EDITORIAL BOARD

Chairman
J. T. Dingle

Deputy Chairman
J. A. Lucy
R. N. Perham
A. P. Ryle
D. H. Williamson

Editorial Secretary
J. D. Killip

Assistant Editorial Secretary
E. N. Maltby

P. M. Bayley*
J. W. Bradbeer
R. C. Bray
D. N. Brindley
H. C. Britton
R. B. Cain
M. Cannon
J. B. Clark
A. J. Cornish-Bowden
D. D. Davies
R. M. Denton
F. M. Dickinson
R. R. Dils
G. J. Dutton
D. C. Ellwood
J. L. Gordon
D. E. Griffiths
L. A. Grivell
M. R. Hollaway

R. C. Hughes
A. J. Kenny
U. E. Loening
W. I. P. Mainwaring
R. M. Marchbanks
R. E. Offord
C. I. Pogson
D. Robinson
E. V. Rowsell
D. Schulster
J. E. Scott
R. L. Smith
S. P. Spragg*
D. R. Stanworth
M. J. A. Tanner

*Nominated by the British Biophysical Society

Overseas Advisory Panel

H. Beinert (U.S.A.), C. de Duve (Belgium and U.S.A.), H. F. DeLuca (U.S.A.), W. Fiers (Belgium), O. Hayaishi (Japan), B. Hess (Germany), M. Ya. Karpeisky (U.S.S.R.), D. B. Keech (Australia), T. C. Laurent (Sweden), P. Siekevitz (U.S.A.), G. P. Talwar (India), A. Tissières (Switzerland), O. Wieland (Germany), H. G. Williams-Ashman (U.S.A.)
THE BIOCHEMICAL SOCIETY

OFFICERS AND COMMITTEE, 1977–78

Chairman of the Committee
R. R. Porter, F.R.S.

Committee
G. B. Ansell
J. R. Bronk

Treasurer
D. F. Elliott
K. Burton, F.R.S.
N. G. Carr

General Secretary
J. B. Lloyd
P. H. Clarke, F.R.S.
J. T. Dingle*
P. F. Fottrell

Publications Secretary
R. M. C. Dawson
C. Green
J. N. Hawthorne
H. K. King

Meetings Secretary
H. F. Bradford
R. J. B. King
J. C. Metcalfe

J. W. Porteous, F.R.S.E.
B. E. Ryman

*Ex Officio Member of Committee; Representative of Editorial Board of the Biochemical Journal.

Executive Secretary
A. I. P. Henton (7 Warwick Court, London WC1R 5DP)

The Biochemical Society exists to advance the science of biochemistry through meetings and publications. Several meetings a year are held, each at a different place; original papers are presented and special topics are discussed at symposia and colloquia.

Persons interested in biochemistry are eligible for election as Members. Details of further facilities accorded to Members, and forms of application for membership, are available from the Executive Secretary, The Biochemical Society, 7 Warwick Court, London WC1R 5DP [01-242 1076 (4 lines)].

Second-class postage paid at New York, NY, U.S.A.
NOTICE FOR CONTRIBUTORS

The *Biochemical Journal* places emphasis on the prompt publication of both **full-length papers** (on average about 6 months after receipt) and **rapid papers** (on average 10–12 weeks after receipt).

For detailed instructions on the preparation of papers contributors (who need not be members of the Biochemical Society) should refer to *Policy of the Journal and Instructions to Authors* [*Biochem. J.* (1978) **169**, 1–27] (obtainable free on request, in booklet form, from the Executive Secretary, The Biochemical Society, 7 Warwick Court, London WC1R 5DP).

Papers submitted for publication should be addressed to the Editorial Secretary, Biochemical Journal, 7 Warwick Court, London WC1R 5DP.

Contributors should note that the *Biochemical Journal* makes no manuscript handling charges, no page charges and no charges for plates. Reprints are available at modest cost at about the same time as publication, and, if an author is a member of The Biochemical Society, 50 reprints are provided free of charge.
NOTICE FOR SUBSCRIBERS

The Biochemical Journal is published and distributed by the Biochemical Society. It is published twice monthly, alternate issues being devoted to Molecular Aspects and to Cellular Aspects of biochemistry. It is planned that in 1978 eight volumes, each volume being made up of three issues, will be published according to the following schedule:

<table>
<thead>
<tr>
<th>Molecular Aspects</th>
<th>Cellular Aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>1978</td>
</tr>
<tr>
<td>1 Jan. 169 1</td>
<td>15 Jan. 170 1</td>
</tr>
<tr>
<td>1 Feb. 169 2</td>
<td>15 Feb. 170 2</td>
</tr>
<tr>
<td>1 Mar. 169 3*</td>
<td>15 Mar. 170 3*</td>
</tr>
<tr>
<td>1 Apr. 171 1</td>
<td>15 Apr. 172 1</td>
</tr>
<tr>
<td>1 May 171 2</td>
<td>15 May 172 2</td>
</tr>
<tr>
<td>1 June 171 3*</td>
<td>15 June 172 3*</td>
</tr>
<tr>
<td>1 July 173 1</td>
<td>15 July 174 1</td>
</tr>
<tr>
<td>1 Aug. 173 2</td>
<td>15 Aug. 174 2</td>
</tr>
<tr>
<td>1 Sept. 173 3*</td>
<td>15 Sept. 174 3*</td>
</tr>
<tr>
<td>1 Oct. 175 1</td>
<td>15 Oct. 176 1</td>
</tr>
<tr>
<td>1 Nov. 175 2</td>
<td>15 Nov. 176 2</td>
</tr>
<tr>
<td>1 Dec. 175 3*</td>
<td>15 Dec. 176 3*</td>
</tr>
</tbody>
</table>

*Completes volume, and includes Indexes.

Biochemical Society Transactions. This is a separate publication (see below). Volume 6 will be published in 1978, in six parts.

Subscription Rates to the Biochemical Journal. For non-members of the Biochemical Society the subscription rates for 1978 are shown below.

Subscribers to the Biochemical Journal can subscribe to Biochemical Society Transactions on a joint subscription, saving £15.00 (U.K. and Ireland) or $25.00 (elsewhere). The methods of despatch of both publications are shown below.

Terms are cash with order or against proforma invoice. Orders and subscriptions should be sent to the Biochemical Society Book Depot, P.O. Box 32, Commerce Way, Colchester CO2 8HP, Essex, or through your normal agent.

Claims regarding issues lost or damaged in transit should be addressed to the Biochemical Society at the address given in the preceding paragraph. Claims cannot be entertained if they are received later than three months after the date of posting, plus such time as would be expected for transit by post.

Back Numbers. Enquiries for volumes 1–19 of the Journal should be addressed to William Dawson & Sons Ltd., Back Issues Department, Cannon House, Park Farm Road, Folkestone, Kent. Quotations for available issues of subsequent volumes and parts of the Journal, and also of Transactions, may be obtained on application to The Biochemical Society Book Depot, P.O. Box 32, Commerce Way, Colchester CO2 8HP, Essex.

Microforms. The following versions are available.
Details and prices are available on request from the Biochemical Society’s Colchester office.

Advertisements. Applications for advertising space should be sent to the Advertising Department, The Biochemical Society, 7 Warwick Court, London WC1R 5DP [01-242 1076 (4 lines)]. Copy is required eight weeks before publication date. Rate cards are available on request.

IMPORTANT NOTICE. All subscribers outside the U.K. and Ireland must remit in U.S. $ or the sterling equivalent at the rate of exchange prevailing at the date of payment.

<table>
<thead>
<tr>
<th></th>
<th>U.K. & Ireland only</th>
<th>U.S.A., Canada & Mexico</th>
<th>Japan only</th>
<th>Overseas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year (8 volumes)</td>
<td>£170.00</td>
<td>U.S. $320.00</td>
<td>U.S. $330.00</td>
<td>U.S. $300.00</td>
</tr>
<tr>
<td>Per volume</td>
<td>£22.00</td>
<td>U.S. $45.00</td>
<td>U.S. $46.00</td>
<td>U.S. $42.00</td>
</tr>
<tr>
<td>Per part</td>
<td>£8.00</td>
<td>U.S. $16.00</td>
<td>U.S. $16.50</td>
<td>U.S. $15.00</td>
</tr>
</tbody>
</table>

Airfreight to U.S.A., Canada and Mexico. The subscription rates for North America include an element for this service.
Accelerated Surface Post to Japan only. The subscription rates include a 10% surcharge for this service.

(iv)
INDEX OF AUTHORS

<table>
<thead>
<tr>
<th>Author</th>
<th>Page(s)</th>
<th>Author</th>
<th>Page(s)</th>
<th>Author</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allison, Y. P.</td>
<td>661</td>
<td>Hawkins, R. L.</td>
<td>583</td>
<td>Pegg, A. E.</td>
<td>651</td>
</tr>
<tr>
<td>Anthony, C.</td>
<td>561</td>
<td>Hems, R.</td>
<td>627, 711</td>
<td>Phillips, J. H.</td>
<td>661, 673</td>
</tr>
<tr>
<td>Bakalkin, G. Y.</td>
<td>569</td>
<td>Hensgens, H. E. S. J.</td>
<td>699</td>
<td>Radik, J.</td>
<td>593</td>
</tr>
<tr>
<td>Beechey, R. B.</td>
<td>503</td>
<td>Herrmann, W.</td>
<td>681</td>
<td>Randle, P. J.</td>
<td>551, 615</td>
</tr>
<tr>
<td>Carell, E. F.</td>
<td>631</td>
<td>Jackson, D. S.</td>
<td>715</td>
<td>Reed, W. D.</td>
<td>583</td>
</tr>
<tr>
<td>Carrion, A.</td>
<td>577</td>
<td>Jain, K.</td>
<td>461</td>
<td>Robinson, A. M.</td>
<td>609</td>
</tr>
<tr>
<td>Charlton, R. R.</td>
<td>537</td>
<td>Jones, C. J. P.</td>
<td>715</td>
<td>Rodriguez-Segade, S.</td>
<td>577</td>
</tr>
<tr>
<td>Christil, J.</td>
<td>693</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conover, C.</td>
<td>651</td>
<td>Kalnov, S. L.</td>
<td>569</td>
<td>Schwoch, G.</td>
<td>469</td>
</tr>
<tr>
<td>Cornblath, M.</td>
<td>583</td>
<td>Kewley, M. A.</td>
<td>715</td>
<td>Scott, F. W.</td>
<td>545</td>
</tr>
<tr>
<td>Dawson, R. M. C.</td>
<td>529</td>
<td>Lacey, J. H.</td>
<td>551</td>
<td>Stevenson, J. H.</td>
<td>583</td>
</tr>
<tr>
<td>DelValle, J. A.</td>
<td>449</td>
<td>Laitha, A.</td>
<td>637</td>
<td>Suda, T.</td>
<td>495</td>
</tr>
<tr>
<td>Dienel, G.</td>
<td>449</td>
<td>Linnett, P. E.</td>
<td>503</td>
<td>Suzuki, M.</td>
<td>495</td>
</tr>
<tr>
<td>Downie, J. A.</td>
<td>593</td>
<td>Luzikov, V. N.</td>
<td>569</td>
<td>Taylor, K. W.</td>
<td>523</td>
</tr>
<tr>
<td>Dunlop, D. S.</td>
<td>637</td>
<td></td>
<td></td>
<td>Tildon, J. T.</td>
<td>583</td>
</tr>
<tr>
<td>Felix, R.</td>
<td>681</td>
<td>Meijer, A. J.</td>
<td>699</td>
<td>Ullrich, K.</td>
<td>643</td>
</tr>
<tr>
<td>Fleisch, H.</td>
<td>681</td>
<td>Mersmann, G.</td>
<td>643</td>
<td>van Elden, W.</td>
<td>637</td>
</tr>
<tr>
<td>Foden, S.</td>
<td>615</td>
<td>Mitchell, A. D.</td>
<td>503</td>
<td>Viña, J.</td>
<td>627, 711</td>
</tr>
<tr>
<td>Forsdyke, D. R.</td>
<td>545</td>
<td>Mulheirn, L. J.</td>
<td>503</td>
<td>von Figura, K.</td>
<td>643</td>
</tr>
<tr>
<td>Freire, M.</td>
<td>577</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galkin, A. V.</td>
<td>569</td>
<td>Nicholls, D. G.</td>
<td>511</td>
<td>Wenner, C. E.</td>
<td>537</td>
</tr>
<tr>
<td>Gibson, F.</td>
<td>593</td>
<td>Nishii, Y.</td>
<td>495</td>
<td>White, D. A.</td>
<td>479</td>
</tr>
<tr>
<td>Grant, M. E.</td>
<td>715</td>
<td>Osselton, M. D.</td>
<td>503</td>
<td>Wilson, J. T.</td>
<td>693</td>
</tr>
<tr>
<td>Gray, D. O.</td>
<td>487</td>
<td>Ozand, P. T.</td>
<td>583</td>
<td>Wrona, A.</td>
<td>651</td>
</tr>
<tr>
<td>Green, J. R.</td>
<td>599</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greengard, O.</td>
<td>449</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grime, D. W.</td>
<td>529</td>
<td>Parry, D. G.</td>
<td>523</td>
<td>Zubatov, A. S.</td>
<td>569</td>
</tr>
</tbody>
</table>
INDEX OF AUTHORS

