

The *Biochemical Journal* is published and distributed by the Biochemical Society. It is published twice monthly, alternate issues being devoted to **Molecular Aspects** and to **Cellular Aspects** of biochemistry. It is planned that in 1979 eight volumes, each volume being made up of three issues, will be published according to the following schedule:

<table>
<thead>
<tr>
<th>Molecular Aspects</th>
<th>Cellular Aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Jan. 177 1</td>
<td>15 Jan. 178 1</td>
</tr>
<tr>
<td>1 Feb. 177 2</td>
<td>15 Feb. 178 2</td>
</tr>
<tr>
<td>1 Mar. 177 3*</td>
<td>15 Mar. 178 3*</td>
</tr>
<tr>
<td>1 Apr. 179 1</td>
<td>15 Apr. 180 1</td>
</tr>
<tr>
<td>1 May 179 2</td>
<td>15 May 180 2</td>
</tr>
<tr>
<td>1 June 179 3*</td>
<td>15 June 180 3*</td>
</tr>
<tr>
<td>1 July 181 1</td>
<td>15 July 182 1</td>
</tr>
<tr>
<td>1 Aug. 181 2</td>
<td>15 Aug. 182 2</td>
</tr>
<tr>
<td>1 Sept. 181 3*</td>
<td>15 Sept. 182 3*</td>
</tr>
<tr>
<td>1 Oct. 183 1</td>
<td>15 Oct. 184 1</td>
</tr>
<tr>
<td>1 Nov. 183 2</td>
<td>15 Nov. 184 2</td>
</tr>
<tr>
<td>1 Dec. 183 3*</td>
<td>15 Dec. 184 3*</td>
</tr>
</tbody>
</table>

*Completes volume, and includes Indexes.

Biochemical Society Transactions. This is a separate publication (see below). Volume 7 will be published in 1979, in six parts.

Subscription Rates to the Biochemical Journal. For non-members of the Biochemical Society the subscription rates for 1979 are shown below.

Subscribers to the *Biochemical Journal* can subscribe to *Biochemical Society Transactions* on a joint subscription, saving £15.00 (U.K. and Ireland) or $25.00 (elsewhere). The methods of despatch of both publications are shown below.

Claims regarding issues lost or damaged in transit should be addressed to the Biochemical Society at the address given in the preceding paragraph. Claims cannot be entertained if they are received later than three months after the date of posting, plus such time as would be expected for transit by post.

Back Numbers. Enquiries for volumes 1–19 of the Journal should be addressed to William Dawson & Sons Ltd., Back Issues Department, Cannon House, Park Farm Road, Folkestone, Kent. Quotations for available issues of subsequent volumes and parts of the Journal, and also of Transactions, may be obtained on application to The Biochemical Society Book Depot, P.O. Box 32, Commerce Way, Colchester CO2 8HP, Essex.

Microforms. The following versions are available.

Details and prices are available on request from the Biochemical Society's Colchester office.

Advertisements. Applications for advertising space should be sent to the Advertising Department, The Biochemical Society, 7 Warwick Court, London WC1R 5DP [01-242 1076 (4 lines)]. Copy is required eight weeks before publication date. Rate cards are available on request.

IMPORTANT NOTICE. All subscribers outside the U.K. and Ireland must remit in U.S. $ or the sterling equivalent at the rate of exchange prevailing at the date of payment.

<table>
<thead>
<tr>
<th>U.K. & Ireland</th>
<th>U.S.A., Canada & Mexico</th>
<th>Japan only</th>
<th>Overseas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year (8 volumes) only</td>
<td>U.S. $350.00</td>
<td>U.S. $360.00</td>
<td>U.S. $310.00</td>
</tr>
<tr>
<td>Per volume</td>
<td>U.S. $48.00</td>
<td>U.S. $49.00</td>
<td>U.S. $42.00</td>
</tr>
<tr>
<td>Per part</td>
<td>U.S. $17.00</td>
<td>U.S. $17.50</td>
<td>U.S. $15.00</td>
</tr>
</tbody>
</table>

Airfreight to U.S.A., Canada and Mexico. The subscription rates for North America include an element for this service.

Accelerated Surface Post to Japan only. The subscription rates include a 10% surcharge for this service.
Index of Authors

<table>
<thead>
<tr>
<th>Author</th>
<th>Page(s)</th>
<th>Author</th>
<th>Page(s)</th>
<th>Author</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alagon, A. C.</td>
<td>603–606</td>
<td>Fekkes, D.</td>
<td>489–495</td>
<td>Kinsella, J. E.</td>
<td>723–725</td>
</tr>
<tr>
<td>Andersson, L.</td>
<td>141–149</td>
<td>Fletcher, P. L., Jr.</td>
<td>603–606</td>
<td>Koreskuy, A. P.</td>
<td>675–689</td>
</tr>
<tr>
<td>Aoyagi, S.</td>
<td>483–487</td>
<td>Friedman, L.</td>
<td>1–6</td>
<td>Kuznetsova, I. A.</td>
<td>333–339</td>
</tr>
<tr>
<td>Aplin, R. T.</td>
<td>47–52</td>
<td>Fu, E.</td>
<td>1–6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arland, G. J.</td>
<td>449–457</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atassi, M. Z.</td>
<td>327–331</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auffret, C. A.</td>
<td>239–246, 247–249</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autor, A. P.</td>
<td>59–65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baines, B. S.</td>
<td>701–704</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baldwin, D. A.</td>
<td>273–280</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baldwin, G. S.</td>
<td>459–463</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baratova, L. A.</td>
<td>333–339</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barel, A. O.</td>
<td>705–707</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beauregard, G.</td>
<td>109–117</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bell, M. V.</td>
<td>431–438</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belyanova, L. P.</td>
<td>333–339</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bergstrom, D. E.</td>
<td>537–547</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berrieman, S.</td>
<td>709–712</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Billings, R. E.</td>
<td>59–65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blumenthal, S. G.</td>
<td>537–547</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Booth, A. G.</td>
<td>397–405</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boulter, D.</td>
<td>373–378</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryan, M. J.</td>
<td>341–352</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brocklehurst, K.</td>
<td>701–704</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown, A. J. L.</td>
<td>479–482</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Browse, J.</td>
<td>649–656</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruce, L. M.</td>
<td>715–717</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruckner, P.</td>
<td>631–642</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campbell, A. J.</td>
<td>497–502</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campbell, I. D.</td>
<td>607–621</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campbell, M. T.</td>
<td>473–477</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campos-Cavieron, M.</td>
<td>233–238</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cantarella, M.</td>
<td>15–20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carey, M. C.</td>
<td>675–689</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carroll, P.</td>
<td>719–721</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charlier, J.</td>
<td>407–412</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citire, A. V.</td>
<td>213–219</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Claridge, R. F. C.</td>
<td>665–673</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleman, R.</td>
<td>441–444</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collier, G. S.</td>
<td>273–280, 281–289</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columb, M. G.</td>
<td>449–457</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cook, G. M. W.</td>
<td>299–303, 305–314</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cunningham, L. W.</td>
<td>135–139</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daley, L. S.</td>
<td>719–721</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dawson, A. P.</td>
<td>579–581</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deana, A. D.</td>
<td>693–696</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defilippi, L. J.</td>
<td>151–160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Wet, C. R.</td>
<td>281–289</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dickinson, F. M.</td>
<td>709–712</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Docter, R.</td>
<td>489–495</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dondi, P. G.</td>
<td>573–578</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dutton, G. J.</td>
<td>473–477</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vol. 179
INDEX OF AUTHORS

Ruebner, B. H. 537-547
Rüegg, U. Th. 119-126, 127-134
Ryle, A. P. 239-246, 247-249
Sakata, S. 327-331
Sargent, J. R. 431-438
Savage, B. 21-27, 29-34
Scardi, V. 15-20
Scott, W. J. 715-717
Shukla, S. D. 441-444
Siegelman, H. W. 1-6
Sim, R. B. 449-457
Slack, C. R. 649-656
Spencer, N. 21-27, 29-34
Spenser, I. D. 315-325
Srivastava, S. K. 657-664
Stepanov, V. M. 333-339
Stevens, C. M. 47-52
Stevens, E. 161-167
Stevens, L. 161-167
Stevens, R. L. 561-572, 573-578
Stewart, B. W. 341-352
Strongin, A. Ya. 333-339

Sundaram, P. V. 445-447
Swann, D. A. 465-471
Taggart, D. B. 537-547
Takruri, I. 373-378
Taylor, W. H. 183-190
Tephy, T. R. 59-65
Timpl, R. 631-642, 643-647
Toler, L. S. 151-160
Tomoda, A. 227-231
Tshabalala, C. F. 281-289
Tsujii, A. 227-231
Tucker, G. A. 579-581
Tukey, R. H. 59-65
Umezurike, G. M. 503-507

Varela, M. J. 603-606
Versée, V. 705-707
Visser, T. J. 489-495
von Figura, K. 77-87

Wachter, E. 631-642
Waley, S. G. 459-463, 607-621, 623-630
Walker, J. M. 253-255
Wallace, C. J. A. 169-182
Wallace, J. C. 497-502
Wasteson, Å. 7-13
Wells, E. 257-264, 265-272
White, R. L. 315-325
Whiting, P. H. 549-553
Wieslander, J. 35-45
Wiktorowicz, J. E. 657-664
Winchester, B. 583-592
Winterbourn, C. C. 665-673
Wirén, E. 77-87
Wood, E. J. 593-602

Yanonis, V. V. 333-339
Yoneyama, Y. 227-231
Yubisui, T. 227-231

Zongza, V. 291-298
Index of Subjects

Acetylcholinesterase, membrane, erythrocyte, ox, characterization of the interaction of lipids with (Beauregard, G. & Roufogalis, B. D.) 109–117

D-N-Acetylglucosamine sulphate-β-d-glucuronic acid-β-d-N-acetylglucosamine sulphate, chondroitin sulphate, sequential degradation by chick-embryo epiphyseal-cartilage lysosomal enzymes of (Ingmar, B. & Wasteson, A.) 7–13

Achromobacter iophagus, differences in the degradation of native collagen by collagenases from Clostridium histolyticum and (Lecroisey, A. & Keil, B.) 53–58

Achromobacter iophagus, differences in the degradation of

Achromobacter iophagus, differences in the degradation of native collagen by collagenases from Clostridium histolyticum and (Lecroisey, A. & Keil, B.) 53–58

Acid phosphatase, see Phosphatase, acid

Actin, structure and amount of, in human-embryo IMR-90 fibroblasts (Anderson, P. J.) 425–430

Adenosine triphosphatase, sarcoplasmic-reticulum, skeletal-muscle, cross-linking experiments with (Hebdon, G. M., Cunningham, L. W. & Green, N. M.) 135–139

Adenosine triphosphatase, sodium-plus-potassium independent, gill, eel, partial purification of, and inhibition by vanadate of its activity (Bell, M. V. & Sargent, J. R.) 431–438

Adenosine triphosphatase, consumption of, during the reactions catalysed by Escherichia coli and Bacillus steatorrhophilus arginyl-transfer ribonucleic acid synthetases (Godeau, J.-M. & Charlier, J.) 407–412

Albumin, serum, human, kinetic behaviour of co-polymers of potato-tuber acid phosphatase and, in homogeneous phase and under gel-immobilized conditions (Cantarella, M., Remy, M.-H., Scardi, V., Alfani, F., Iorio, G. & Greco, G., Jr.) 15–20

Albumin, serum, ox, localization and verification by synthesis of five antigenic sites of (Atassi, M. Z., Sakata, S. & Kazim, A. L.) 327–331

Alcohol dehydrogenase, fruitfly, use of general-ligand affinity chromatography for the purification of (Brown, A. J. L. & Lee, C.-Y.) 479–482

Aldehyde dehydrogenases, cytosolic and mitochondrial, liver, sheep, separation by isoelectric focusing of, and sensitivity of the cytosolic enzyme towards inhibition by disulfiram (Dickinson, F. M. & Berrieinan, S.) 709–712

Amino acid sequence, determination of, of the N-terminal non-collagenous segment of dermatosparactic sheep skin type I procollagen (Rohde, H., Wachter, E., Richter, W. J., Bruckner, P., Helle, O. & Timpl, R.) 631–642

Amino acid sequence, determination of, of wheat-leaf ferredoxin (Takruri, I. & Boulter, D.) 373–378

Amino acid sequence, semisynthesis of peptides corresponding to fragments of, of residues 66–104 of horse heart cytochrome c (Wallace, C. J. A. & Offord, R. E.) 169–182

Amino acid sequences, determination of, of the three collagen-like regions present in human complement subcomponent C1q (Reid, K. B. M.) 367–371

Androsterone, strain differences in the activity of rat liver microsomal uridine diphosphate glucuronyltransferase towards (Matsui, M., Nagai, F. & Aoyagi, S.) 483–487

Anguilla anguilla, see Eel

Antibody-antigen immune complexes, dissociation by human complement component CI inhibitor of human complement component C1 from aggregates with (Sim, R. B., Arlaud, G. J. & Colomb, M. G.) 449–457

Antigen–antibody immune complexes, dissociation by human complement component CI inhibitor of human complement component C1 from aggregates with (Sim, R. B., Arlaud, G. J. & Colomb, M. G.) 449–457

Antigenic determinants, structure of, in the N-terminal non-collagenous region of dermatosparactic sheep skin type I procollagen (Rohde, H. & Timpl, R.) 643–647

Antigenic sites, five, localization and verification by synthesis of, of ox serum albumin (Atassi, M. Z., Sakata, S. & Kazim, A. L.) 327–331

Arginyl-transfer ribonucleic acid synthetases, Escherichia coli and Bacillus steatorrhophilus, consumption of adenosine triphosphate during the reactions catalysed by (Godeau, J.-M. & Charlier, J.) 407–412

Azido[3H]benzene, use of 1-azido-4-iodo[3H]benzene and, as photosensitive hydrophobic probes for labelling of human erythrocyte membranes (Wells, E. & Findlay, J. B. C.) 257–264

1-Azido-4-iodo[3H]benzene, use of, as a photosensitive hydrophobic probe for labelling of the transmembrane region of the major sialoglycoprotein of human erythrocyte membrane (Wells, E. & Findlay, J. B. C.) 265–272

1-Azido-4-iodo[3H]benzene, use of azido[3H]benzene and, as photosensitive hydrophobic probes for labelling erythrocyte membranes (Wells, E. & Findlay, J. B. C.) 257–264

Bacillus cereus, effect of zinc ions on the denaturation and renaturation of phospholipase C from, in solutions of guanidinium chloride (Little, C. & Johansen, S.) 509–514

Bacillus cereus 565/H/9, identification by differential tritium exchange of the histidine residues of β-lactamase II from, that act as ligands for zinc ions (Baldwin, G. S., Waley, S. G. & Abraham, E. P.) 459–463

Bacillus steatorrhophilus, consumption of adenosine triphosphate during the reactions catalysed by arginyl-transfer ribonucleic acid synthetases from Escherichia coli and (Godeau, J.-M. & Charlier, J.) 407–412

Vol. 179

Bacteriorhodopsin, effects of modification with tetranitromethane of the tyrosine residues of, in Halobacterium halobium purple membrane (Campos-Cavieres, M., Moore, T. A. & Perham, R. N.) 233–238

Beans, soya (Glycine max), use of, for the preparation of [32P]phosphatidylcholine and [32P]lysophosphatidylcholine (Hubmann, F.-H.) 713–714

Bile, human and rhesus-monkey, structural identity of conjugates of bilirubin in, and mecononium from newborn animals (Blumenthal, S. G., Taggart, D. B., Rasmussen, R. D., Ikeda, R. M., Ruebner, B. H., Bergstrom, D. E. & Hanson, F. W.) 537–547

Bile pigments, self-association of bilirubin, interactions of (Versee, J.) 7–13

Bile salts, self-association of bilirubin monoglucuronide and, in rat liver slices (Campbell, M. T. & Dutton, G. J.) 473–477

Bilirubin, interactions of rat a-foetoprotein with (Versée, V. & Barel, A. O.) 705–707

Bilirubin monoglucuronide, formation and distribution of bilirubin monoglucuronide and, in rat liver slices (Campbell, M. T. & Dutton, G. J.) 473–477

Bilirubin, structural identity of conjugates of, in bile and meconium from newborn humans and rhesus monkeys (Blumenthal, S. G., Taggart, D. B., Rasmussen, R. D., Ikeda, R. M., Ruebner, B. H., Bergstrom, D. E. & Hanson, F. W.) 537–547

Bilirubin-Ix, unconjugated, self-association of, in aqueous solution at pH10.0 and physical-chemical interactions with monomers and micelles of (Carey, M. C. & Koretsky, A. P.) 675–689

Bilirubin diglucuronide, formation and distribution of bilirubin diglucuronide and, in rat liver slices (Campbell, M. T. & Dutton, G. J.) 473–477

Cellulase complex, Trichoderma viride, purification and characterization of 1,4-β-glucan glucanohydrolase of (Håkansson, U., Fagerstam, L. G., Pettersson, L. G. & Andersson, L.) 141–149

Cephapicmycin C, incorporation of molecular oxygen during the biosynthesis of, by Streptomyces clavuligerus (O’Sullivan, J., Aplin, R. T., Stevens, C. M. & Abraham, E. P.) 47–52