Vol. 170

Index of Authors

ADIGA, P. R. see Murthy, U. S. 331–335
ALLISON, Y. F. see Phillips, J. H. 661–672
ANTHONY, C. see O’Keefe, D. T. 561–567
ARNSTEIN, H. R. V. see SETCENSKA, M. S. 193–201
AUFRÈRE, J. see RÉMÉSY, C. 321–329
BALASINGHAM, N. see SLACK, C. R. 421–433
BEECHER, R. B. see LINNETT, P. E. 503–510
BILLINGTON, D. see OSMUNDSEN, H. 337–342
BOOTH, R. F. G. & CLARK, J. B. Studies on the mitochondrial bound form of rat brain creatine kinase 145–151
BREWSTER, D., JONES, R. S. & PARKE, D. V. The metabolism of shikimate in the rat 257–264
BRONNER, F. see EDELSTEIN, S. 227–233
BROWN-WOODMAN, P. D. C., MOHRI, H., MOHRI, T., SUTER, D. & WHITE, I. G. Mode of action of α-chlorohydrin as a male anti-fertility agent. Inhibition of the metabolism of ram spermatozoa by α-chlorohydrin and location of block in glycolysis 23–37
BRUNETTE, D. M. see LIMEBACK, H. F. 63–71
BRYAN, S. E. see HIDALGO, H. A. 219–225
BULLOCK, S. see ROSS, B. D. 177–179
BYGRAVE, F. L. Properties of energy-dependent calcium transport by rat liver microsomal fraction as revealed by initial-rate measurements 87–91
BYGRAVE, F. L. see also SMITH, R. L. 81–85
CALVERT, K. T. see THELL, E. C. 137–143
CARELLI, E. F. see GOETZ, G. H. 631–636
CARLETON, J. S. see PEARSON, J. D. 265–271
CARRION, A. see RODRIGUEZ-SEGADE, S. 577–582
CELLA, C. see VANNUCHI, S. 185–187
CHAPPELL, J. B. see DAWSON, A. G. 395–405
CHARLTON, R. R. & WENNER, C. E. Calcium-ion transport by intact Ehrlich ascites-tumour cells. Role of respiratory substrates, Pₐ and temperature 537–544
CHARMAN, M. see SPENCER, R. 93–101
CHARUCI, V. see VANNUCHI, S. 185–187
CHRISTL, J. & WILSON, J. T. Contribution of cytochromes and proteins to the effect of ascorbic acid on artificial and microsomal hydroxylation systems containing oxygen and hydrogen peroxide 693–698
CLARK, J. B. see BOOTH, R. F. G. 145–151
CLEVELAND, C. E. & SWANK, R. T. Effect of potassium deficiency on mouse kidney lysosomal enzymes 249–256
CONOVER, C. see PEGG, A. E. 651–660
COOKE, B. A. see JANSZEN, F. H. A. 9–15

CONBLATH, M. see OZAND, P. T. 583–591
COX, G. B., DONWIE, J. A., GIBSON, F. & RADJ, J. Genetic complementation between two mutant unc alleles (uncA401 and uncD409) affecting the Fₚ portion of the magnesium ion-stimulated adenosine triphosphatase of Escherichia coli 121 593–598
CRYER, A., KIRTLAND, J., JONES, H. M. & GURR, M. I. Lipoprotein lipase activity in the tissues of guinea pigs exposed to different dietary fats from conception to three months of age 169–172
CUNDLIFE, E. see HOBDEN, A. N. 57–61
DAVIES, P. see THOMAS, P. 211–218
DAWSON, R. M. C. see NEILL, A. R. 529–535
DEL ROSSO, M. see VANNUCHI, S. 185–187
DELVALLE, J. A., DIENEL, G. & GREENGARD, O. Comparison of α-methylphenylalanine and p-chlorophenylalanine as inducers of chronic hyperphenylalaninemia in developing rats 449–459
DEMIGNÉ, C. see RÉMÉSY, C. 321–329
DICKSON, J. J. & MESSER, M. Intestinal neuraminidase activity of suckling rats and other mammals. Relationship to the sialic acid content of milk 407–413
DIENEL, G. see DELVALLE, J. A. 449–459
DINEEN, R. W. & GRAY, D. O. The biochemical pathway for the breakdown of N⁴-ethyl-L-asparagine in the bacterium Pseudomonas stutzeri 487–493
DONWIE, J. A. see COX, G. B. 593–598
DUNLOP, D. S., VAN ELDEN, W. & LATHIA, P. Protein degradation rates in regions of the central nervous system in vivo during development 637–642
EKMAN, B. see LUNGSTEDT, I. 161–165
EVANS, M. C. W. see HEATHCOTE, P. 373–378; WILLIAMS-SMITH, D. L. 365–371
FAUSTO, N. see MCGOWAN, J. A. 123–127
FELIX, R., HERRMANN, W. & FLEISCH, H. Stimulation of precipitation of calcium phosphate by matrix vesicles 681–691
FLEISCH, H. see FELIX, R. 681–691
FODEN, S. & RANDLE, P. J. Calcium metabolism in rat hepatocytes 615–625
FORDSYKE, D. R. see SCOTT, F. W. 545–549
FRIEDE, M. see RODRIGUEZ-SEGADE, S. 577–582
FUKUSHIMA, M., NISHI, Y., SUZUKI, M. & SUDA, T. Comparative studies on the 25-hydroxylations of cholecalciferol and 1α-hydroxycholecalciferol in perfused rat liver 495–502
GADIAN, D. G. see BUSBY, S. J. W. 103–114
GALKIN, A. V. see BALKIN, G. Y. 569–576
GARDNER, R. S. & MAYES, P. A. Comparison of the metabolism of chylomicrons and chylomicron remnants by the perfused liver 47–55

GEelen, M. J. H. see WoITCZAK, A. B. 379–385

GHAl, Q. P. & HOLLenberg, M. Poly(adenosine diphosphate ribose) metabolism and regulation of myocardial cell growth by oxygen 387–394

GIBSON, F. see Cox, G. B. 593–598

GIMPel, J. A. see HENSGens, H. E. S. J. 699–707

GOETZ, G. H. & CARELL, E. F. Recovery from vitamin B-12-induced unbalanced growth. The shortened cell cycle and the deoxyribonucleoside triphosphate pools 631–636

GOLUB, E. E. see EDELSLESTEIN, S. 227–233

GORDON, J. L. see PEARSON, J. D. 265–271

GOTTlieB, D. see WOOD, S. G. 343–354, 355–363

GOVE, C. D. & HEMS, D. A. Fatty acid synthesis in the regenerating liver of the rat 1–8

GRANT, M. E. see SEAr, C. H. J. 715–718

GRAY, D. O. see DINEEN, R. W. 487–493

GREEN, J. R. & NORTHCOte, D. H. The structure and function of glycoproteins synthesized during slime-poly saccharide production by menzemes of the root-caps cells of maize (Zea mays) 599–608

GREENGARD, O. see delVALLE, J. A. 449–459

GRIFITHS, K. see THOMAS, P. 211–218

GRIME, D. W. see NEll, A. R. 529–535

GURR, M. I. see CRYER, A. 169–172

HAMSASKI, N., HARDJONO, I. S. & MINAKAMI, S. Transport of phosphoenolpyruvate through the erythrocyte membrane 39–46

HANSFORD, R. G. Lipid oxidation by heart mitochondria from young adult and senescent rats 285–295

HARDJONO, I. S. see HAMSASKI, N. 39–46

HareLL, A. see EDELSLESTEIN, S. 227–233

HASSINEN, I. E. see HILTUEN, J. K. 235–240

HAWKINS, R. L. see OZAND, P. T. 583–591

HEATHCOTE, P., WILLIAMS-SMITH, D. L. & EVANS, M. C. W. Quantitative electron-paramagnetic-resonance measurements of the electron-transfer components of the photosystem-I reaction centre. The reaction-centre chlorophyll (P700), the primary electron acceptor X and iron–sulphur centre A 373–378

HEATHCOTE, P. see also WILLIAMS-SMITH, D. L. 365–371

HEMS, D. A. see GOve, C. D. 1–8

HEMS, R. see ViNA, J. 627–630, 711–713

HENSGENs, H. E. S. J., MEuER, A. J., WILLIAMSON, J. R., GIMPel, J. A. & TAGer, J. M. Proline metabolism in isolated rat liver cells 699–707

HERRMANN, W. see Felix, R. 681–691

HIDAalgo, H. A., KOPPA, V. & Bryan, S. E. Induction of cadmium-thionin in isolated rat liver cells 219–225

HILTUEN, J. K. Metabolic effects of pent-4-enoate in isolated perfused rat heart 241–247

HILTUEN, J. K., JAUHONEN, V. P., SAVOLAINEH, M. J. & HASSINEN, I. E. Effects of pent-4-enoate on cellular redox state, glycolysis and fatty acid oxidation in isolated perfused rat heart 235–240

HOBERN, A. N. & CUNDLiffe, E. The mode of action of alpha sarcolipin and a novel assay of the purumycin reaction 57–58

HOLLenberg, M. see GhANI, Q. P. 387–394

HOLTFRERICH, D. see von FIGUra, K. 313–320

HUTCHEON, A. see PEARson, J. D. 265–271

JACKSON, D. S. see SEAR, C. H. J. 715–718

JAIN, K. & LOGOTHETPOULOS, J. Metabolic signals produced by purine ribonucleosides stimulate pro-insulin biosynthesis and insulin secretion 461–467

JAMDAr, S. C. Glycerolipid biosynthesis in rat adipose tissue. Influence of adipose-cell size and site of adipose tissue on triacylglycerol formation in lean and obese rats 153–160

JAUHONEN, V. P. see HILTUEN, J. K. 235–240

JONES, C. J. P. see SEAr, C. H. J. 715–718

JONES, H. M. see CRYER, A. 169–172

JONES, R. S. see BREWSTER, D. 257–264

KAtnov, S. L. see BALKlin, G. Y. 569–576

KAUffMAN, F. C. see WAGNER, K. R. 17–22

KEWLEY, M. A. see SEAR, C. H. J. 715–718

KIDO, R. see NOGUCHI, T. 173–175

KING, R. F. G. see BROWN, B. 297–311

KITRLAND, J. see CRYER, A. 169–172

KIVIRIKKO, K. I. see RISTELJ, J. 129–135

KNOWLIER, J. T. Oestriol-stimulated synthesis of ribonucleic acid in the uterus of the immature rat 181–183

KOPPA, V. see HIDALGO, H. A. 219–225

KREBS, H. A. see ViNA, J. 627–630, 711–713

KRESSE, H. see von FIGUra, K. 313–320

KRITCHER, E. M. see WyBorNY, L. E. 189–192

LACEY, J. H. & RANDLE, P. J. Inhibition of lactate gluconeogenesis in rat kidney by dichloroacetate 551–560

LAITHA, A. see DUNLOP, D. S. 637–642

LAWSON, D. E. M. see SPENCER, R. 93–101

LIMEBACK, H. F., SOdek, J. & BRUNETTE, D. M. Nature of collagens synthesized by monkey periodontal-ligament fibroblasts in vitro 63–71

LINNETT, P. E., MITCHELL, A. D., Osselton, M. D., MULHEIRN, L. J. & BEECHY, R. B. Citreoviridin, a specific inhibitor of the mitochondrial adenosine triphosphatase 503–510

LUNGSTEDT, I., EKMAN, B. & SÖHOLM, I. Detection and separation of lymphocytes with specific surface receptors, by using microparticles 161–165

LOGOTHETPOULOS, J. see JAIN, K. 461–467

LUCI, R. J. see WyBorNY, L. E. 189–192

LUZIKOV, V. N. see BALKlin, G. Y. 569–575

MAINWARING, W. J. P. see PARKER, M. G. 115–121

MAJUMDAR, A. P. N. see NAKHLA, A. M. 445–448

MAYES, P. A. see GardERN, R. S. 47–55

MAX, S. R. see WAGNER, K. R. 17–22

MCgowAN, J. A. & FAUSTO, N. Ornithine decarboxylase activity and the onset of deoxyribonucleic acid synthesis in regenerating liver 123–127

MCILWAIN, H. see Newman, M. 73–79

MEJER, A. J. see HENSGENS, H. E. S. J. 699–707

MEINHARD, U. see von FIGUra, K. 313–320

MERSMANN, G. see ullRICH, K. 643–650

MESSER, M. see DICKSON, J. J. 407–413

1978
INDEX OF AUTHORS

MINAKAMI, S. see HAMASAKI, N. 39-46
MINATOGAWA, Y. see NOGUCHI, T. 173-175
MITCHELL, A. D. see LINNERT, P. E. 503-510
MOHRI, H. see BROWN-WOODMAN, P. D. C. 23-37
MOHRI, T. see BROWN-WOODMAN, P. D. C. 23-37
MULHEIRN, L. J. see LINNERT, P. E. 503-510

NEILL, A. R., GRIME, D. W. & DAWSON, R. M. C. Conversion of choline methyl groups through trimethylamine into methane in the rumen 529-535
NEWMAN, M. & MCLILWAIN, H. Cellular site and state of combination of the adenosine 3':5'-cyclic monophosphate persisting after excitation of cerebral tissues 73-79
NICHOLLS, D. G. Calcium transport and proton electrochemical potential gradient in mitochondria from guinea-pig cerebral cortex and rat heart 511-522
NISHII, Y. see FUKUSHIMA, M. 495-502
NOFF, D. see EDELSTEIN, S. 227-233
NOGUCHI, T., MINATOGAWA, Y., TAKADA, Y., OKUNO, E. & KIDO, R. Subcellular distribution of pyruvate (glyoxylate) aminotransferases in rat liver 173-175
NORTHCOTE, D. H. see GREEN, J. R. 599-608