Chick embryo, sequential degradation by epithelial-cartilage lysosomal enzymes from, of a chondroitin sulphate trisaccharide (Ingmar, B. & Wasteson, A.) 7–13

Cholecystokinin, quantitative studies on the interaction of, and its metabolites with different genetic variants of human serum albumin D-binding protein (Kawakami, M., Imawari, M. & Goodman, DeW. S.) 413–423

Chondroitin sulphate, sequential degradation by chick-embryo epithelial-cartilage lysosomal enzymes of a trisaccharide from (Ingmar, B. & Wasteson, A.) 7–13

Chromatin, effects of histones on the binding of ethidium bromide and quinacrine hydrochloride to calf thymus deoxyribonucleic acid and their relevance to the structure of (Chitre, A. V. & Korgaonkar, K. S.) 213–219

Chromatin, nuclear, liver, rat, variation with age of the structure of, of three cell types (Zongza, V. & Mathias, A. P.) 291–298

Chromosome 21, human, relationship of the ploidy of, to the effect of interferon on ribosomal ribonucleic acid of human fibroblasts (Maroun, L. E.) 221–225

Clavulanate, inhibition by, of the activity of Staphylococcus aureus β-lactamases (Reading, C. & Hepburn, P.) 67–76

Clearing-factor lipase, see Lipoprotein lipase

Clostridium histolyticum, differences in the degradation of native collagen by collagenases from Achromobacter ioaphagus and (Lecroyise, A. & Keil, B.) 53–58

Calmodulins, activation by, of rabbit skeletal-muscle myosin light-chain kinase (Nairn, A. C. & Perry, S. V.) 89–97

Carthamus tinctorius, see Safflower

Cartilage, articular, isolation and properties of an ox synovial-fluid glycoprotein (LGP-II) with lubricating properties for (Swann, D. A. & Mintz, G.) 465–471

Cartilage, epiphyseal, chick-embryo, sequential degradation by lysosomal enzymes from, of a chondroitin sulphate trisaccharide (Ingmar, B. & Wasteson, A.) 7–13

Cartilage, laryngeal, homology of the structure of pig and human intervertebral-disc proteoglycans with that of proteoglycans from (Stevens, R. L., Ewins, R. J. F., Revell, P. A. & Muir, H.) 561–572

Cartilage, nasal-septum, ox, immunological analysis of proteoglycans of (Wieslander, J. & Heinegard, D.) 35–45

Casesin, native and partially dephosphorylated, phosphorylation by a rat liver adenosine 3’:5’-cyclic monophosphate-independent protein kinase of threonine and serine residues of (DeW.), M. A., Mezl, V. & Hunt, J. A.) 525–535

Botryodiplodia theobromae, mechanism of the reactions catalysed by β-glucosidase from (Umezurike, G. M.) 503–507

Brain, rat, factors affecting the activity and stability of palmitoyl-coenzyme A hydrolase from (Knauer, T. E.) 515–523
Collagen, native, differences in the degradation of, by *Achromobacter iophagus* and *Clostridium histolyticum* collagenases (Lecroisey, A. & Keil, B.) 53–58

Collagenases, *Achromobacter iophagus* and *Clostridium histolyticum*, differences in the degradation of native collagen by (Lecroisey, A. & Keil, B.) 53–58

Complement, human, determination of the amino acid sequences of the three collagen-like regions present in subcomponent CIq of (Reid, K. B. M.) 367–371

Complement, human, dissociation by human complement component CI inhibitor of component CI from, aggregates with antibody–antigen immune complexes (Sim, R. B., Arlaud, G. J. & Colomb, M. G.) 449–457

Component CI, complement, human, determination of the amino acid sequences of the three collagen-like regions present in subcomponent CIq of (Reid, K. B. M.) 367–371

Component CI, complement, human, dissociation by human complement component CI inhibitor of, from aggregates with antibody–antigen immune complexes (Sim, R. B., Arlaud, G. J. & Colomb, M. G.) 449–457

Component CI inhibitor, complement, human, dissociation by, of human complement component CI from aggregates with antibody–antigen immune complexes (Sim, R. B., Arlaud, G. J. & Colomb, M. G.) 449–457

Coral snake (*Micrurus fulvius microgalbineus*), purification and characterization of phospholipase A₂ from the venom of (Possani, L. D., Alagón, A. C., Fletcher, P. L., Jr., Varela, M. J. & Juliá, J. Z.) 603–606

Cotyledons, safflower, evidence for the presence of an oleoyl phosphatidylcholine desaturase in microsomal fraction of (Slack, C. R., Roughan, P. G. & Browse, J.) 649–656

Cysteine, hydrolysis of *p*-NN'-phenylenebismaleimide and of its addsucts with, and its implications for use of the reagent for the cross-linking of proteins (Knight, P.) 191–197

Cysteine residues, scope and limitations of the 2-sulphobenzyl group for the protection of, of proteins (Rüegg, U. Th., Jarvis, D. & Rudinger, J.) 127–134

Cysteine residues, suitability of the 4-pyridylmethyl group for the protection of, during the partial synthesis of proteins (Rüegg, U. Th., Jarvis, D. & Rudinger, J.) 119–126

Cytochrome c, heart, horse, semisynthesis of peptides corresponding to fragments of the amino acid sequence of residues 66–104 of (Wallace, C. J. A. & Offord, R. E.) 169–182

Cytosol, liver, sheep, separation by isoelectric focusing of aldehyde dehydrogenases from, and mitochondria and sensitivity of the cytosolic enzyme towards inhibition by disulfiram (Dickinson, F. M. & Berrieman, S.) 709–712

Deoxyribonucleic acid, induction by administration of dimethylnitrosamine of structural effects in, of rat liver (Stewart, B. W., Huang, P. H. T. & Brian, M. J.) 341–352

Deoxyribonucleic acid, thymus-gland, calf, effects of histones on the binding of ethidium bromide and quinacrine hydrochloride to (Chitre, A. V. & Korgonkar, K. S.) 213–219

Deoxyribonucleic acids, supercoiled and linear, activity of *Escherichia coli* EcoRI restriction endodeoxyribonuclease and other bacterial restriction endodeoxyribonucleases against (Halford, S. E., Johnson, N. P. & Grinstead, J.) 353–365

2'-Deoxyribonucleoside triphosphates, effect of fixation time on the measurement of concentrations of, in rat embryo (Ritter, E. J., Scott, W. J. & Bruce, L. M.) 715–717

Development, postnatal, variation of the structure of chromatin in rat liver nuclei of three cell types during (Zongza, V. & Mathias, A. P.) 291–298

Diabetes, streptozotozin-induced, activities of enzymes involved in the metabolism of *myo*-inositol and inositol lipids in various tissues of rats with (Whiting, P. H., Palmano, K. P. & Hawthorne, J. N.) 549–553

4,4'-Dichloro-α-(trichloromethyl)benzhydrol (Kelthane), inhibition by, of the activity of cotton-plant cell-wall phosphatase (Daley, L. S., Carroll, P. & Mussell, H.) 719–721

Dihydroxyacetone phosphate, 31P-nuclear-magnetic-resonance studies of the complex formed between chicken and rabbit skeletal-muscle triose phosphate isomerases and (Campbell, I. D., Jones, R. B., Kiener, P. A. & Waley, S. G.) 607–621

Dimethyl sulfoxide, properties of protohaemin in mixtures of water and (Collier, G. S., Pratt, J. M., de Wet, C. R. & Tshabalala, C. F.) 281–289

Dimethylnitrosamine, induction by administration of, of structural defects in deoxyribonucleic acid of rat liver (Stewart, B. W., Huang, P. H. T. & Brian, M. J.) 341–352

Dipeptidyl peptidase IV, microvillar-membrane, kidney-cortex, pig, purification and properties of the detergent-and proteinase-solubilized forms of (MacNair, R. D. C. & Kenny, A. J.) 379–395

Disulfiram, sensitivity of sheep liver cytosolic aldehyde dehydrogenase towards inhibition by (Dickinson, F. M. & Berrieman, S.) 709–712

Drosophila melanogaster, see Fruitfly

Deoxyribonuclease, endo-, restriction, *EcoRI*, *Escherichia coli*, reactions catalysed by, and by other bacterial restriction endodeoxyribonucleases (Halford, S. E., Johnson, N. P. & Grinstead, J.) 353–365

Vol. 179

Eel (*Anguilla anguilla*), partial purification of sodium-plus-potassium ion-dependent adenosine triphosphatase from the gills of, and inhibition by vanadate of its activity (Bell, M. V. & Sargent, J. R.) 431–438
Embryo, rat, effect of fixation time on the measurement of concentrations of 2'-deoxyribonucleoside triphosphates in (Ritter, E. J., Scott, W. J. & Bruce, L. M.) 715–717
Enzymes, determination of the parameters for the binding of substrates to, when the total and free substrate concentrations are not approximately equal (Gains, N.) 697–700
Enzymes, scope and limitations of the use of pipettes with, immobilized on their inside surface (Sundaram, P. V.) 445–447

Erythrocytes, human, changes in the intermediate haemoglobinins produced during the reduction of methaemoglobin by reduced nicotinamide-adenedine dinucleotide phosphate-flavin oxidoreductase from (Tomoda, A., Yubisui, T., Tsuji, A. & Yoneyama, Y.) 227–231
Erythrocytes, human, evidence that polyphosphoinositides are not associated with glycoporin in the membrane of (Shukla, S. D., Coleman, R., Finean, J. B. & Michell, R. H.) 441–444
Erythrocytes, human, reactivities of hydroxylamine and sodium bisulphite with carbonyl-containing haems and with the prosthetic groups of green haemoprotein from (DeFilippis, L. J., Toler, L. S. & Hultquist, D. E.) 151–160
Erythrocytes, human, solubilization by Triton X-100 of the glycoproteins of the membrane of (Pratt, R. S. & Cook, G. M. W.) 299–303
Erythrocytes, human, use of 1-azido-4-iodo[3H]benzene as a photosensitive hydrophobic probe for labelling of the transmembrane region of the major sialoglycoprotein of the membrane of (Wells, E. & Findlay, J. B. C.) 265–272
Erythrocytes, ox, characterization of the interaction of lipids with membrane acetylcholinesterase from (Beauregard, G. & Roufogalis, B. D.) 109–117
Erythrocytes, rabbit, effects of substrates on the inactivation by heat and proteolytic digestion of purine nucleoside phosphorylase from (Savage, B. & Spencer, N.) 29–34
Erythrocytes, rabbit, initial-velocity kinetic studies of the reaction catalysed by purine nucleoside phosphorylase from (Savage, B. & Spencer, N.) 21–27
Erythroid cells, bone-marrow, rabbit, analysis of the a-globin/β-globin ratio and of the content of globin messenger ribonucleic acid in (Mezl, V. A., Kawasaki, E. S. & Hunt, J. A.) 525–535
Escherichia coli, consumption of adenosine triphosphate during the reactions catalysed by arginyl-transfer ribonucleic acid synthetases from Bacillus stearothermophilus and (Godeau, J.-M. & Charlier, J.) 407–412
Escherichia coli, immunological analysis of mutant forms of glyceraldehyde 3-phosphate dehydrogenase from (Hillman, J. D.) 99–107
Escherichia coli, reactions catalysed by EcoR1 restriction endonuclyrobinuclease from, and by other bacterial restriction endonuclyrobinuclease (Halford, S. E., Johnson, N. P. & Grinsted, J.) 353–365
Estrone, see Oestrone

Ethanolamine kinase, evidence for the co-ordinate regulation of the activities of, and phosphoethanolamine cytidylyltransferase in the biosynthesis of phosphatidylethanolamine in rat liver (Infante, J. P. & Kinsella, J. E.) 723–725
Ethidium bromide, effects of histones on the binding of quinacrine hydrochloride and, to calf thymus-gland deoxyribonucleic acid (Chitre, A. V. & Korgaonkar, K. S.) 213–219

Ferredoxin, wheat-leaf, determination of the amino acid sequence of (Takuri, I. & Boulet, D.) 373–378
Fibroblasts, human, relationship of the ploidy of chromosome 21 to the effect of interferon on ribosomal ribonucleic acid of (Maroun, L. E.) 221–225
Fibroblasts, IMR-90, human-embryo, structure and amount of actin in (Anderson, P. J.) 425–430
α-Foetoprotein, rat, interactions of, with bilirubin (Versée, V. & Barel, A. O.) 705–707
Fruityl (Drosophila melanogaster), use of general-ligand affinity chromatography for the purification of alcohol dehydrogenase from (Brown, A. J. L. & Lee, C.-Y.) 479–482
Fumarase, effects of restricted hydration on the rates of the reactions catalysed by glucose 6-phosphate dehydrogenase, phosphoglucone isomerase, hexokinase and, and their relevance to metabolism in xeric (near-dry) conditions (Stevens, E. & Stevens, L.) 161–167

Gangliosides, characterization of neutral glycosphingolipids and, of human lung and lung tumours (Narasimhan, R. & Murray, R. K.) 199–211
 Gill, eel, partial purification of sodium-plus-potassium ion-dependent adenosine triphosphatase from, and inhibition by vanadate of its activity (Bell, M. V. & Sargent, J. R.) 431–438
 α-Globin/β-globin ratio, analysis of, and of the content of globin messenger ribonucleic acid in rabbit bone-marrow erythroid cells (Mezl, V. A., Kawasaki, E. S. & Hunt, J. A.) 525–535
 Globin messenger ribonucleic acid, analysis of the α-globin/β-globin ratio and of the content of, in rabbit bone-marrow erythroid cells (Mezl, V. A., Kawasaki, E. S. & Hunt, J. A.) 525–535
 1,4-β-Glucan glucanohydrolase, Trichoderma viride, purification and characterization of (Håkansson, U., Fagerstam, L. G., Pettersson, L. G. & Andersson, L.) 141–149
Glucose 6-phosphate dehydrogenase, effects of restricted hydration on the rates of the reactions catalysed by phosphoglucone isomerase, hexokinase, fumarase and, and their relevance to metabolism in xeric (near-dry) conditions (Stevens, E. & Stevens, L.) 161–167
 β-Glucosidase, Botryodiplodia theobromae, mechanism of the reactions catalysed by (Umezurike, G. M.) 503–507
Glyceraldehyde 3-phosphate dehydrogenase, Escherichia coli, immunological analysis of mutant forms of (Hillman, J. D.) 99–107
Glycerol 3-phosphate, 31P-nuclear-magnetic-resonance studies of the complex formed between chicken and rabbit skeletal-muscle triose phosphate isomerases and (Campbell, I. D., Jones, R. B., Kiener, P. A. & Waley, S. G.) 607–621

INDEX OF SUBJECTS
INDEX OF SUBJECTS

Glycerol 3-phosphate, spectrophotometric studies of the interaction between chicken skeletal-muscle triose phosphate isomerase and (Jones, R. B. & Waley, S. G.) 623-630

Glycine max, see Bean, soya

Glycine, role of, as a precursor during the biosynthesis of thiamin in Saccharomyces cerevisiae (White, R. L. & Spenser, I. D.) 315-325

Glycophorin, membrane, erythrocyte, human, evidence that polyphosphoinositides are not associated with (Shukla, S. D., Coleman, R., Finean, J. B. & Michell, R. H.) 441-444

Glycoprotein, sialo-, membrane, erythrocyte, human, major, use of [1-azido-4-iodo][H]benzene as a photosensitive hydrophobic probe for labelling of the transmembrane region of (Wells, E. & Findlay, J. B. C.) 265-272

Glycoprotein (LGP-II), synovial-fluid, ox, isolation and properties of, with lubricating properties for articular cartilage (Swann, D. A. & Mintz, G.) 465-471

Glycoproteins, membrane, erythrocyte, human, solubilization by Triton X-100 of (Pratt, R. S. & Cook, G. M. W.) 299-303

Glycoproteins, plasma-membrane, macrophage, alveolar, lung, rabbit, detergent-solubilized, relationship of, to an isolated inhibitor of phagocytosis (Pratt, R. S. & Cook, G. M. W.) 305-314

Glycosphingolipids, neutral, characterization of gangliosides and, of human lung and lung tumours (Narasimhan, R. & Murray, R. K.) 199-211

Gossypium spp., see Cotton plants

Guanidinium chloride, effect of zinc ions on the denaturation and renaturation of Baccillus cereus phospholipase C in solutions of (Little, C. & Johansen, S.) 509-514

Haemin, properties of, in dimethyl sulphoxide/water mixtures (Collier, G. S., Pratt, J. M., de Wet, C. R. & Tshawalala, C. F.) 281-289

Haemocyanin, Lymnaea stagnalis, characterization of domains obtained by limited proteolytic digestion of (Gullick, W. J., Herries, D. G. & Wood, E. J.) 593-602

Haemoglobin, human, effect of superoxide dismutase on the reaction of menadione with (Winterbourn, C. C., French, J. K. & Clarke, R. F. C.) 665-673

Haemoglobins, intermediate, changes in, produced during the reduction of methaemoglobin by human erythrocyte reduced nicotinamide-adenine dinucleotide phosphate–flavin oxidoreductase (Tomoda, A., Yubisui, T., Tsuji, A. & Yoneyama, Y.) 227-231