O’KEEFFE, D. T. & ANTHONY, C. The microbial metabolism of C compounds. The stoichiometry of respiration-driven protein translocation in Pseudomonas AM1 and in a mutant lacking cytochrome c 561-567
OKUNO, E. see NOGUCHI, T. 173-175
ORLOWSKI, M. & WILK, S. Synthesis of ophthalmic acid in liver and kidney in vivo 415-419
OSSELTON, M. D. see LINNERT, P. E. 503-510

PARKE, D. V. see BREWSTER, D. 257-264
PARKER, M. G., SCARCE, G. T. & MAINWARING, W. I. P. Testosterone regulates the synthesis of major proteins in rat ventral prostate 115-121
PARRY, D. G. & TAYLOR, K. W. Proinsulin biosynthesis in broken-cell preparations of islets of Langerhans 523-527
PEARSON, J. D., CARLETON, J. S., HUTCHINGS, A. & GORDON, J. L. Uptake and metabolism of adenosine by pig aortic endothelial and smooth-muscle cells in culture 265-271
PEGG, A. E., CONOVER, C. & WONG, A. Effects of aliphatic diamines on rat liver ornithine decarboxylase activity 651-660

PHILLIPS, J. H. 5-Hydroxytryptamine transport by the bovine chromaffin-granule membrane 673-679
PHILLIPS, J. H. & ALLISON, Y. P. Proton translocation by the bovine chromaffin-granule membrane 661-672
PUSCHETT, J. B. see EDELSTEIN, S. 227-233

RADD, G. K. see BUSBY, S. J. W. 103-114
RADIK, J. see COX, G. B. 593-598
RANDELLE, P. J. see FODEN, S. 615-625; LACEY, J. H. 551-560
REED, W. D. see OZAND, P. T. 583-591
REMÉSY, C., DEMIGNÉ, C. & APFÉRE, J. Inter-organ relationships between glucose, lactate and amino acids in rats fed on high-carbohydrate or high-protein diets 321-329
RICHARDS, R. E. see BUSBY, S. J. W. 103-114
RISTELI, J., TUDERMAN, L., TRYGGVASON, K. & KIVIRIKKO, K. I. Effect of hepatic injury on prolyl 3-hydroxylase and 4-hydroxylase activities in rat liver and on immunoreactive prolyl 4-hydroxylase concentrations in the liver and serum 129-135
RODRIQUEZ-SAGADE, S., FREIRE, M. & CARRION, A. Regulation of the oxidative phase of the pentose phosphate cycle in mussels 577-582
ROSS, B. D. & BULLOCK, S. The metabolic fate of glutamine nitrogen in the perfused rat kidney 177-179
ROUGHAN, P. G. see SLACK, C. R. 421-433, 437-439

SAVOILAINE, M. J. see HILTUNEN, J. K. 235-240
SCHWOCH, G. Differential activation of type-I and type-II adenosine 3':5'-cyclic monophosphate-dependent protein kinases in liver of glucagon-treated rats 469-477
SCOTT, F. W. & FORSDYKE, D. R. The rate of deoxyribonucleic acid synthesis by cultured Chinese-hamster ovary cells. An application of isotope-dilution analysis 545-549
SCARCE, G. T. see PARKER, M. G. 115-121
SELEY, P. J. see BUSBY, S. J. W. 103-114
SETCHENSKA, M. S. & ARNSTEIN, H. R. V. Changes in the lactate dehydrogenase isoenzyme pattern during differentiation of rabbit bone-marrow erythrocytoid cells 193-201
SHERRATT, H. S. A. see OSMUNDSEN, H. 337-342
SHIRA, C. K. see WILLIAMS-SMITH, D. L. 365-371
SINAI, L. see EDELSTEIN, S. 227-233
SÖHOLM, I. see LJUNGSTEDT, I. 161-165
SLACK, C. R. & ROUGHAN, P. G. Rapid temperature-induced changes in certain lipids in developing linseed and soya-bean cotyledons 437-439
SLACK, C. R., ROUGHAN, P. G. & BALASINGHAM, N. Labelling of glycerolipids in the cotyledons of developing oilseeds by [1,4-C]acetate and [2-3H]glycerol 421-433

Vol. 170

Index of Subjects

Acetate, incorporation of glycerol and, into glycerolipids of developing cotyledons of soya-bean, linseed and safflower seeds (Slack, C. R., Roughan, P. G. & Balasingham, N.) 421–433

Acetylcholinesterase, calcitonin-mediated changes in the concentration of tryptophan in rat plasma and in the concentration of 5-hydroxytryptamine and the activity of, in rat brain (Nakha, A. M. & Majumdar, A. P. N.) 445–448

Acylcarnitines, oxidation of fatty acids and transport of carnitine and, by young adult and senescent rat heart mitochondria (Hansford, R. G.) 285–295

Adenosine 3′:5′-cyclic monophosphate, subcellular site and state of combination of, persisting after electrical stimulation of superfused guinea-pig cerebral-cortex slices (Newman, M. & McIlwain, H.) 73–79

Adenosine triphosphatase, involvement of, in the translocation of protons by ox adrenal-gland-medulla chromaffin-granule membrane (Phillips, J. H. & Allison, Y. P.) 661–672

Adenosine triphosphatase, involvement of, in the transport of 5-hydroxytryptamine by ox adrenal-gland-medulla chromaffin-granule membrane (Phillips, J. H.) 673–679

Adenosine triphosphatase, magnesium ion-stimulated, Escherichia coli K12, genetic complementation between two mutant unc alleles (uncA401 and uncD409) affecting the F1 portion of (Cox, G. B., Downie, J. A., Gibson, F. & Radik, J.) 593–598

Adenosine triphosphatase, mitochondrial, heart, ox, specific inhibition by citreoviridin of the activity of (Linnett, P. E., Mitchell, A. D., Osselton, M. D., Mulheirn, L. J. & Beechey, R. B.) 503–510

Adenosine, uptake and metabolism of, by pig aortic endothelial cells and smooth-muscle cells in culture (Pearson, J. D., Carleton, J. S., Hutchings, A. & Gordon, J. L.) 265–271

Adipocytes, adipose-tissue, rat, influence of the size of, and the site of the adipose tissue on the formation of triacylglycerols in these tissues of lean and obese animals (Jamdar, S. C.) 153–160

Adipose tissue, guinea-pig, activity of clearing-factor lipase in, of animals exposed to different dietary fats during postnatal development (Cryan, A. T., Kirtland, J. S., Jones, H. M. & Yurman, M. I.) 169–172

Adipose tissue, rat, influence of fat-cell size and site of, on the formation of triacylglycerols in these tissues in lean and obese animals (Jamdar, S. C.) 153–160

Adrenal-gland medulla, ox, translocation of protons by the membrane of chromaffin granules from (Phillips, J. H. & Allison, Y. P.) 661–672

Adrenal-gland medulla, ox, transport of 5-hydroxytryptamine by the membrane of chromaffin granules from (Phillips, J. H.) 673–679

Alanine, effects of infusion of, on gluconeogenesis and ketogenesis in the rat in vivo (Ozand, P. T., Reed, W. D., Hawkins, R. L., Stevenson, J. H., Tildon, J. T. & Cornblath, M.) 583–591

Alleles, unc, mutant, two (uncA401 and uncD409), genetic complementation between, affecting the F1 portion of Escherichia coli K12 magnesium ion-stimulated adenosine triphosphatase (Cox, G. B., Downie, J. A., Gibson, F. & Radik, J.) 593–598

Alpha sarcin, see Sarcin, alpha

Amino acids, inter-organ relationships of the metabolism of glucose, lactate and, of rats fed on high-carbohydrate and high-protein diets (Rémésy, C., Demigné, C. & Aufrère, J.) 321–329

Amino acids, labelled, use of constant infusion of, for measurement of the turnover of myosin and other muscle proteins in guinea-pig heart (Wyborny, L. E., Kritcher, E. M. & Luchi, R. J.) 189–192

L-2-Amino-3-methylene cyclopropylpropionate (hypoglycin), kinetic study of the effects of, on the metabolism of glucose in the rat in vivo (Osmundsen, H., Billington, D., Taylor, R. J. & Sherratt, H. S. A.) 337–342

Androgens, regulation by, of the biosynthesis of major proteins in rat ventral prostate gland (Parker, M. G., Scrase, G. T. & Mainwarin, W. L. P.) 115–121

Androgens, regulation by, of the elongation of polyribonucleotide chains on rat ventral-prostate-gland chromatin (Thomas, P., Davies, P. & Griffiths, K.) 211–218

Anions, roles of the competition for energy and the transport of, in the interrelationships between the control of ureogenesis and gluconeogenesis in isolated rat hepatocytes (Wojezuk, A. B., Walajtys-Rode, E. I. & Geelen, M. J. H.) 379–385

Antibody, specific, horse, detection and separation of human lymphocytes by use of, immobilized in micro-particles (Ljungstedt, I., Ekman, B. & Sjöholm, I.) 161–165

Anti-(human lymphocyte) globulin, horse, detection and separation of human lymphocytes by use of, immobilized in microparticles (Ljungstedt, I., Ekman, B. & Sjöholm, I.) 161–165

Aortic endothelial cells, pig, uptake and metabolism of adenosine by pig smooth-muscle cells and, in culture (Pearson, J. D., Carleton, J. S., Hutchings, A. & Gordon, J. L.) 265–271

Ascites-tumour cells, Ehrlich, role of respiratory substrates, inorganic phosphate and temperature in the transport of calcium ions by (Charlton, R. R. & Dencher, N. A.) 537–544

Ascorbate, contribution of cytochromes and proteins to the effect of, on artificial and rat liver microsomal hydroxylating systems containing oxygen and hydrogen peroxide (Chrstil, J. & Wilson, J. T.) 693–698

Aspartate, conversion of N4-ethyl-L-asparagine into, by cell-free extracts of Pseudomonas stutzeri (Dineen, R. W. & Gray, D. O.) 487–493

Bacillus caldolyticus, energy-dependence of the oxidation of succinate by membrane vesicles from (Dawson, A. G. & Chappell, J. B.) 395–405

Vol. 170
Bean, soya (Glycine max), incorporation of acetate and glycerol into glycerolipids of developing cotyledons of, and other oilseeds (Slack, C. R., Rougahan, P. G. & Balasingham, N.) 421–433

Bean, soya (Glycine max), rapid temperature-induced changes in the composition of fatty acids of glycerolipids of developing cotyledons of linseed seeds and (Slack, C. R. & Rougahan, P. G.) 437–439

Bilirubin, use of $[^{14}O]$oxygen in a study of the catabolism of haem and the formation of, in the rat in vivo (Brown, S. B. & King, R. F. G. J.) 297–311

Blood plasma, calcitonin-mediated changes in the concentration of tryptophan in, and in the concentration of 5-hydroxytryptamine and the activity of acetylcholinesterase in the brain (Nakhlé, A. M. & Majumdar, A. P. N.) 445–448

Blood, rat, changes in the concentration of tryptophan in plasma and in the concentration of 5-hydroxytryptamine and the activity of acetylcholinesterase in the brain (Nakhlé, A. M. & Majumdar, A. P. N.) 445–448

Blood, rat, kinetic study of the effects of hypoglycin on the concentration of glucose in, in vivo (Osmundsen, H., Billington, D., Taylor, J. R. & Sherratt, H. S. A.) 337–342

Blood serum, rat, effects of hepatic injury induced by the administration of dimethyltinomatoxime on the activities of prolyl 3-hydroxylase and prolyl 4-hydroxylase in rat liver and on the concentration of immunoreactive prolyl 4-hydroxylase in, and liver (Risteli, J., Tuderman, L., Tryggvason, K. & Kivirikko, K. I.) 129–135

Blood, rat, studies of the effects of hypoglycin on the concentration of glucose in, in vivo (Osmundsen, H., Billington, D., Taylor, J. R. & Sherratt, H. S. A.) 337–342

Bone marrow, rabbit, changes in the lactate dehydrogenase isoenzyme pattern during differentiation of erythroid cells of (Setchenska, M. S. & Arnstein, H. R. V.) 193–201

Brain cortex, guinea-pig, subcellular site and state of combination of adenosine 3',5'-cyclic monophosphate persisting after electrical stimulation of superfused slices of (Newman, M. & McIlwain, H.) 73–79

Brain cortex, guinea-pig, transport of calcium ions and electrochemical potential gradient of protons in mitochondrial from, and rat heart (Nicholls, D. G.) 511–522

Brain, rat, calcitonin-mediated changes in the concentration of tryptophan in plasma and in the concentration of 5-hydroxytryptamine and the activity of acetylcholinesterase in (Nakhlé, A. M. & Majumdar, A. P. N.) 445–448

Brain, rat, changes in the activities of mitochondrial creatine kinase in, during postnatal development (Booth, R. F. G. & Clark, J. B.) 145–151

Brain, rat, rates of degradation of protein in regions of, in vivo during postnatal development (Dunlop, D. S., van Elden, W. & Lajtha, A.) 637–642

Bupivacaine, changes in the activities of enzymes involved in the pentose phosphate pathway in rat skeletal muscle during regeneration after the administration of (Wagner, K. R., Kauffman, F. C. & Max, S. R.) 17–22

Cadmium-thionein, induction of the biosynthesis of, in isolated rat liver cells (Hidalgo, H. A., Kopka, V. & Bryan, S. E.) 219–225

Calcification, stimulation of the precipitation of calcium phosphate by matrix vesicles of chick cartilage during (Felix, R., Herrmann, W. & Felisch, H.) 681–691

Calcitonin, mediation by, of changes in the concentration of tryptophan in rat plasma and in the concentration of 5-hydroxytryptamine and the activity of acetylcholinesterase in rat brain (Nakhlé, A. M. & Majumdar, A. P. N.) 445–448

Calcium ions, changes in the response to exogenous inorganic phosphate of the transport of, by blowfly flight-muscle mitochondria during development (Smith, R. L. & Bygrave, F. L.) 81–85

Calcium ions, composition of the surface glycosaminoglycans of mouse 3T3 cells and the distribution of, between the intra- and ecto-cellular compartments (Vannucchi, S., del Rosso, M., Cella, C., Urbano, P. & Chiarugi, V.) 185–188

Calcium ions, metabolism of, in isolated rat hepatocytes (Foden, S. & Randle, P. J.) 615–625

Calcium ions, properties of the energy-dependent transport of, by rat liver microsomal fraction as revealed by initial-rate measurements (Bygrave, F. L.) 87–91

Calcium ions, relationship between vitamin D-stimulated transport of, and calcium ion-binding protein in chicken small intestine (Spencer, R., Charman, M., Wilson, P. W. & Lawson, D. E. M.) 93–101

Calcium ions, role of respiratory substrates, inorganic phosphate and temperature in the transport of, by Ehrlich ascites-tumour cells (Charlton, R. R. & Wenner, C. E.) 537–544

Calcium ions, transport of, and electrochemical potential gradient of protons in guinea-pig cerebral-cortex and rat heart mitochondria (Nicholls, D. G.) 511–522

Calcium phosphate, stimulation of the precipitation of, by matrix vesicles of chick cartilage (Felix, R., Herrmann, W. & Felisch, H.) 681–691

Carbohydrate, inter-organ relationships of the metabolism of glucose, lactate and amino acids in rats fed on diets with high contents of protein and of (Remesy, C., Demigné, C. & Aufrere, J.) 321–329

Carnitine, oxidation of fatty acids and transport of acylcarnitines and, by young adult and senescent rat heart mitochondria (Hansford, R. G.) 285–295

Carthamus tinctorius, see Safflower

Cartilage, chick, stimulation of the precipitation of calcium phosphate by matrix vesicles of (Felix, R., Herrmann, W. & Fleisch, H.) 681–691

INDEX OF SUBJECTS

1978
INDEX OF SUBJECTS

Casein, formation of lipid-linked sugars as intermediates in the biosynthesis of, and other glycoproteins in lactating rabbit mammary gland (Speake, B. K. & White, D. A.) 273-283

Catecholamine-storage granules, adrenal-gland-medulla, ox, translocation of protons by the membrane of (Phillips, J. H. & Allison, Y. P.) 661-672

Catecholamine-storage granules, adrenal-gland-medulla, ox, transport of 5-hydroxytryptamine by the membrane of (Phillips, J. H.) 673-679

Cell cycle, shortening of, and reappearance of pools of deoxyribonucleoside triphosphates during vitamin B12-induced unbalanced growth of Euglena gracilis (Goetz, G. H. & Carell, E. G.) 631-636

Cells, ascites-tumour, Ehrlich, role of respiratory substrates, inorganic phosphate and temperature in the transport of calcium ions by (Charlton, R. R. & Wenner, C. E.) 537-544

Cells, endothelial, aortic, pig, uptake and metabolism of adenosine by pig smooth-muscle cells and, in culture (Pearson, J. D., Carleton, J. S., Hutchings, A. & Gordon, J. L.) 265-271

Cells, fibroblast, see Fibroblasts

Cells, ovary, Chinese-hamster, cultured, application of isotope-dilution analysis to measurement of the rate of biosynthesis of deoxyribonucleic acid by (Scott, F. W. & Forsdyke, D. R.) 543-549

Cells, smooth-muscle, pig, uptake and metabolism of adenosine by pig aortic endothelial cells and, in culture (Pearson, J. D., Carleton, J. S., Hutchings, A. & Gordon, J. L.) 265-271

Cells, T3, mouse, composition of the surface glycosaminoglycans of, and the distribution of calcium ions between the intra- and ecto-cellular compartments (Vannucchi, S., del Rosso, M., Cella, C., Urbano, P. & Chiarugi, V.) 185-187

Cells, see also Fibroblasts

Central nervous system, see Nervous system, central

Cerebellum, rat, rates of degradation of protein in, and other regions of the central nervous system in vivo during postnatal development (Dunlop, D. S., van Elden, W. & Latija, A.) 637-642

Cerebral cortex, guinea-pig, subcellular site and state of combination of adenosine 3':5'-cyclic monophosphate persisting after electrical stimulation of superfused slices of (Newman, M. & McLlwain, H.) 73-79

Cerebral cortex, guinea-pig, transport of calcium ions and electrochemical potential gradient of protons in mitochondria from, and rat heart (Nicholls, D. G.) 511-522

Cerebrum, rat, rates of degradation of protein in, and other regions of the central nervous system in vivo during postnatal development (Dunlop, D. S., van Elden, W. & Latija, A.) 637-642

Chick, embryo, metabolism of poly(adenosine diphosphate ribose) and regulation by oxygen of the growth of myocardial cells of the heart of (Ghani, Q. P. & Hollenberg, M.) 387-394

Chick, immature, induction by oestrogens of the biosynthesis of riboflavin-binding protein in liver of (Murthy, U. S. & Adiga, P. R.) 331-335

Chick, stimulation of the precipitation of calcium phosphate by matrix vesicles of cartilage from (Felix, R., Herrmann, W. & Fleisch, H.) 681-691

Chicken, relationship between vitamin D-stimulated transport of calcium ions and small-intestinal calcium ion-binding protein in (Spencer, R., Charman, M., Wilson, P. W. & Lawson, D. E. M.) 93-101

α-Chlorohydrin (3-chloropropan-1,2-diol), inhibition by, of metabolism in rat spermatozoa and location of the block in glycolysis (Brown-Woodman, P. D. C., Mohri, H., Mohri, T., Suter, D. & White, I. G.) 23-37

p-Chlorophenylalanine, comparison of α-methylphenylalanine and, as inducers of chronic hyperphenylalaninaemia in the rat during postnatal development (DelValle, J. A., Dienes, G. & Greenberg, O.) 449-459

Chlorophyll, reaction-centre (pigment P700), quantitative electron-paramagnetic-resonance measurements of, and the primary electron acceptor X and iron–sulphur centre A of the Photosystem I reaction centre of spinach-leaf chloroplasts (Heathcote, P., Williams-Smith, D. L. & Evans, M. C. W.) 373-378

Chloroplasts, spinach-leaf, quantitative electron-paramagnetic-resonance measurements of the reaction-centre chlorophyll (pigment P700), the primary electron acceptor X and iron–sulphur centre A of the Photosystem I reaction centre of (Heathcote, P., Williams-Smith, D. L. & Evans, M. C. W.) 373-378

3-Chloropropane-1,2-diol (α-chlorohydrin), inhibition by, of metabolism in rat spermatozoa and location of the block in glycolysis (Brown-Woodman, P. D. C., Mohri, H., Mohri, T., Suter, D. & White, I. G.) 23-37

Cholecalciferol, comparison of the 25-hydroxylation of 1α-hydroxycholecalciferol and, in perfused rat liver (Fukushima, M., Nishii, Y., Suzuki, M. & Suda, T.) 495-502

Cholesteryl esters, comparison of the metabolism of, and other components of chylomicrons and chylomicron remnants by perfused rat liver (Gardner, R. S. & Mayes, P. A.) 47-55

Chromaffin granules, adrenal-gland-medulla, ox, translocation of protons by the membrane of (Phillips, J. H. & Allison, Y. P.) 661-672

Chromaffin granules, adrenal-gland-medulla, ox, transport of 5-hydroxytryptamine by the membrane of (Phillips, J. H.) 673-679

Chromatin, changes in the structure of, during spermatogenesis in maturing rooster testis as demonstrated by the initiation pattern of the biosynthesis of ribonucleic acid in vitro (Mezquita, C. & Teng, C. S.) 203-210

Vol. 170
Chromatin, ventral-prostate-gland, rat, regulation by androgens of the elongation of polyribonucleotide chains on (Thomas, P., Davies, P. & Griffiths, K.) 211–218

Chylomicron remnants, comparison of the metabolism of chylomicrons and, by perfused rat liver (Gardner, R. S. & Mayes, P. A.) 47–55

Chylomicrons, comparison of the metabolism of chylomicron remnants and, by perfused rat liver (Gardner, R. S. & Mayes, P. A.) 47–55

Citreoviridin, specific inhibition by, of the activity of ox heart mitochondrial adenosine triphosphatase (Linnett, P. E., Mitchell, A. D., Osselfton, M. D., Mulheirn, L. J. & Beechey, R. B.) 503–510

Citric acid cycle, see Tricarboxylic acid cycle

Clearing-factor lipase, see Lipase, clearing-factor

Collagen, effects of hepatic injury induced by the administration of dimethylnitrosamine on the activities of prolyl 3-hydroxylase and prolyl 4-hydroxylase in rat liver and their relevance to the biosynthesis of (Risteli, J., Tuderman, L., Tryggvason, K. & Kivirikko, K. I.) 129–135

Collagens, nature of, biosynthesized by cultured monkey periodontal-ligament fibroblasts (Limeback, H. F., Sodek, J. & Brunette, D. M.) 63–71

Copper ions, effects of the administration of excess of, on the metabolism of iron in the sheep (Theil, E. C. & Calvert, K. T.) 137–143

Cotyledons, soya-bean and linseed, developing, rapid temperature-induced changes in the composition of fatty acids of glycero lipids of (Slack, C. R. & Roughan, P. G.) 437–439

Cotyledons, soya-bean, linseed and safflower, developing, incorporation of acetate and glycerol into glycero lipids of (Slack, C. R., Roughan, P. G. & Balasingham, N.) 421–433

Creatine kinase, changes in the activity of, in rat brain during postnatal development (Booth, R. F. G. & Clark, J. B.) 145–151

Cyclic adenosine 3':5'-monophosphate, see Adenosine 3':5'-cyclic monophosphate

Cytochrome c, stoicheiometry of the respiration-driven translocation of protons in Pseudomonas AM1 and in a mutant lacking (O'Keefe, D. T. & Anthony, C.) 561–567

Cytochromes, contribution of, and proteins to the effect of ascorbate on artificial and rat liver microsomal hydroxylation systems containing oxygen and hydrogen peroxide (Chrastil, J. & Wilson, J. T.) 693–698

Deoxyribonucleic acid, application of isotope-dilution analysis to measurement of the rate of biosynthesis of, by cultured Chinese-hamster ovary cells (Scott, F. W. & Forsdyke, D. R.) 545–549

Deoxyribonucleic acid, lack of correlation between changes in the activity of ornithine decarboxylase and the time of onset of biosynthesis of, in rat liver during regeneration after partial hepatectomy (McGowan, J. A. & Fausto, N.) 123–127

Deoxyribonucleoside triphosphates, shortening of the cell cycle and reappearance of pools of, during vitamin B12-induced unbalanced growth of Euglena gracilis (Goetz, G. H. & Carell, E. F.) 631–636

Development, changes in the response to exogenous inorganic phosphate of the transport of calcium ions by blowfly flight-muscle mitochondria during (Smith, R. L. & Bygrave, F. L.) 81–85

Development, postnatal, activity of clearing-factor lipase in adipose tissue of guinea-pigs exposed to different dietary fats during (Cryer, A., Kirtland, J., Jones, H. M. & Gurr, M. I.) 169–172

Development, postnatal, changes in the activity of rat brain creatine kinase during (Booth, R. F. G. & Clark, J. B.) 145–151

Development, postnatal, comparison of α-methylphenylalanine and p-chlorophenylalanine as inducers of chronic hyperphenylalaninaemia in the rat during (Del Valle, J. A., Diel, G. & Greengard, O.) 449–459

Development, postnatal, rates of degradation of protein in regions of the rat central nervous system in vivo during (Dunlop, D. S., van Elden, W. & Laljha, A.) 637–642

Development, postnatal, relationship between the content of sialic acid of the maternal milk and the activity of neuraminidase in small intestine of the suckling rat and other mammalian species during (Dickson, J. J. & Messer, M.) 407–413

Diamines, aliphatic, effects of administration of, on the activity of ornithine decarboxylase in rat liver (Pegg, A. E., Conover, C. & Wrona, A.) 651–660

Dichloroacetate, inhibition by, of gluconeogenesis from lactate in rat kidney-cortex slices (Lacey, J. H. & Randle, P. J.) 551–560

Diet, activity of clearing-factor lipase in adipose tissue of guinea pigs exposed to different fats in, during postnatal development (Cryer, A., Kirtland, J., Jones, H. M. & Gurr, M. I.) 169–173

Diet, potassium-deficient, effects of, on the activities of mouse kidney lysosomal enzymes (Cleveland, C. E. & Swank, R. T.) 249–256

Diets, high-carbohydrate and high-protein, inter-organ relationships of the metabolism of glucose, lactate and amino acids in rats fed on (Rémésy, C., Demigné, C. & Aufrère, J.) 321–329

Dihydrotestosterone (17β-hydroxy-5α-androstan-3-one), regulation by, of the elongation of polyribonucleotide chains on rat ventral-prostate-gland chromatin (Thomas, P., Davies, P. & Griffiths, K.) 211–218

1,25-Dihydroxycalciferol, relationship between transport of calcium ions stimulated by, and calcium ion-binding protein in chicken small intestine (Spencer, R., Charman, M., Wilson, P. W. & Lawson, D. E. M.) 93–101