Haemoprotein, green, erythrocyte, human, reactivities of hydroxylamine and sodium bisulphite with carbonyl-containing haems and with the prosthetic groups of (De Filippis, L. J., Toler, L. S. & Hultquist, D. E.) 151-160

Haems, carbonyl-containing, reactivities of hydroxylamine and sodium bisulphite with, and with the prosthetic groups of human erythrocyte green haemoprotein (De Filippis, L. J., Toler, L. S. & Hultquist, D. E.) 151-160

Halobacterium halobium, effects of modification with tetraniotrime methane of the tyrosine residues of bacteriorhodopsin in purple membrane from (Campos-Cavieres, M., Moore, T. A. & Perham, R. N.) 233-238

Heart, horse, semisynthesis of peptides corresponding to fragments of the amino acid sequence of residues 66-104 of cytochrome c from (Wallace, C. J. A. & Offord, R. E.) 169-182

Heart, rat, kinetics of the reaction catalysed by mitochondrial 3-hydroxybutyrate dehydrogenases from, and liver (Tucker, G. A. & Dawson, A. P.) 579-581

Heparan sulphates, identification of N-sulphated disaccharide units in heparins and, from various sources (Jacobsson, I., Höök, M., Petersson, I., Lindahl, U., Larm, O., Wirén, E. & von Figura, K.) 77-87

Heparins, identification of N-sulphated disaccharide units in heparan sulphates and, from various sources (Jacobsson, I., Höök, M., Petersson, I., Lindahl, U., Larm, O., Wirén, E. & von Figura, K.) 77-87

Hexokinase, effects of, with the reactions catalysed by glucose 6-phosphate dehydrogenase, phosphoglucose isomerase, fumarase and, and their relevance to metabolism in xeric (near-dry) conditions (Stevens, E. & Stevens, L.) 161-167

Hexosaminidase, see β-N-Acetylhexosaminidase

Histidine residues, identification by differential tritium exchange of, of Baccillus cereus 569/H/9 β-lactamase II that act as ligands for zinc ions (Baldwin, G. S., Waley, S. G. & Abraham, E. P.) 459-463

Histones, effects of, on the binding of ethidium bromide and quinacrine hydrochloride to calf thymus-gland deoxyribonucleic acid (Chitre, A. V. & Korgaonkar, K. S.) 213-219

Horseradish, activation of hydrogen peroxide and the binding of fluoride by peroxidase from, in dimethyl sulphoxide/water mixtures (Adams, P. A., Baldwin, D. A., Collier, G. S. & Pratt, J. M.) 273-280

Hydration, restricted, effects of, on the rates of the reactions catalysed by glucose 6-phosphate dehydrogenase, phosphoglucose isomerase, hexokinase and fumarase and their relevance to metabolism in xeric (near-dry) conditions (Stevens, E. & Stevens, L.) 161-167

3-Hydroxybutyrate dehydrogenases, mitochondrial, liver and heart, rat, kinetics of the reaction catalysed by (Tucker, G. A. & Dawson, A. P.) 579-581

Hydroxylamine, reactivities of sodium bisulphite and, with carbonyl-containing haems and with the prosthetic groups of human erythrocyte green haemoprotein (De Filippis, L. J., Toler, L. S. & Hultquist, D. E.) 151-160

Immune complexes, antibody–antigen, dissociation by human complement component C1 inhibitor of human complement component C1 from aggregates with (Sim, R. B., Arlaud, G. J. & Colomb, M. G.) 449-457

myo-Inositol, activities of enzymes involved in the metabolism of, and inositol lipids in various tissues of rats with streptozotocin-induced diabetes (Whiting, P. H., Palmano, K. P. & Hawthorne, J. N.) 549-553
INDEX OF SUBJECTS

Inositol lipids, activities of enzymes involved in the metabolism of myo-inositol and, in various tissues of rats with streptozotocin-induced diabetes (Whiting, P. H., Palmano, K. P. & Hawthorne, J. N.) 549–553

Insulin, ox, action of human pepsins I, 2, 3 and 5 on the oxidized B-chain of (Roberts, N. B. & Taylor, W. H.) 183–190

Insulin, scope and limitations of the 2-sulphobenzyl group for the protection of thiol groups of, and other proteins (Rüegg, U. Th., Jarvis, D. & Rudinger, J.) 127–134

Insulin, suitability of the 4-pyridylmethyl group for the protection of thiol groups during the partial synthesis of, and other proteins (Rüegg, U. Th., Jarvis, D. & Rudinger, J.) 119–126

Interferon, relationship of disc, pig

Intervertebral disc, cortex, Kidney

Staphylococcuts fi-Lactamases, II, salt-resistant, lipase, the fibroblasts of 127-134 Rudinger, J.)

detergentification

Dondi, P. laryngeal cartilage proteoglycans of and detergent-inhibition by, of the activity of cotton-plant cell-wall proteoglycans and detergent-inhibition by, of the activity of cotton-plant cell-wall (Stevens, R. L., D.) 561-572

Palmano, A. & Palmano, E.) 723–725

Liver, rabbit, dependence on phospholipids of the activities of microsomal uridine diphosphate glucuronol- transfersases towards oestrone and p-nitrophenol (Tukey, R. H., Billings, R. E., Autor, A. P. & Tephly, T. R.) 59–65

Liver, rat, effect of pH on the kinetics of reductive de- iodination of thyroxine and tri-iodothyronines catalysed by microsomal fraction from (Visser, T. J., Bekkes, D., Docter, R. & Hennemann, G.) 489–495

Liver, rat, evidence for the co-ordinate regulation of the activities of ethanolamine kinase and phosphoethanol- amine cytididylyltransferase in the biosynthesis of phos- phatidylethanolamine in (Infante, J. P. & Kinsella, T. E.) 723–725

Liver, rat, formation and distribution of bilirubin mono- glucuronide and bilirubin diglucuronide in slices of (Campbell, M. T. & Dutton, G. J.) 473–477

Liver, rat, induction by administration of dimethylnitro- amine of structural defects in deoxyribonucleic acid of (Stewart, B. W., Huang, P. H. T. & Brian, M. J.) 341–352

Liver, rat, kinetics of the reaction catalysed by mito- chondrial 3-hydroxybutyrate dehydrogenases from, and heart (Tucker, G. A. & Dawson, A. P.) 579–581

Liver, rat, phosphorylation by an adenosine 3':5'-cyclic monophosphate-independent protein kinase from, of threonine and serine residues of native and partially dephosphorylated caseins (Deana, A. D., Meggio, F. & Pinna, L. A.) 693–696

Liver, rat, strain differences in the activity of microsomal uridine diphosphate glucuronoltransferase from, towards androsterone (Matsui, M., Nagai, F. & Aoyagi, S.) 483–487

Liver, rat, variation with age of the structure of chromatin in nuclei of three cell types from (Zongza, V. & Mathias, A. P.) 291–298

Liver, sheep, separation by isoelectric focusing of cytosolic and mitochondrial aldehyde dehydrogenases from, and sensitivity of the cytosolic enzyme towards inhibition by disulfiram (Dickinson, F. M. & Berrieman, S.) 709–712

Lung, rabbit, relationship of detergent-solubilized alveolar macrophage plasma-membrane glycoproteins of, to an isolated inhibitor of phagocytosis (Pratt, R. S. & Cook, G. M. W.) 305–314

Lung tumours, human, characterization of neutral glycosphingolipids and gangliosides of, and normal lung (Narasimhan, R. & Murray, R. K.) 199–211

Lymnaea stagnalis, characterization of domains obtained by limited proteolytic digestion of haemocyanin from (Gullick, W. J., Herries, D. G. & Wood, E. J.) 593–602

32P]Lysophosphatidylcholine, use of soy beans for the preparation of [32P]phosphatidylcholine and (Hub- mann, F.-H.) 713–714

1979
INDEX OF SUBJECTS

7a-Methoxycehalosporin, incorporation of molecular oxygen during the biosynthesis of, by Streptomyces clavuligerus (O’Sullivan, J., Aplin, R. T., Stevens, C. M. & Abraham, E. P.) 47–52

Microsomal fraction, cotyledon, safflower, evidence for the presence of an oleoyl phoshatidylcholine desaturase in (Slack, C. R., Roughan, P. G. & Browse, J.) 649–656

Microsomal fraction, liver, rabbit, dependence on phospholipids of the activities of the 'diphosphate glucononyltransferase towards oestrone and p-nitrophenol (Tukey, R. H., Billings, R. E., Autor, A. P. & Tephy, T. R.) 59–65

Microsomal fraction, liver, rat, effect of pH on the kinetics of reductive deiodination of thyroxine and tri-iodothyronines catalysed by (Visser, T. J., Fekkes, D., Docter, R. & Hennemann, G.) 489–495

Microsomal fraction, liver, rat, strain differences in the activity of uridine diphosphate glucurononyltransferase from, towards androsterone (Matsui, M., Nagai, F. & Aoyagi, S.) 483–487

Micrurus fulus microgalbineus, see Coral snake

Mitochondria, liver and heart, rat, kinetics of the reaction catalysed by 3-hydroxybutyrate dehydrogenases from (Tucker, G. A. & Dawson, A. P.) 579–581

Mitochondria, liver, sheep and chicken, atypical velocity responses of pyruvate carboxylases from, to increasing concentrations of acetyl-coenzyme A (Easterbrook-Smith, S. B., Campbell, A. J., Keech, D. B. & Wallace, J. C.) 497–502

Mitochondria, liver, sheep, separation by isoelectric focusing of aldehyde dehydrogenases from, and cytosol and sensitivity of the cytosolic enzyme towards inhibition by disulfiram (Dickinson, F. M. & Berrieman, S.) 709–712

Muscle, skeletal, chicken and rabbit, 31P-nuclear-magnetic-resonance studies of the complexes of substrate and of inhibitors with triose phosphate isomerases from (Campbell, I. D., Jones, R. B., Kiener, P. A. & Waley, S. G.) 607–621

Muscle, skeletal, chicken, spectrophotometric studies of the interaction between inhibitors and triose phosphate isomerases from (Jones, R. B. & Waley, S. G.) 623–630

Muscle, skeletal, cross-linking experiments with sarcoplasmic-reticulum adenosine triphosphatase from (Hebdon, G. M., Cunningham, L. W. & Green, N. M.) 135–139

Muscle, skeletal, rabbit, activation by calmodulins of myosin light-chain kinase from (Nairn, A. C. & Perry, S. V.) 89–97

Myosin light-chain kinase, skeletal-muscle, rabbit, activation by calmodulins of (Nairn, A. C. & Perry, S. V.) 89–97

Nasal septum, ox, immunohistochemical analysis of proteoglycans of cartilage from (Wieslander, J. & Heinegård, D.) 35–45

Nicotinamide–adenine dinucleotide phosphate (reduced)–flavin oxidoreductase, erythrocyte, human, changes in the intermediate haemoglobin produced during the reduction of methaemoglobin by (Tomoda, A., Yubisi, T., Tsuji, A. & Yoneyama, Y.) 227–231
INDEX OF SUBJECTS

p-Nitrophenol, dependence on phospholipids of the activities of rabbit liver microsomal uridine diphosphate glucuronoyltransferases towards oestrone and (Tukey, R. H., Billings, R. E., Autor, A. P. & Tephly, T. R.) 59–65

4-Nitro-2-(2'-pyridyldimercapto)mercuriphenol, synthesis of, and its evaluation as a reagent for thiol groups (Baines, B. S. & Brocklehurst, K.) 701–704

Non-histone protein HMG 2, see Protein HMG 2, non-histone

Nuclei, liver, rat, variation with age of the structure of chromatin in, of three cell types (Zongza, V. & Mathias, A. P.) 291–298

Oestrone, dependence on phospholipids of the activities of rabbit liver microsomal uridine diphosphate glucuronoyltransferases towards p-nitrophenol and (Tukey, R. H., Billings, R. E., Autor, A. P. & Tephly, T. R.) 59–65

Oleoyl phosphatidylcholine desaturase, evidence for the presence of, in safflower cotyledon microsomal fraction (Slack, C. R., Roughan, P. G. & Browse, J.) 649–656

Oxygen, molecular, incorporation of, during the biosynthesis of a 7α-methoxycephalosporin by Streptomyces clavuligerus (O'Sullivan, J., Alpin, R. T., Stevens, C. M. & Abraham, E. P.) 47–52

Oxyhaemoglobin, human, effect of superoxide dismutase on the reaction of menadione with (Winterbourn, C. C., French, J. K. & Claridge, R. F. C.) 665–673

Palmitoyl-coenzyme A hydrolase, brain, rat, fractions affecting the activity and stability of (Knauer, T. E.) 515–523

Penicillinase (β-lactamase II), Bacillus cereus 569/H/9, identification by differential tritium exchange of the histidine residues of, that act as ligands for zinc ions (Baldwin, G. S., Waley, S. G. & Abraham, E. P.) 459–463

Penicillinas, Staphylococcus aureus, inhibition by clavulinate of the activity of (Reading, C. & Hepburn, P.) 67–76

Pepsin C, pig, activity of, towards synthetic peptide substrates (Auffret, C. A. & Ryle, A. P.) 239–246

Pepsins 1, 2, 3 and 5, human, action of, on the oxidized B-chain of oxinsulin (Roberts, N. B. & Taylor, W. H.) 183–190

Pepsins, pig and human, specificity of, towards synthetic peptide substrates (Ryle, A. P. & Auffret, C. A.) 247–249

Pep tidase IV, microvillar-membrane, kidney-cortex, pig, purification and properties of the detergent- and proteinase-solubilized forms of (MacNair, R. D. C. & Kenny, A. J.) 379–395

Peptide HGA-2, glutamic acid- and aspartic acid-rich, isolation, characterization and determination of the N-terminal amino acid sequence of, from calf thymus gland chromosomal non-histone protein HMG 2 (Walker, J. M., Gooderham, K. & Johns, E. W.) 253–255

Peptide substrates, synthetic, activity of pig pepsin C towards (Auffret, C. A. & Ryle, A. P.) 239–246

Peptide substrates, synthetic, specificity of pig and human pepsins towards (Ryle, A. P. & Auffret, C. A.) 247–249

Peptides, scope and limitations of the 2-sulphobenzyl group for the protection of thiol groups of (Riegg, U. Th., Jarvis, D. & Rudinger, J.) 127–134

Peptides, semisynthesis of, corresponding to fragments of the amino acid sequence of residues 66–104 of horse heart cytochrome c (Wallace, C. J. A. & Offord, R. E.) 169–182

Peptides, suitability of the 4-pyridylmethoxyl group for the protection of thiol groups during the partial synthesis of (Riegg, U. Th., Jarvis, D. & Rudinger, J.) 119–126

Peptides, verification by synthesis of, corresponding to five antigenic sites of ox serum albumin (Atassi, M. Z., Sakata, S. & Kazim, A. L.) 327–331

pH, effect of, on the kinetics of reductive deiodination of thyroxine and tri-iodothyronines catalysed by rat liver microsomal fraction (Visser, T. J., Fekkes, D., Docter, R. & Hennemann, G.) 489–495

Phagocytosis, relationship of detergent-solubilized rabbit lung alveolar macrophage plasma-membrane glycoproteins to an isolated inhibitor of (Pratt, R. S. & Cook, G. M. W.) 305–314

p-N′-Phenylenebismaleimide, hydrolysis of, and its adducts with cysteine and its implications for use of the reagent for the cross-linking of proteins (Knight, P.) 191–197

Phormidium luridum, mass-spectral identification and purification of phycoerythrobilin and phycocyanobilin from the bile pigments of, and other cyanobacteria (Fu, E., Friedman, L. & Siegelman, H. W.) 1–6

Phormidium persicinum, mass-spectral identification and purification of phycoerythrobilin and phycocyanobilin from the bile pigments of, and other cyanobacteria (Fu, E., Friedman, L. & Siegelman, H. W.) 1–6

Phosphatase, acid, potato-tuber, kinetic behaviour of co-polymers of human serum albumin and, in homogeneous phase and under gel-immobilized conditions (Cantarella, M., Remy, M.-H., Scardi, V., Alfani, F., Iorio, G. & Greco, G., Jr.) 15–20

Phosphatidylethanolamine, evidence for the co-ordinate regulation of the activities of ethanolamine kinase and phosphoethanolamine cytidyltransferase in the biosynthesis of, in rat liver (Infante, J. P. & Kinsella, J. E.) 723–725

1979
Phosphoethanolamine cytidylyltransferase, evidence for the co-ordinate regulation of the activities of ethanolamine kinase and, in the biosynthesis of phosphatidyl-ethanolamine in rat liver (Infante, J. P. & Kinsella, J. E.) 723–725

Phosphoglucone isomerase, effects of restricted hydration on the rates of the reactions catalysed by glucose 6-phosphate dehydrogenase, hexokinase, frumarase and, and their relevance to metabolism in xeric (near-dry) conditions (Stevens, E. & Stevens, L.) 161–167

2-Phosphoglycollate, 31P-nuclear-magnetic-resonance studies of the complex formed between chicken and rabbit skeletal-muscle triose phosphate isomerases and (Campbell, I. D., Jones, R. B., Kiener, P. A. & Waley, S. G.) 607–621