Dimethylnitrosamine, effects of hepatic injury induced by the administration of, on the activities of prolyl 3-hydroxylase and prolyl 4-hydroxylase in rat liver and on the concentration of immunoreactive prolyl 4-hydroxylase in the liver and serum (Risteli, J., Tuderman, L., Tryggvason, K. & Kivirikko, K. I.) 129–135

Dolichol phosphate mannoside, formation of, and lipid-linked oligosaccharide by lactating rabbit mammary-gland microsomal fraction (White, D. A.) 479–486

1978
INDEX OF SUBJECTS

Ehrlich ascites-tumour cells, role of respiratory substrates, inorganic phosphate and temperature in the transport of calcium ions by (Charlton, R. R. & Wenner, C. E.) 537–544

Electrical stimulation, subcellular site and state of combination of adenosine 3':5'-cyclic monophosphate persisting after, of superfused guinea-pig cerebral-cortex slices (Newman, M. & McIlwain, H.) 73–79

Electron acceptor X, primary, quantitative electron-paramagnetic-resonance measurements of the reaction-centre chlorophyll (pigment P700) and, and iron-sulphur centre A of the Photosystem I reaction centre of spinach-leaf chloroplasts (Heathcote, P., Williams-Smith, D. L. & Evans, M. C. W.) 373–378

Endothelial cells, aortic, pig, uptake and metabolism of adenosine by pig smooth-muscle cells and, in culture (Pearson, J. D., Carleton, J. S., Hutchings, A. & Gordon, J. L.) 265–271

Energy, dependence on, of the oxidation of succinate by Bacillus caldolyticus membrane vesicles (Dawson, A. G. & Chappell, J. B.) 395–405

Ergosterol, biosynthesis of, as the terminal compound in the sterol-biosynthetic pathway in Rhizoctonia solani (Wood, S. G. & Gottlieb, D.) 343–354

Ergosterol, biosynthesis of, by a cell-free system as the terminal compound in the sterol-biosynthetic pathway of Rhizoctonia solani (Wood, S. G. & Gottlieb, D.) 355–363

Erythrocytes, human, transport of phosphoenolpyruvate through the membrane of (Hamasaki, N., Hardjono, I. S. & Minakami, S.) 39–46

Erythrocytes, rabbit, differences in the lactate dehydrogenase isoenzyme pattern of, and reticuloocytes (Setchenska, M. S. & Arnstein, H. R. V.) 193–201

Erythroid cells, bone-marrow, rabbit, changes in the lactate dehydrogenase isoenzyme pattern during differentiation of (Setchenska, M. S. & Arnstein, H. R. V.) 193–201

Escherichia coli K12, genetic complementation between two mutant unc alleles (uncA401 and uncD409) affecting the F1 portion of magnesium ion-stimulated adenosine triphosphatase of (Cox, G. B., Downie, J. A., Gibson, F. & Radik, J.) 593–598

Estradiol, see Oestradiol

Estriol, see Oestriol

Estrogens, see Oestrogens

N4-Ethyl-L-asparagine, pathway for the metabolism of, in Pseudomonas putrefaciens (Dineen, R. W. & Gray, D. O.) 487–493

Euglena gracilis, shortening of the cell cycle and reappearance of pools of deoxyribonucleoside triphosphates during vitamin B12-induced unbalanced growth of (Goetz, G. H. & Carell, E. F.) 631–636

Fat-cells, adipose-tissue, rat, influence of the size of, and the site of the adipose tissue on the formation of triacylglycerols in these tissues of lean and obese animals (Jamdar, S. C.) 153–160

Fats, dietary, different, activity of clearing-factor lipase in adipose tissue of guinea pigs exposed to, during postnatal development (Cryer, A., Kirtland, J., Jones, H. M. & Gurr, M. I.) 169–172

Fatty acids, changes in the rate of biosynthesis of, in rat liver during regeneration after partial hepatectomy (Gove, C. D. & Hems, D. A.) 1–8

Fatty acids, effects of pent-4-enoate on cellular redox state, glycolysis and oxidation of, in isolated perfused rat heart (Hiltunen, J. K., Jauhonen, V. P., Savolainen, M. J. & Hassinen, I. E.) 235–240

Fatty acids, rapid temperature-induced changes in the composition of, of glycerolipids of developing cotyledons of soya-bean and linseed seeds (Slack, C. R. & Roughan, P. G.) 437–439

Fatty acids, transport of carnitine and acylcarnitines and oxidation of, by young adult and senescent rat heart mitochondria (Hansford, R. G.) 285–295

Ferritin, effect of the administration of excess of copper ions on the metabolism of, and other iron compounds in the sheep (Theil, E. C. & Calvert, K. T.) 137–143

Fibroblasts, periodontal-ligament, monkey, cultured, nature of the collagens biosynthesized by (Limeback, H. F., Sodek, J. & Brunette, D. M.) 63–71

Fibroblasts, skin, human, effects of anti-microtubular agents on the secretion and endocytosis of lysosomal hydrolyases and of sulphated glycosaminoglycans by, in culture (von Figura, K., Kresse, H., Meinward, U. & Holfreicher, D.) 313–320

Flight muscle, see Muscle, flight

Formiminoglutamate, reaction of, with ox liver glutamate dehydrogenase (Viña, J., Hems, R. & Krebs, H. A.) 711–713

Gastrointestinal micro-organisms, role of, in the metabolism of shikimate in the rat (Brewster, D., Jones, R. S. & Parke, D. V.) 257–264

Globulin, anti-(human lymphocyte), horse, detection and separation of human lymphocytes by use of, immobilized in microparticles (Ljungstedt, I., Ekman, B. & Sjöholm, I.) 161–165

Glucagon, differential activation of adenosine 3':5'-cyclic monophosphate-dependent protein kinases I and II in liver of rats treated with (Schwoch, G.) 469–477

Gluconeogenesis, inhibition by dichloroacetate of, from lactate in rat kidney-cortex slices (Lacey, J. H. & Randle, P. J.) 551–560

Gluconeogenesis, roles of the transport of anions and the competition for energy in the interrelationships between the control of ureogenesis and, in isolated rat hepatocytes (Wojtczak, A. B., Walajtys-Rode, E. I. & Geelen, M. J. H.) 379–385

Vol. 170
Glutamine, dehydrogenase, Glucose, incorporation of alanine on the formation of ketone bodies and, in the rat in vivo (Ozsand, P. T., Reed, W. D., Hawkins, R. L., Stevenson, J. H., Tildon, J. T. & Cornblath, M.) 583–591

Glucose, inhibition by dichloroacetate of the formation of, from lactate in rat kidney-cortex slices (Lacey, J. H. & Randle, P. J.) 551–560

Glucose, inter-organ relationships of the metabolism of lactate, amino acids and, of rats fed on high-carbohydrate and high-protein diets (Rémesy, C., Demigné, C. & Aufrère, J.) 321–329

Glucose, kinetic study of the effects of hypoglycin on the metabolism of, in the rat in vivo (Osmundsen, H., Billington, D. Taylor, J. R. & Sherratt, H. S. A.) 337–342

Glucose, 6-phosphate, phosphorus nuclear-magnetic-resonance studies of compartmentation of inorganic phosphate and, in rat skeletal muscle (Bushby, S. J. W., Gadian, D. G., Radda, G. K., Richards, R. E. & Seeley, P. J.) 103–114

Glucose, regulation of the oxidative phase of the pentose phosphate pathway for the metabolism of, in mussel hepatopancreas (Rodríguez-Segade, S., Freire, M. & Carrion, A.) 577–582

Glucose, roles of the transport of anions and the competition for energy in the interrelationships between the control of the formation of urea and, in isolated rat hepatocytes (Wojtczak, A. B., Walajtys-Rode, E. I. & Geelen, M. J. H.) 379–385

β-Glucuronidase, lysosomal, kidney, mouse, effects of dietary potassium deficiency on the activities of, and other enzymes (Cleveland, C. E. & Swank, R. T.) 249–256

Glutamate dehydrogenase, liver, ox, reaction of formiminoglutamate with (Viña, J., Hems, R. & Krebs, H. A.) 711–713

Glutamine, metabolic fate of the nitrogen of, in perfused rat kidney (Ross, B. D. & Bullock, S.) 177–179

γ-Glutamyl triptides, biosynthesis of, in mouse liver and kidney in vivo (Orlowski, M. & Wilk, S.) 415–419

Glutathione, reduced, maintenance of the concentration of, in isolated rat hepatocytes (Viña, J., Hems, R. & Krebs, H. A.) 627–630

Glycerol, incorporation of acetate and, into glycerolipids of developing cotyledons of soya-bean, linseed and safflower seeds (Slack, C. R., Roughan, P. G. & Balasingham, N.) 421–433

Glycerolipids, incorporation of acetate and glycerol into, of developing cotyledons of soya-bean, linseed and safflower seeds (Slack, C. R., Roughan, P. G. & Balasingham, N.) 421–433

Glycerolipids, influence of fat-cell size and site of adipose tissue on the biosynthesis of, in these tissues in lean and obese animals (Jamdar, S. C.) 153–160

Glycerolipids, rapid temperature-induced changes in the composition of fatty acids of, of developing cotyledons of soya-bean and linseed seeds (Slack, C. R. & Roughan, P. G.) 437–439

Glycine max, see Bean, soya

Glycoysis, effects of pen-4-enoate on cellular redox state, oxidation of fatty acids and, in isolated perfused rat heart (Hiltunen, J. K., Jauhonen, V. P., Savolainen, M. J. & Hassinen, I. E.) 235–240

Glycysis, inhibition by α-chlorohydrin of, in ram spermatozoa and location of the block in (Brown-Woodman, P. D. C., Mohri, H., Mohri, T., Suter, D. & White, I. G.) 23–37

Glycoproteins, formation of lipid-linked sugars as intermediates in the biosynthesis of, in lactating rabbit mammary gland (Speake, B. K. & White, D. A.) 273–283

Glycoproteins, structure and function of, biosynthesized during the production of slime polysaccharides by membranes of maize-seedling root-cap cells (Green, J. R. & Northcote, D. H.) 599–608

Glycosaminoglycans, surface, 3T3-cell, mouse, composition of, and the distribution of calcium ions between the intra- and ecto-cellular compartments (Vannucchi, S., del Rosso, M., Cella, C., Urban, P. & Chiarugi, V.) 185–187

Golgi apparatus, root-cap-cell, maize-seedling, structure and function of glycoproteins biosynthesized during the production of slime polysaccharides by (Green, J. R. & Northcote, D. H.) 599–608

Haem, use of [18O]oxygen in a study of the catabolism of, and the formation of bilirubin in the rat in vivo (Brown, S. B. & King, R. F. G. J.) 297–311

Heart, chick-embryo, metabolism of poly(adenosine diphosphate ribose) and regulation by oxygen of the growth of myocardial cells of (Ghani, Q. P. & Hollenberg, M.) 387–394

Heart, guinea-pig, use of constant infusion of labelled amino acids for measurement of the turnover of myosin and other muscle proteins in (Wyborn, L. E., Kritcher, E. M. & Luchi, R. J.) 189–192

Heart, ox, specific inhibition by citreoviridin of the activity of mitochondrial adenosine triphosphatase from (Linnett, P. E., Mitchell, A. D., Osselton, M. D., Mulheirn, L. J. & Beechey, R. B.) 503–510

1978
INDEX OF SUBJECTS

Heart, rat, perfused, isolated, effects of pent-4-enoate on cellular redox state, glycolysis and oxidation of fatty acids in (Hiltunen, J. K., Jauhonen, V. P., Savolainen, M. J. & Hassinen, I. E.) 235–240
Heart, rat, perfused, isolated, effects of pent-4-enoate on intermediary metabolism in (Hiltunen, J. K.) 241–247
Heart, rat, transport of calcium ions and electrochemical potential gradient of protons in mitochondria from, and guinea-pig cerebral cortex (Nicholls, D. G.) 511–522
Heart, rat, young adult and senescent, oxidation of fatty acids and transport of carnitine and acylcarnitines by mitochondria from (Hansford, R. G.) 285–295

Hen, see Chicken

Hepatocytoma, partial, changes in the rate of biosynthesis of fatty acids in rat liver during regeneration after (Gove, C. D. & Hems, D. A.) 1–8
Hepatocytoma, partial, lack of correlation between changes in the activity of ornithine decarboxylase and the time of onset of biosynthesis of deoxyribonucleic acid in rat liver during regeneration after (McGowan, J. A. & Fausto, N.) 123–127
Hepatocytes, rat, isolated, maintenance of the concentration of reduced glutathione in (Viña, J., Hems, R. & Krebs, H. A.) 627–630
Hepatocytes, rat, isolated, metabolism of calcium ions in (Foden, S. & Randle, P. J.) 615–625
Hepatocytes, rat, isolated, roles of the transport of anions and the competition for energy in the interrelationships between the control of ureogenesis and gluconeogenesis in (Wojtczak, A. B., Walajtys-Rode, E. I. & Geelen, M. J. H.) 379–385
Hepatopancreas, mussel, regulation of the oxidative phase of the pentose phosphate pathway for the metabolism of glucose in (Rodriguez-Segade, S., Freire, M. & Carrion, A.) 577–582
Histidine aminotransferase, subcellular distribution of serine aminotransferase, phenylalanine aminotransferase and, with pyruvate or glyoxylate as amino acceptor in rat liver (Noguchi, T., Minatogawa, Y., Takada, Y., Okuno, E. & Kido, R.) 173–175
Hydrogen ions, stoichiometry of the respiration-driven translocation of, in Pseudomonas AM1 and in a mutant lacking cytochrome c (O’Keefe, D. T. & Anthony, C.) 561–567
Hydrogen ions, translocation of, by ox adrenal-gland-medulla chromaffin-granule membrane (Phillips, J. H. & Allison, Y. P.) 661–672
Hydrogen ions, transport of calcium ions and electrochemical potential gradient of, in guinea-pig cerebral-cortex and rat heart mitochondria (Nicholls, D. G.) 511–522
Hydrogen peroxide, contribution of cytochromes and proteins to the effect of ascorbate on artificial and rat liver microsomal hydroxylating systems containing oxygen and (chrastil, J. & Wilson, J. T.) 693–698

Hydrolases, lysosomal, effects of anti-microtubular agents on the secretion and endocytosis of, and of sulphated glycosaminoglycans by human skin fibroblasts in culture (von Figura, K., Kresse, H., Meinhard, U. & Holtfreter, D.) 313–320
17β-Hydroxy-5α-androstan-3-one (dihydrotestosterone), regulation by, of the elongation of polyribonucleotide chains on rat ventral-prostate-gland chromat (Thomas, P., Davies, P. & Griffiths, K.) 211–218
1α-Hydroxycholecalciferol, comparison of the 25-hydroxylation of cholecalciferol and, in perfused rat liver (Fukushima, M., Nishi, Y., Suzuki, M. & Suda, T.) 495–502
Hydroxylation systems, microsomal, liver, rat, contribution of cytochromes and proteins to the effect of ascorbate on, containing oxygen and hydrogen peroxide (chrastil, J. & Wilson, J. T.) 693–698
5-Hydroxytryptamine, calcitonin-mediated changes in the concentration of tryptophan in rat plasma and in the concentration of, and the activity of acetylcholinesterase in rat brain (Nakhla, A. M. & Majumdar, A. P. N.) 445–448
Hyperphenylalaninaemia, chronic, comparison of α-methylphenylalanine and p-chlorphenylalanine as inducers of, in the rat during postnatal development (Del Valle, J. A., Dienel, G. & Greengard, O.) 449–459
Hypoglycin (1,2-amino-3-methylenecyclopropylpropionate), kinetic study of the effects of, on the metabolism of glucose in the rat in vivo (Osmundsen, H., Billington, D., Taylor, J. R. & Sherratt, H. S. A.) 337–342

Inorganic phosphate, see Phosphate, inorganic
Insulin precursor, see Proinsulin
Insulin, stimulation by metabolic signals produced by purine ribonucleosides of the biosynthesis of proinsulin and secretion of, by isolated mouse pancreatic islets of Langerhans (Jain, K. & Logothetopoulos, J.) 461–467
Intestine, small, mammalian, suckling, relationship between the content of sialic acid of the maternal milk and the activity of neuraminidase in (Dickson, J. & Messer, M.) 407–413
Intestine, small, rat, inter-organ relationships of the metabolism of glucose, lactate and amino acids in, and other tissues of animals fed on high-carbohydrate and high-protein diets (Rémésy, C., Demigné, C. & Aufrère, J.) 321–329
Iron, effects of the administration of excess of copper ions on the metabolism of, in the sheep (Theil, E. C. & Calvert, K. T.) 137–143

Vol. 170
INDEX OF SUBJECTS

Lactation, formation of lipid-linked sugars by rabbit mammary-gland microsomal fraction during (White, D. A.) 479–486
Ligament (periodontal) fibroblasts, monkey, culture, nature of the collagen biosynthesized by (Limeback, H. F., Sodel, J. & Brunette, D. M.) 63–71
Linsed (Lunus usitatissimum) seeds, incorporation of acetate and glycerol into glycolipids of developing cotyledons of, and other oilseeds (Slack, C. R., Roughan, P. G. & Balasingham, N.) 421–433
Linsed (Lunus usitatissimum) seeds, rapid temperature-induced changes in the composition of fatty acids of glycolipids of developing cotyledons of soya bean and (Slack, C. R. & Roughan, P. G.) 437–439

Lunus usitatissimum, see Linsseed

Lipase, clearing-factor, activity of, in adipose tissue of guinea pigs exposed to different dietary fats during postnatal development (Cryer, A., Kirtland, J., Jones, H. M. & Gurr, M. I.) 169–172
Lipid, formation of sugars linked to, as intermediates in the biosynthesis of glycoproteins in lactating rabbit mammary gland (Speake, B. K. & White, D. A.) 273–283
Lipids, formation of sugars linked to, by lactating rabbit mammary-gland microsomal fraction (White, D. A.) 479–486

Lipogenesis, changes in the rate of, in rat liver during regeneration after partial hepatectomy (Gove, C. D. & Hems, D. A.) 1–8
Lipoprotein lipase, see Lipase, clearing-factor

Liver cells, rat, isolated, induction of the biosynthesis of cadmium-thionein in (Hidalgo, H. A., Koppa, V. & Bryan, S. E.) 219–225
Liver cells, rat, isolated, maintenance of the concentration of reduced glutathione in (Vila, J., Hems, R. & Krebs, H. A.) 627–630
Liver cells, rat, isolated, metabolism of calcium ions in (Foden, S. & Randle, P. J.) 615–625

Lactate dehydrogenase, changes in the isoenzyme pattern of, during differentiation of rabbit bone-marrow erythroid cells (Setchenska, M. S. & Arnstein, H. R. V.) 193–201
Lactate, inhibition by dichloroacetate of gluconeogenesis from, in rat kidney-cortex slices (Lacey, J. H. & Randle, P. J.) 551–560
Lactate, inter-organ relationships of the metabolism of glucose, amino acids and, of rats fed on high-carbohydrate and high-protein diets (Rémy, C., Demigné, C. & Aufrère, J.) 321–329
Lactation, formation of lipid-linked sugars as intermediates in the biosynthesis of glycoproteins in rabbit mammary gland during (Speake, B. K. & White, D. A.) 273–283

Ketogenesis, effects of infusion of alanine on gluconeogenesis and, in the rat in vivo (Ozand, P. T., Reed, W. D., Hawkins, R. L., Stevenson, J. H., Tildon, J. T. & Cornblath, M.) 583–591
Kidney cortex, rat, inhibition by dichloroacetate of gluconeogenesis from lactate in slices of (Lacey, J. H. & Randle, P. J.) 551–560
Kidney, mouse, biosynthesis of ophthalmic acid in, and liver in vivo (Orlowski, M. & Wilk, S.) 415–419
Kidney, mouse, effects of dietary potassium deficiency on the activities of lysosomal enzymes of (Cleveland, C. E. & Swank, R. T.) 249–256
Kidney, rat, perfused, metabolic fate of the nitrogen of glutamine in (Ross, B. D. & Bullock, S.) 177–179
Kidney, sheep, effects of the administration of excess of copper ions on the metabolism of iron in, and other organs (Theil, E. C. & Calvert, K. T.) 137–143

Iron-sulphur centre A, quantitative electron-paramagnetic-resonance measurements of the reaction-centre chlorophyll (pigment P700), the primary electron acceptor X and, of the Photosystem I reaction centre of spinach-leaf chloroplasts (Heathcote, P., Williams-Smith, D. L. & Evans, M. C. W.) 373–378
Islets of Langerhans, pancreatic, mouse, isolated, stimulation by metabolic signals produced by purineribonucleosides of the biosynthesis of proinsulin and secretion of insulin by (Jain, K. & Logothetopoulos, J.) 461–467
Islets of Langerhans, pancreatic, rabbit, isolated, biosynthesis of proinsulin by broken-cell preparations of (Parry, D. G. & Taylor, K. W.) 523–527

Liver cells, rat, isolated, roles of the transport of anions and the competition for energy in the interrelationships between the control of ureogenesis and gluconeogenesis in (Wojtczak, A. B., Walajtys-Rode, E. L. & Geelen, M. J. H.) 379–385
Liver, chick, immature, induction by oestrogens of the biosynthesis of riboflavin-binding protein in (Murthy, U. S. & Adiga, P. R.) 331–335
Liver, mouse, biosynthesis of ophthalmic acid in, and kidney in vivo (Orlowski, M. & Wilk, S.) 415–419
the between the biosynthesis of S. dehydrogenase A. (Chrastil, J. & Wilson, J.) 693–698
Liver, rat, differential activation of adenosine 3':5'-cyclic monophosphate-dependent protein kinases I and II in, of glucagon-treated animals (Schwoch, G.) 469–477
Liver, rat, effects of administration of aliphatic diamines on the activity of ornithine decarboxylase in (Pegg, A. E., Conover, C. & Wrona, A.) 651–660
Liver, rat, effects of hepatic injury induced by the administration of dimethylsulfoxide on the activities of prolyl 3-hydroxylase and prolyl 4-hydroxylase in, and on the concentration of immunoreactive prolyl 4-hydroxylase in the liver and serum (Risteli, J., Tuderman, L., Tryggvason, K. & Kivirikko, K. I.) 129–135
Liver, rat, inter-organ relationships of the metabolism of glucose, lactate and amino acids in, and other tissues of animals fed on high-carbohydrate and high-protein diets (Rémésy, C., Demigné, C. & Auvrèdre, J.) 321–329
Liver, rat, lack of correlation between changes in the activity of ornithine decarboxylase and the time of onset of biosynthesis of deoxyribonucleic acid in, during regeneration after partial hepatectomy (McGowan, J. A. & Fausto, N.) 123–127
Liver, rat, perfused, comparison of the 25-hydroxylation of cholecalciferol and 1α-hydroxycholecalciferol in (Fukushima, M., Nishii, Y., Suzuki, M. & Suda, T.) 495–502
Liver, rat, perfused, comparison of the metabolism of chylomicrons and chylomieron remnants by (Gardner, R. S. & Mayes, P. A.) 47–55
Liver, rat, properties of the energy-dependent transport of calcium ions by microsomal fraction from, as revealed by initial-rate measurements (Bygrave, F. L.) 87–91
Liver, rat, subcellular distribution of activities of serine aminotransferase, phenylalanine aminotransferase and histidine aminotransferase with pyruvate or glycine as amino acceptor in (Noguchi, T., Minatogawa, Y., Takada, Y., Okuno, E. & Kido, R.) 173–175
Liver, sheep, effects of the administration of excess copper ions on the metabolism of iron in, and other organs (Theil, E. C. & Calvert, K. T.) 137–143
Lucilia cuprina, see Blowfly
Luteinizing hormone, see Lutropin
Lymphocytes, human, detection and separation of, by use of horse anti-human lymphocyte globulin immobilized in microparticles (Ljungstedt, L., Ekman, B. & Sjöholm, L.) 161–165
Lysosomes, bone-marrow, rabbit, involvement of enzymes of, in changes in the lactate dehydrogenase isoenzyme pattern during differentiation of erythroid cells (Setchenska, M. S. & Steinberg, H. R. V.) 193–201
Lysosomes, kidney, mouse, effects of dietary potassium deficiency on the activities of enzymes of (Cleveland, C. E. & Swank, R. T.) 249–256
Lysosomes, skin-fibroblast, human, effects of anti-microtubular agents on the secretion and endocytosis of hydrolases of, and of sulphated glycosaminoglycans by the cells in culture (von Figura, K., Kresse, H., Meinhard, U. & Holtfrether, D.) 313–320

Macaca fasicularis, see Monkey
Maize (Zea mays) seedlings, structure and function of glycoproteins biosynthesized during the production of slime polysaccharides by membranes of root-cap cells of (Green, J. R. & Northcote, D. H.) 599–608
Mammary gland, rabbit, lactating, formation of lipid-linked sugars as intermediates in the biosynthesis of glycoproteins in (Speake, B. K. & White, D. A.) 273–283
Mammary gland, rabbit, lactating, formation of lipid-linked sugars by microsomal fraction from (White, D. A.) 479–486
Mammary gland, rat, lactating, effects of olate on the utilization of glucose and lipogenesis in acinar cells isolated from (Robinson, A. M. & Williamson, D. H.) 609–613
Maracaine, see Bupivacaine
Matrix vesicles, cartilage, chick, stimulation of the precipitation of calcium phosphate by (Felix, R., Herrmann, W. & Felisch, H.) 681–691
Membrane, chromaffin-granule, adrenal-gland-medulla, ox, translocation of protons by (Phillips, J. H. & Allison, Y. P.) 661–672
Membrane, chromaffin-granule, adrenal-gland-medulla, ox, transport of 5-hydroxytryptamine by (Phillips, J. H.) 673–679
Membrane, erythrocyte, human, transport of phosphonopyruvate through (Hamasaki, N., Hardjono, I. S. & Minakami, S.) 39–46
Membrane vesicles, Bacillus caldotricus, energy-dependence of the oxidation of succinate by (Dawson, A. G. & Chappell, J. B.) 395–405
Membranes, root-cap-cell, maize-seedling, structure and function of glycoproteins biosynthesized during the production of slime polysaccharides by (Green, J. R. & Northcote, D. H.) 599–608

Vol. 170

α-Methylphenylalanine, comparison of p-chlorophenylalanine and, as inducers of chronic hyperphenylalaninaemia in the rat during postnatal development (DelValle, J. A., Dienel, G. & Greengard, O.) 449–459

Micro-organisms, gastrointestinal, role of, in the metabolism of shikimate in the rat (Brewster, D., Jones, R. S. & Parke, D. V.) 257–264

Microsomal fraction, liver, rat, contribution of cytochromes and proteins to the effect of ascorbate on hydroxylation systems of, containing oxygen and hydrogen peroxide (Chrstil, J. & Wilson, J. T.) 693–698