2-Phosphoglycollate, spectrophotometric studies of the interaction between chicken skeletal-muscle triose phosphate isomerase and (Jones, R. B. & Waley, S. G.) 623–630

Phospholipase C, Bacillus cereus, effect of zinc ions on the denaturation and renaturation of, in solutions of guanidinium chloride (Little, C. & Johansen, S.) 509–514

Phospholipids characterization of the interaction of, with ox erythrocyte membrane acetylcholinesterase (Beauregard, G. & Roufogalis, B.) 109–117

Phospholipids, dependence on, of the activities of rabbit liver microsomal uridine diphosphate glucuronyl-transfversers towards oestrone and p-nitrophenol (Tukey, R. H., Billings, R. E., Autor, A. P. & Tephly, T. R.) 59–65

Phycocyanobilin, bile-pigment, cyanobacterial, mass-spectral identification and purification of, and phycoerythrobin (Fu, E., Friedman, L. & Siegelman, H. W.) 1–6

Phycocerythrobilin, bile-pigment, cyanobacterial, mass-spectral identification and purification of, and phyco-cyanobilin (Fu, E., Friedman, L. & Siegelman, H. W.) 1–6

Plasma, human, multiple forms of α-α-mannosidase in (Hirani, S. & Winchester, B.) 583–592

Plasma membrane, see Membrane, plasma

Plasma, post-heparin, human, purification and properties of salt-resistant lipase and lipoprotein lipase from (Östlund-Lindqvist, A.-M.) 555–559

Polyphosphoinositides, evidence that, are not associated with human erythrocyte membrane glycoprotein (Shukla, S. D., Coleman, R., Finean, J. B. & Michell, R. H.) 441–444

Polysaccharides, heparin-like, identification of N-sulfated disaccharide units in, from various sources (Jacobsson, I., Höök, M., Pettersson, I., Lindahl, U., Larm, O., Wirén, E. & von Figura, K.) 77–87

Potato (Solanum tuberosum) tuber, kinetic behaviour of co-polymers of human serum albumin and soy phosphatase from, in homogeneous phase and under gel-immobilized conditions (Cantarella, M., Remy, M.-H., Scardi, V., Alfani, F., Iorio, G. & Greco, G., Jr.) 15–20

Procollagen, type I, skin, sheep, dermatosparastic, determination of the amino acid sequence of the N-terminal non-collagenous segment of (Rohde, H., Wachter, E., Richter, W. J., Bruckner, P., Helle, O. & Timpl, R.) 631–642

Procollogen, type I, skin, sheep, dermatosparastic, structure of antigenic determinants in the N-terminal non-collagenous region of (Rohde, H. & Timpl, R.) 643–647

Protease, see Proteinase

Protein HMG 2, non-histone, chromosomal, thymus-gland, calf, isolation, characterization and determination of the N-terminal amino acid sequence of glutamic acid- and aspartic acid-rich peptide HGA-2 from (Walker, J. M., Gooderham, K. & Johns, E. W.) 253–255

Protein kinase, adenosine 3'5'-cyclic monophosphate-independent, liver, rat, phosphorylation by, of threonine and serine residues of native and partially dephosphorylated caseins (Deana, A. D., Meggio, F. & Pinna, L. A.) 693–696

Protein, vitamin D-binding, serum, human, quantitative studies on the interaction of cholecalciferol and its metabolites with different genetic variants of (Kawakami, M., Imawari, & Goodman, DeW. S.) 413–423

Protein–polysaccharides, see Proteoglycans

Proteins, hydrolysis of p-NN'-phenylebenesemaleimide and of its adducts with cysteine and its implication for use of the reagent for the cross-linking of (Knight, P.) 191–197

Proteins, scope and limitations of the 2-sulphobenzyl group for the protection of thiol groups of (Rüegg, U. Th., Jarvis, D. & Rudinger, J.) 127–134

Proteins, suitability of the 4-pyrudymethyl group for the protection of thiol groups during the partial synthesis of (Rüegg, U. Th., Jarvis, D. & Rudinger, J.) 119–126

Proteins, troponin C-like (calmodulins), activation by, of rabbit skeletal-muscle myosin light-chain kinase (Nairn, A. C. & Perry, S. V.) 89–97

Proteoglycans, cartilage, nasal-septum, ox, immunochmical analysis of (Wieslander, J. & Heinegård, D.) 35–45

Proteoglycans, intervertebral-disc, pig, absence of degradation during the isolation of (Stevens, R. L., Dondi, P. G. & Muir, H.) 573–578

Proteoglycans, intervertebral-disc, pig and human, homology of the structure of, with that of proteoglycans from laryngeal cartilage (Stevens, R. L., Ewins, R. J. F., Revell, P. A. & Muir, H.) 561–572

Prothrombin, properties of, in dimethyl sulphoxide/water mixtures (Collier, G. S., Pratt, J. M., de Wet, C. R. & Tshabalala, C. F.) 281–289
INDEX OF SUBJECTS

Purine nucleoside phosphorylase, erythrocyte, rabbit, effects of substrates on the inactivation by heat and proteolytic digestion of (Savage, B. & Spencer, N.) 29–34

Purine nucleoside phosphorylase, erythrocyte, rabbit, initial-velocity kinetic studies of the reaction catalysed by (Savage, B. & Spencer, N.) 21–27

2-(2'-Pyridylmercapto)mercuri-4-nitrophenol, see 4-Nitro-2-(2'-pyridylmercapto)mercuriphenol

4-Pyridylmethyl group, suitability of, for the protection of thiol groups during the partial synthesis of proteins (Rüegg, U. Th., Jarvis, D. & Rudinger, J.) 119–126

Quinacrine hydrochloride, effects of histones on the binding of ethidium bromide and, to calf thymus-gland deoxyribonucleic acid (Chitre, A. V. & Korgaonkar, K. S.) 213–219

Red blood cells, see Erythrocytes

Restriction endonuclease, see Deoxyribonuclease, endo,- restriction

Reticulum, sarcoplasmic, skeletal-muscle, cross-linking experiments with adenosine triphosphatase from (Hebdon, G. M., Cunninghan, L. W. & Green, N. M.) 135–139

Rhesus monkey (Macaca mulatta), newborn, structural identity of conjugates of bilirubin in bile and meconium from newborn humans and (Blumenthal, S. G., Taggart, D. B., Rasnouic, R. D., Ikeda, R. M., Ruebner, B. H., Bergstrom, D. E. & Hanson, F. W.) 537–547

Ribonucleic acid, messenger, globin, analysis of the α-globin/β-globin ratio and of the content of, in rabbit bone-marrow erythroid cells (Mezl, V. A., Kawasaki, E. S. & Hunt, J. A.) 525–535

Ribonucleic acid, ribosomal, relationship of the ploidy of chromosome 21 to the effect of interferon on, of human fibroblasts (Marou, L. E.) 221–225

Ribosomal ribonucleic acid, see Ribosomal ribonucleic acid, ribosomal

Saccharomyces cerevisiae, origin of C-2 of the thiazole moiety during the biosynthesis of thiamin in (White, R. L. & Spenser, I. D.) 315–325

Safflower (Carthamus tinctorius) seed, evidence for the presence of an oleoyl phosphatidylcholine desaturase in microsomal fraction of cotyledons of (Slack, C. R., Roughan, P. G. & Browse, J.) 649–656

Sarcoplasmic reticulum, see Reticulum, sarcoplasmic

Seed, safflower, evidence for the presence of an oleoyl phosphatidylcholine desaturase in microsomal fraction of cotyledons of (Slack, C. R., Roughan, P. G. & Browse, J.) 649–656

Serine residues, phosphorylation by a rat liver adenosine 3':5'-cyclic monophosphate-independent protein kinase of threonine residues and, of native and partially dephosphorylated caseins (Deana, A. D., Meggio, F. & Pinna, L. A.) 693–696

Serum albumin, see Albumin, serum

Serum, human, quantitative studies on the interaction of cholecalciferol and its metabolites with different genetic variants of vitamin D-binding protein from (Kawakami, M., Imawari, M. & Goodman, DeW. S.) 413–423

Sialic acid residues, effect of enzymic removal of, on the solubilization by Triton X-100 of human erythrocyte membrane glycoproteins (Patt, R. S. & Cook, G. M. W.) 299–303

Sialoglycoprotein, membrane, erythrocyte, human, major, use of 1-azido-4-iodo[3H]benzene as a photosensitive hydrophobic probe for labelling of the transmembrane region of (Wells, E. & Findlay, J. B. C.) 265–272

Skeletal muscle, see Muscle, skeletal

Skin, sheep, dermatosparatic, determination of the amino acid sequence of the N-terminal non-collagenous segment of type I procollagen from (Rohde, H., Wachter, E., Richter, W. J., Bruckner, P., Helle, O. & Timpl, R.) 631–642

Skin, sheep, dermatosparatic, structure of antigenic determinants in the N-terminal non-collagenous region of type I procollagen from (Rohde, H. & Timpl, R.) 643–647

Solanum tuberosum, see Potato

Soya bean, see Bean, soya

Staphylococcus aureus, inhibition by clavulinate of the activity of β-lactamases from (Reading, C. & Hepburn, P.) 67–76

Streptomyces clavuligerus, incorporation of molecular oxygen during the biosynthesis of a 7α-methoxy-cephalosporin by (O'Sullivan, J., Aplin, R. T., Stevens, C. M. & Abraham, E. F.) 47–52

Streptozotocin-diabetes, see Diabetes, streptozotocin-induced

Subcomponent Clq, complement, human, determination of the amino acid sequences of the three collagen-like regions present in (Reid, K. B. M.) 367–371

Substrates, determination of the parameters for the binding of, to enzymes when the total and free substrate concentrations are not approximately equal (Gains, N.) 697–700

N-Sulphated disaccharide units, identification of, in heparin-like polysaccharides from various sources (Jacobsson, I., Höök, M., Pettersson, I., Lindahl, U., Larm, O., Wirén, E. & von Figura, K.) 77–87

2-Sulphobenzyl group, scope and limitations of, for the protection of thiol groups of proteins (Rüegg, U. Th., Jarvis, D. & Rudinger, J.) 127–134

Supernatant fraction, see Cytosol

Superoxide dismutase, effect of, on the reaction of menadione with human haemoglobin (Winterbourn, C. C., French, J. K. & Claridge, R. F. C.) 665–673

Synovial fluid, ox, isolation and properties of a glycoprotein (LGP-II) from, with lubricating properties for articular cartilage (Swann, D. A. & Mintz, G.) 465–471

1979
Tay-Sachs disease, use of antisera raised against \(\beta-N\)-acetylatedhexosaminidases to demonstrate the presence of cross-reacting material in liver of human patients with (Srivastava, S. K., Ansari, N. H., Hawkins, L. A. & Wiktorowicz, J. E.) 657–664

Tetranitromethane, effects of modification with, of the tyrosine residues of bacteriorhopsin in *Halobacterium halobium* purple membrane (Campos-Cavieres, M., Moore, T. A. & Perham, R. N.) 223–238

Thiamin, origin of C-2 of the thiazole moiety during the biosynthesis of, in *Saccharomyces cerevisiae* (White, R. L. & Spenser, I. D.) 315–325

Thiol groups, scope and limitations of the 2-sulphobenzyloxy group for the protection of, of proteins (Rüegg, U. Th., Jarvis, G. & Rudinger, J.) 127–134

Thiol groups, suitability of the 4-pyridylmethyl group for the protection of, during the partial synthesis of proteins (Rüegg, U. Th., Jarvis, G. & Rudinger, J.) 119–126

Thiol groups, synthesis of 4-nitro-2(2'-pyridylmercapto)mercuric phenol and its evaluation as a reagent for (Baines, B. S. & Brocklehurst, K.) 701–704

Threonine residues, phosphorylation by a rat liver adenosine 3':5'-cyclic monophosphate-independent protein kinase of serine residues and, of native and partially dephosphorylated caseins (Deana, A. D., Meggio, F. & Pinna, L. A.) 693–696

Thymus gland, calf, effects of histones on the binding of ethidium bromide and quinacrine hydrochloride to deoxyribonucleic acid from (Chitre, A. V. & Korgaonkar, K. S.) 213–219

Thymus gland, calf, isolation, characterization and determination of the N-terminal amino acid sequence of glutamic acid- and aspartic acid-rich peptide HGA-2 from chromosomal non-histone protein HMG 2 from (Walker, J. M., Goodherham, K. & Johns, E. W.) 253–255

Thyroxine, effect of pH on the kinetics of reductive deiodination of, and triiodothyronines catalysed by rat liver microsomal fraction (Visser, T. J., Bekkes, D., Docter, R. & Hennemann, G.) 489–495

Tolyphorix tenius, mass-spectral identification and purification of phycocyanobilin and phycocyanobilin from the bile pigments of, and other cyanobacteria (Fu, E., Friedman, L. & Siegelman, H. W.) 1–6

Trichoderma viride, purification and characterization of 1,4-\(\beta\)-glucan glucanoxydrolase from (Håkansson, U., Fägerstam, L. G., Pettersson, L. G. & Andersson, L.) 141–149

Triiodothyronines, effect of pH on the kinetics of reductive deiodination of thyroxine and, catalysed by rat liver microsomal fraction (Visser, T. J., Bekkes, D., Docter, R. & Hennemann, G.) 489–495

Triose phosphate isomerase, skeletal-muscle, chicken, spectrophotometric studies of the interaction between inhibitors and (Jones, R. B. & Waley, S. G.) 623–630

Triose phosphate isomerases, skeletal-muscle, chicken and rabbit, \(3^1\)P-nuclear-magnetic-resonance studies of the complexes of substrate and of inhibitors with (Campbell, I. D., Jones, R. B., Kiener, P. A. & Waley, S. G.) 607–621

Trisaccharide, chondroitin sulphate, sequential degradation by chick-embryo epiphysemal-cartilage lysosomal enzymes of (Ingmar, B. & Wasteson, Å.) 7–13

Triticum aestivum, see Wheat

Tropinin C-like proteins (calmodulins), activation by, of rabbit skeletal-muscle myosin light-chain kinase (Nairn, A. C. & Perry, S. V.) 89–97

Tuber, potato, kinetic behaviour of co-polymers of human serum albumin and acid phosphatase from, in homogeneous phase and under gel-immobilized conditions (Cantarella, M., Remy, M.-H., Scardi, V., Alfani, F., Iorio, G. & Greco, G., Jr.) 15–20

Tumours, lung, human, characterization of neutral glycosphingolipids and gangliosides of, and normal lung (Narasimhan, R. & Murray, R. K.) 199–211

Tyrosine residues, effects of modification with tetranitromethane of, of bacteriorhodopsin in *Halobacterium halobium* purple membrane (Campos-Cavieres, M., Moore, T. A. & Perham, R. N.) 223–238

UREase, scope and limitations of the use of pipettes with, and other enzymes immobilized on their inside surface (Sundaram, P. V.) 445–447

Uridine diphosphate glucuronontransferase, microsomal, liver, rat, strain differences in the activity of, towards androsterone (Matsui, M., Nagai, F. & Aoyagi, S.) 483–487

Uridine diphosphate glucuronontransferases, microsomal, liver, rabbit, dependence on phospholipids of the activities of, towards oestrone and \(\beta\)-nitrophenol (Tukey, R. H., Billings, R. E., Autor, A. P. & Tephy, T. R.) 59–65

Vanadate, inhibition by, of the activity of eel gill sodium-plus-potassium ion-dependent adenosine triphosphatase (Bell, M. V. & Sargent, J. R.) 431–438

Venom, coral-snake, purification and characterization of phospholipase A\(_2\) from (Possani, L. D., Alagón, A. C., Fletcher, P. L., Jr., Varela, M. J. & Juliá, J. Z.) 603–606

Vitamin B\(_1\), see Thiamin

Vitamin D-binding protein, serum, human, quantitative studies on the interaction of cholecalciferol and its metabolites with different genetic variants of (Kawkami, M., Imawari, M. & Goodman, DeW. S.) 413–423

Vitamin D\(_3\), see Cholecalciferol

Vitamin K\(_3\), see Menadione

Wall, cell, see Cell wall

Water, effects of restricted content of, on the rates of the reactions catalysed by glucose 6-phosphate dehydrogenase, phosphoglucone isomerase, hexokinase and frumarase and their relevance to metabolism in xeric (nearly-dry) conditions (Stevens, E. & Stevens, L.) 161–167

Wheat (*Triticum aestivum*) leaves, determination of the amino acid sequence of ferredoxin from (Takruri, I. & Boulter, D.) 373–378

Yeast (*Saccharomyces cerevisiae*), origin of C-2 of the thiazole moiety during the biosynthesis of thiamin in (White, R. L. & Spenser, I. D.) 315–325

Zinc ions, effect of, on the denaturation and renaturation of *Bacillus cereus* phospholipase C in solutions of guanidinium chloride (Little, C. & Johansen, S.) 509–514

Zinc ions, identification by differential tritium exchange of the histidine residues of *Bacillus cereus* 569/H/98-lactamase II that act as ligands for (Baldwin, G. S., Waley, S. G. & Abraham, E. P.) 459–463