Microsomal fraction, liver, rat, properties of the energy-dependent transport of calcium ions by, as revealed by initial-rate measurements (Bygrave, F. L.) 87–91

Microsomal fraction, mammary-gland, rabbit, lactating, formation of lipid-linked sugars by (White, D. A.) 479–486

Milk, mammalian, maternal, relationship between the content of sialic acid of, and the activity of neuramidase in the small intestine of the suckling animals (Dickson, J. J. & Messer, M.) 407–413

Mitochondria, brain, rat, changes in the activity of creatine kinase of, during postnatal development (Booth, R. F. G. & Clark, J. B.) 145–151

Mitochondria, cerebral-cortex, guinea-pig, transport of calcium ions and electrochemical potential gradient of protons in rat heart mitochondria and (Nicholls, D. G.) 511–522

Mitochondria, flight-muscle, blowfly, changes in the response to exogenous inorganic phosphate of the transport of calcium ions by, during development (Smith, R. L. & Bygrave, F. L.) 81–85

Mitochondria, heart, ox, specific inhibition by citreoviridin of the activity of adenine triphosphatase from (Lennert, P. E., Mitchell, A. D., Osselton, M. D., Mulheirn, L. J. & Beechey, R. B.) 503–510

Mitochondria, heart, rat, young adult and senescent, oxidation of fatty acids and transport of carnitine and acylcarnitines by (Hansford, R. G.) 285–295

Mitochondria, liver, rat, metabolism of calcium ions in (Foden, S. & Randle, P. J.) 615–625

Monkey (Macaca fuscata) periodontal-ligament fibroblasts, cultured, nature of the collagens biosynthesized by (Limeback, H. F., Sodek, J., & Brunette, D. M.) 181–183

Muscle, flight, blowfly, changes in the response to exogenous inorganic phosphate of the transport of calcium ions by mitochondria from, during development (Smith, R. L. & Bygrave, F. L.) 81–85

Muscle, heart, guinea-pig, use of constant infusion of labelled amino acids for measurement of the turnover of myosin and other proteins in (Wyborn, L. E., Kritcher, E. M. & Luchi, R. J.) 189–192

Muscle, skeletal, rat, changes in the activities of enzymes involved in the pentose phosphate pathway in, during regeneration after the administration of bupivacaine (Wagner, K. R., Kauffman, F. C. & Max, S. R.) 17–22

Muscle, skeletal, rat, phosphorus nuclear-magnetic-resonance studies of compartmentation of inorganic phosphate and organic phosphates in (Busby, S. J. W., Gadian, D. G., Radda, G. K., Richards, R. E. & Seeley, P. J.) 103–114

Muscle (smooth) cells, pig, uptake and metabolism of adenosine by pig aortic endothelial cells and, in culture (Pearson, J. D., Carleton, J. S., Hutchings, A. & Gordon, J. L.) 265–271

Mussel (Mytilus edulis), regulation of the oxidative phase of the pentose phosphate pathway for the metabolism of glucose in the hepatopancreas of (Rodriguez-Segade, S., Freire, M. & Carrion, A.) 577–582

Myocardial cells, heart, chick-embryo, metabolism of poly(adenosine diphosphate ribose) and regulation by oxygen of the growth of (Ghani, Q. P. & Hollemen, M.) 387–394

Myosin, use of constant infusion of labelled amino acids for measurement of the turnover of, and other muscle proteins in guinea-pig heart (Wyborn, L. E., Kritcher, E. M. & Luchi, R. J.) 189–192

Mytilus edulis, see Mussel

Nervous system, central, rat, rates of degradation of protein in regions of, in vivo during postnatal development (Dunlop, D. S., van Elden, W. & Lajtha, A.) 637–642

Neuraminidase, relationship between the content of sialic acid of the maternal milk and the activity of, in small intestine of the suckling rat and other mammalian species (Dickson, J. J. & Messer, M.) 407–413

Oestradiol-17β, induction by, of the biosynthesis of riboflavin-binding protein in immature chick liver (Murthy, U. S. & Adiga, P. R.) 331–335

Oestradiol-17β, stimulation by oestriol and, of the biosynthesis of ribonucleic acids in immature rat uterus (Knowler, J. T.) 181–183

Oestriol, stimulation by, of the biosynthesis of ribonucleic acids in immature rat uterus (Knowler, J. T.) 181–183

Oestrogens, induction by, of the biosynthesis of riboflavin-binding protein in immature chick liver (Murthy, U. S. & Adiga, P. R.) 331–335

Oestrogens, stimulation by, of the biosynthesis of ribonucleic acids in immature rat uterus (Knowler, J. T.) 181–183

1978
Olate, effects of, on the utilization of glucose and lipo-genes in isolated lactating rat mammary-gland acinar cells (Robinson, A. M. & Williamson, D. H.) 609–613
Oligosaccharide, lipid-linked, formation of polyeprenyl phosphate mannose and, by lactating rabbit mammary-gland microsomal fraction (White, D. A.) 479–486
Oligosaccharides, lipid-linked, formation of, as intermediates in the biosynthesis of glycoproteins in lactating rabbit mammary gland (Speake, B. K. & White, D. A.) 273–283
Ophthalmic acid, biosynthesis of, in mouse liver and kidney in vivo (Orlowski, M. & Wilk, S.) 415–419
Ornithine decarboxylase, effects of administration of aliphatic diaminos on the activity of, in rat liver (Pegg, A. E., Conover, C. & Wrona, A.) 651–660
Ornithine decarboxylase, lack of correlation between changes in the activity of, and the time of onset of biosynthesis of deoxyribonucleic acid in rat liver during regeneration after partial hepatectomy (McGowan, J. A. & Fausto, N.) 123–127
Ovary cells, Chinese-hamster, cultured, application of isotope-dilution analysis to measurement of the rate of biosynthesis of deoxyribonucleic acid by (Scott, F. W. & Forsdyke, D. R.) 545–549
Oxygen, contribution of cytochromes and proteins to the effect of ascorbate on artificial and rat liver microsomal hydroxylation systems containing hydrogen peroxide and (Christchl, J. & Wilson, J. T.) 693–698
Oxygen, effects of pent-4-enoate on the consumption of, and on cellular redox state, glycosylation and oxidation of fatty acids in isolated perfused rat heart (Hiltunen, J. K., Jauhonen, V. P., Savolainen, M. J. & Hassinen, I. E.) 235–240
Oxygen, metabolism of poly(adenosine diphosphate ribose) and regulation by, of the growth of chick-embryo heart myocardial cells (Ghani, Q. P. & Hollenberg, M.) 387–394
[¹⁸O]Oxygen, use of, in a study of the catabolism of haem and the formation of bilirubin in the rat in vivo (Brown, S. B. & King, R. F. G. J.) 297–311
Pancreas, mouse, stimulation by metabolic signals produced by purine ribonucleosides of the biosynthesis of proinsulin and secretion of insulin by islets of Langerhans isolated from (Jain, K. & Logothetopoulos, J.) 461–467
Pancreas, rabbit, biosynthesis of proinsulin by broken-cell preparations of islets of Langerhans isolated from (Parry, D. G. & Taylor, K. W.) 523–527
Pent-4-enoate, effects of, on cellular redox state, glycosylation and oxidation of fatty acids in isolated perfused rat heart (Hiltunen, J. K., Jauhonen, V. P., Savolainen, M. J. & Hassinen, I. E.) 235–240
Pent-4-enoate, effects of, on intermediary metabolism in isolated perfused rat heart (Hiltunen, J. K.) 241–247
Pentose phosphate pathway, changes in the activities of enzymes involved in, in rat skeletal muscle during regeneration after the administration of bupivacaine (Wagner, K. R., Kauffman, F. C. & Max, S. R.) 17–22
Pentose phosphate pathway, regulation of the oxidative phase of, for the metabolism of glucose in mussel hepatopancreas (Rodriguez-Segade, S., Freire, M. & Carrion, A.) 577–582
Peptidyl-transfer ribonucleic acid, novel method for assay of the reaction of puromycin with, and its use in studying the mode of action of alpha sarcin and other inhibitors on the biosynthesis of protein by a cell-free system from rabbit reticulocytes (Hobden, A. N. & Cundliffe, E.) 57–61
Peroxide, hydrogen, contribution of cytochromes and proteins to the effect of ascorbate on artificial and rat liver microsomal hydroxylation systems containing oxygen and (Christchl, J. & Wilson, J. T.) 693–698
pH, intracellular, use of phosphorus nuclear-magnetic-resonance to indicate the presence of inorganic phosphate in rat skeletal muscle in two compartments distinguished by differences in (Busby, S. J. W., Gadian, D. G., Radda, G. K., Richards, R. E. & Seeley, P. J.) 103–114
Phenylalanine aminotransferase, subcellular distribution of serine aminotransferase, histidine aminotransferase and, with pyruvate or glyoxylate as amino acceptor in rat liver (Noguchi, T., Minatogawa, Y., Takada, Y., Okuno, E. & Kido, R.) 173–175
Phenylalanine, comparison of α-methylphenylalanine and p-chlorophenylalanine as inducers of chronic high concentrations of, in rat blood during postnatal development (DelValle, J. A., Di nel, G. & Greengard, O.) 449–459
Phenyketonuria, comparison of α-methylphenylalanine and p-chlorophenylalanine as inducers of chronic hyperphenylalaninaemia in the rat during postnatal development and suitability of the treated animals as models for (DelValle, J. A., Dinel, G. & Greengard, O.) 449–459
Phosphate, inorganic, exogenous, changes in the response to, of the transport of calcium ions by blowfly flight-muscle mitochondria during development (Smith, R. L. & Bygrave, F. L.) 81–85
Phosphate, inorganic, phosphorus nuclear-magnetic-resonance studies of compartmentation of organic phosphates and, in rat skeletal muscle (Busby, S. J. W., Gadian, D. G., Radda, G. K., Richards, R. E. & Seeley, P. J.) 103–114
Phosphate, inorganic, role of respiratory substrates, temperature and, in the transport of calcium ions by Ehrlich ascites-tumour cells (Charlton, R. R. & Wenner, C. E.) 537–544
Phosphates, organic, phosphorus nuclear-magnetic-resonance studies of compartmentation of inorganic phosphate and, in rat skeletal muscle (Busby, S. J. W., Gadian, D. G., Radda, G. K., Richards, R. E. & Seeley, P. J.) 103–114
Phosphoenolpyruvate, transport of, through the human erythrocyte membrane (Hamasaki, N., Hardjono, I. S. & Minakami, S.) 39–46

Vol, 170
Phosphorus nuclear magnetic resonance, use of, for the study of compartmentation of inorganic phosphate and, organic phosphates in rat skeletal muscle (Busby, S. J. W., Gadian, D. G., Radda, G. K., Richards, R. E. & Seeley, P. J.) 103–114

Photosystem I reaction centre, chloroplast, spinach-leaf, quantitative electron-paramagnetic-resonance measurements of the reaction-centre chlorophyll (pigment P700), the primary electron acceptor X and iron-sulphur centre A of (Heathcote, P., Williams-Smith, D. L. & Evans, M. C. W.) 373–378

Phytophthora cinnamomi, evidence from cell-free systems for differences in the pathways for the biosynthesis of sterols in Rhizoctonia solani and (Wood, S. G. & Gottlieb, D.) 355–363

Phytophthora cinnamomi, evidence from mycelial studies for differences in the pathways for the biosynthesis of sterols in Rhizoctonia solani and (Wood, S. G. & Gottlieb, D.) 343–354

Pigment P700 (reaction-centre chlorophyll), quantitative electron-paramagnetic-resonance measurements of, and the primary electron acceptor X and iron-sulphur centre A of the Photosystem I reaction centre of spinach-leaf chloroplasts (Heathcote, P., Williams-Smith, D. L. & Evans, M. C. W.) 373–378

Plasma, rat, calcitonin-mediated changes in the concentration of tryptophan in, and in the concentration of 5-hydroxytryptamine and the activity of acetylcholinesterase in the brain (Nakhla, A. M. & Majumdar, A. P. N.) 445–448

Poly(adenosine diphosphate ribose), metabolism of, and regulation by oxygen of the growth of chick-embryo heart myocardial cells (Ghani, Q. P. & Hollenberg, M.) 387–394

Polymamines, effects of administration of aliphatic diamines on the activity of ornithine decarboxylase and biosynthesis of, in rat liver (Pegg, A. E., Conover, C. & Wrona, A.) 651–660

Polypropenyl phosphate mannos, formation of, and lipid-linked oligosaccharide by lactating rabbit mammary gland microsomal fraction (White, D. A.) 479–486

Polyribonucleotide chains, regulation by androgens of the elongation of, on rat ventral-prostate-gland chromatin (Thomas, P., Davies, P. & Griffiths, K.) 211–218

Polysaccharides, slime, structure and function of glyco-proteins biosynthesized during the production of, by membranes of maize-seedling root-cap cells (Green, J. R. & Northcote, D. H.) 599–608

Potassium, effects of dietary deficiency of, on the activities of mouse kidney lysosomal enzymes (Cleveland, C. E. & Swank, R. T.) 249–256

Procollagens, specificity of the conversion of, into collagen by cultured monkey periodontal-ligament fibroblasts (Limeback, H. F., Sodek, J. & Brunette, D. M.) 63–71

Proinsulin, biosynthesis of, by broken-cell preparations of isolated rabbit pancreatic islets of Langerhans (Parry, D. G. & Taylor, K. W.) 523–527

Proinsulin, stimulation by metabolic signals produced by purine ribonucleosides of the biosynthesis of, and secretion of insulin by isolated mouse pancreatic islets of Langerhans (Jain, K. & Logothetopoulos, J.) 461–467

Prolyl 3-hydroxylase, effects of hepatic injury induced by the administration of dimethylnitrosamine on the activities of prolyl 4-hydroxylase and, in rat liver and on the concentration of immunoreactive prolyl 4-hydroxylase in the liver and serum (Risteli, J., Tuderman, L., Tryggvason, K. & Kivirikko, K. I.) 129–135

Prolyl 4-hydroxylase, effects of hepatic injury induced by the administration of dimethylnitrosamine on the activities of prolyl 3-hydroxylase and, in rat liver and on the concentration of immunoreactive prolyl 4-hydroxylase in the liver and serum (Risteli, J., Tuderman, L., Tryggvason, K. & Kivirikko, K. I.) 129–135

Prostaglandin E2, transformation of arachidonate into 6-oxoprostaglandin F1α, thromboxane B2 and, by sheep lung microsomal fraction (Tai, H.-H., Yuan, B. & Wu, A. T.) 441–444

Prostate gland, ventral, rat, regulation by androgens of the elongation of polyribonucleotide chains on chromatin from (Thomas, P., Davies, P. & Griffiths, K.) 211–218

Prostate gland, ventral, rat, regulation by testosterone of the biosynthesis of major proteins in (Parker, M. G., Scrace, G. T. & Mainwaring, W. I. P.) 115–121

Protein, calcium ion-binding, relationship between vitamin D-stimulated transport of calcium ions and, in chicken small intestine (Spencer, R., Charman, M., Wilson, P. W. & Lawson, D. E. M.) 93–101

Protein, inter-organ relationships of the metabolism of glucose, lactate and amino acids in rats fed on diets with high contents of carbohydrate and (Rémésy, C., Demigné, C. & Aufrère, J.) 321–329

Protein kinases I and II, adenosine 3':5'-cyclic monophosphate-dependent, liver, rat, differential activation of, by glucagon-treated animals (Schwoch, G.) 469–477

Protein, liability of the products of the biosynthesis of, in Saccharomyces cerevisiae mitochondria 569–576

Protein, novel method for assay of the reaction of purine-mycin with peptidyl-transfer ribonucleic acid and its use in studying the mode of action of alpha sarcin and other inhibitors on the biosynthesis of, by a cell-free system from rabbit reticulocytes (Hobden, A. N. & Cundliffe, E.) 57–61

Protein, rates of degradation of, in regions of the rat central nervous system in vivo during postnatal development (Dunlop, D. S., van Elden, W. & Lajtha, A.) 637–642

Protein, riboflavin-binding, induction by oestrogens of the biosynthesis of, in immature chick liver (Murthy, U. S. & Adiga, P. R.) 331–335

1978
INDEX OF SUBJECTS

Proteins, contribution of cytochromes and, to the effect of ascorbate on artificial and rat liver microsomal hydroxylation systems containing oxygen and hydrogen peroxide (Chrstial, J. & Wilson, J. T.) 693–698

Proteins, heart-muscle, guinea-pig, use of constant infusion of labelled amino acids for measurement of the turnover of (Wyborny, L. E., Kritcher, E. M. & Luchi, R. J.) 189–192

Proteins, regulation by testosterone of the biosynthesis of, in rat ventral prostate gland (Parker, M. G., Scrace, G. T. & Mainwaring, W. I. P.) 115–121

Protons, stoichiometry of the respiration-driven translocation of, in Pseudomonas AM1 and in a mutant lacking cytochrome c (O'Keeffe, D. T. & Anthony, C.) 561–567

Protons, translocation of, by ox adrenal-gland-medulla chromaffin-granule membrane (Phillips, J. H. & Allison, Y. P.) 661–672

Protons, transport of calcium ions and electrochemical potential gradient of, in guinea-pig cerebral-cortex and rat heart mitochondria (Nicholls, D. G.) 511–522

Pseudomonas AM1, stoichiometry of the respiration-driven translocation of protons in, and in a mutant lacking cytochrome c (O'Keeffe, D. T. & Anthony, C.) 561–567

Pseudomonas stutzeri, pathway for the metabolism of N2-ethyl-L-asparagine (Dineen, R. W. & Gray, D. O.) 487–493

Purine ribonucleosides, stimulation by metabolic signals produced by, of the biosynthesis of proinsulin and secretion of insulin by isolated mouse pancreatic islets of Langerhans (Jain, K. & Logothetopoulos, J.) 461–467

Puromycin, novel method for assay of the reaction of, with peptidyl-transfer ribonucleic acid and its use in studying the mode of action of alpha sarcin and other inhibitors on the biosynthesis of protein by a cell-free system from rabbit reticulocytes (Hobden, A. N. & Cundillife, E.) 57–61

Putrescine, effects of administration of, and other aliphatic diamines on the activity of ornithine decarboxylase in rat liver (Pegg, A. E., Conover, C. & Wrona, A.) 651–660

Red blood cells, see Erythrocytes

Redox state, cellular, effects of pent-4-enoate on glycolysis, oxidation of fatty acids and, in isolated perfused rat heart (Hiltunen, J. K., Jaunonen, V. P., Savolainen, M. J. & Hassinen, I. E.) 235–240

Respiration, role of inorganic phosphate, temperature and substrates for, in the transport of calcium ions by Ehrlich ascites-tumour cells (Charlton, R. R. & Wenner, C. E.) 537–544

Respiration, stoichiometry of the translocation of protons driven by, in Pseudomonas AM1 and in a mutant lacking cytochrome c (O'Keeffe, D. T. & Anthony, C.) 561–567

Reticulocytes, rabbit, differences in the lactate dehydrogenase isoenzyme pattern of, and erythrocytes (Setchenska, M. S. & Arnstein, H. R. V.) 193–201

Reticulocytes, rabbit, novel method for assay of the reaction of puromycin with peptidyl-transfer ribonucleic acid and its use in studying the mode of action of alpha sarcin and other inhibitors on the biosynthesis of protein by a cell-free system from (Hobden, A. N. & Cundillife, E.) 57–61

Rhizoctonia solani, evidence from cell-free systems for differences in the pathways for the biosynthesis of sterols in Phytophthora cinnamomi and (Wood, S. G. & Gottlieb, D.) 355–363

Rhizoctonia solani, evidence from mycelial studies for differences in the pathways for the biosynthesis of sterols in Phytophthora cinnamomi and (Wood, S. G. & Gottlieb, D.) 343–354

Riboflavin-binding protein, induction by oestrogens of the biosynthesis of, in immature chick liver (Murthy, U. S. & Adiga, P. R.) 331–335

Ribonucleic acid, changes in the structure of chromatin during spermatogenesis in maturing rooster testis as demonstrated by the initiation pattern of the biosynthesis of, in vitro (Mezquita, C. & Teng, C. S.) 203–210

Ribonucleic acid, regulation by androgens of the elongation of polyribonucleotide chains during the biosynthesis of, on rat ventral-prostate-gland chromatin (Thomas, P., Davies, P. & Griffiths, K.) 211–218

Ribonucleic acid, transfer, peptidyl-, novel method for assay of the reaction of puromycin with, and its use in studying the mode of action of alpha sarcin and other inhibitors on the biosynthesis of protein by a cell-free system from rabbit reticulocytes (Hobden, A. N. & Cundillife, E.) 57–61

Ribonucleic acids, stimulation by oestriol of the biosynthesis of, in immature rat uterus (Knowler, J. T.) 181–183

Ribonucleosides, purine, stimulation by metabolic signals produced by, of the biosynthesis of proinsulin and secretion of insulin by isolated mouse pancreatic islets of Langerhans (Jain, K. & Logothetopoulos, J.) 461–467

Rooster, maturing, changes in the structure of chromatin during spermatogenesis in testis of, as demonstrated by the initiation pattern of the biosynthesis of ribonucleic acid in vitro (Mezquita, C. & Teng, C. S.) 203–210

Safflower (Carthamus tinctorius) seeds, incorporation of acetate and glycerol into glycerolipids of developing cotyledons of, and other oilseeds (Slack, C. R., Roughan, P. G. & Balasingham, N.) 421–433

Vol. 170
Sarcin, alpha, novel method for assay of the reaction between puromycin and peptideyl-transfer ribonucleic acid and its use in studying the mode of action of, and other inhibitors on the biosynthesis of protein by a cell-free system from rabbit reticulocytes (Hobden, A. N. & Cundliffe, E.) 57–61

Seedlings, maize, structure and function of glycoproteins biosynthesized during the production of slime polysaccharides by membranes of root-cap cells of (Green, J. R. & Northcote, D. H.) 599–608

Seeds, soya-bean and linseed, rapid temperature-induced changes in the composition of fatty acids of glucolipids of developing cotyledons of (Slack, C. R. & Roughan, P. G.) 437–439

Seeds, soya-bean, linseed and safflower, incorporation of Serine aminotransferase, see

Shikimate, role of gastrointestinal Sialic acids, muscle, intestine, polysaccharides, Slime hydrolases and of sulphated glycosaminoglycans by, in developing spleen, evidence for, in immature rat, rates of degradation of protein in, and other regions of the central nervous system in vivo during postnatal development (Dunlop, D. S., van Elden, W. & Lajtha, A.) 637–642

Spermatozoa, ram, cell-free synthesis of protein by, in membranes of reticulocytes (Hobden, A. N. & Cundliffe, E.) 57–61

Soybean, muscle, smooth

Soy bean, see Bean, soya

Spermatogenesis, changes in the structure of chromatin during, in maturing rooster testis as demonstrated by the initiation pattern of the biosynthesis of ribonucleic acid in vitro (Mezquita, C. & Teng, C. S.) 203–210

Spermatozoa, ram, inhibition by α-chlorohydrin of metabolism in, and location of the block in glycolysis (Brown-Woodman, P. D. C., Mohri, H., Mohri, T., Suter, D. & White, I. G.) 23–37

Spinacea oleracea, see Spinach

Spinach (Spinacea oleracea) leaves, quantitative electron-paramagnetic-resonance measurements of the free-radical signal I and the bound iron-sulphur centres of the Photosystem I reaction centre of chloroplasts from (Williams-Smith, D. L., Heathcote, P., Silhra, C. K. & Evans, M. C. W.) 365–371

Spinach (Spinacea oleracea) leaves, quantitative electron-paramagnetic-resonance measurements of the reaction-centre chlorophyll (pigment P700), the primary electron acceptor X and iron–sulphur centre A of the Photosystem I reaction centre of chloroplasts from (Heathcote, P., Williams-Smith, D. L. & Evans, M. C. W.) 373–378

Spermatogenesis, changes in the structure of chromatin during, in maturing rooster testis as demonstrated by the initiation pattern of the biosynthesis of ribonucleic acid in vitro (Mezquita, C. & Teng, C. S.) 203–210

Spermatozoa, ram, inhibition by α-chlorohydrin of metabolism in, and location of the block in glycolysis (Brown-Woodman, P. D. C., Mohri, H., Mohri, T., Suter, D. & White, I. G.) 23–37

Spinacea oleracea, see Spinach

Soybean, muscle, smooth

Soy bean, see Bean, soya

Spermatogenesis, changes in the structure of chromatin during, in maturing rooster testis as demonstrated by the initiation pattern of the biosynthesis of ribonucleic acid in vitro (Mezquita, C. & Teng, C. S.) 203–210

Spermatozoa, ram, inhibition by α-chlorohydrin of metabolism in, and location of the block in glycolysis (Brown-Woodman, P. D. C., Mohri, H., Mohri, T., Suter, D. & White, I. G.) 23–37

Spinacea oleracea, see Spinach

Soybean, muscle, smooth

Soy bean, see Bean, soya

Spermatogenesis, changes in the structure of chromatin during, in maturing rooster testis as demonstrated by the initiation pattern of the biosynthesis of ribonucleic acid in vitro (Mezquita, C. & Teng, C. S.) 203–210

Spermatozoa, ram, inhibition by α-chlorohydrin of metabolism in, and location of the block in glycolysis (Brown-Woodman, P. D. C., Mohri, H., Mohri, T., Suter, D. & White, I. G.) 23–37

INDEX OF SUBJECTS

Spinach (Spinacea oleracea) leaves, quantitative electron-paramagnetic-resonance measurements of the free-radical signal I and the bound iron–sulphur centre of the Photosystem I reaction centre of chloroplasts from (Williams-Smith, D. L., Heathcote, P., Silhra, C. K. & Evans, M. C. W.) 365–371

Spinach (Spinacea oleracea) leaves, quantitative electron-paramagnetic-resonance measurements of the reaction-centre chlorophyll (pigment P700), the primary electron acceptor X and iron–sulphur centre A of the Photosystem I reaction centre of chloroplasts from (Heathcote, P., Williams-Smith, D. L. & Evans, M. C. W.) 373–378

Spermatogenesis, changes in the structure of chromatin during, in maturing rooster testis as demonstrated by the initiation pattern of the biosynthesis of ribonucleic acid in vitro (Mezquita, C. & Teng, C. S.) 203–210

Spermatozoa, ram, inhibition by α-chlorohydrin of metabolism in, and location of the block in glycolysis (Brown-Woodman, P. D. C., Mohri, H., Mohri, T., Suter, D. & White, I. G.) 23–37

Spinacea oleracea, see Spinach
Temperature, role of respiratory substrates, inorganic phosphate and, in the transport of calcium ions by, Ehrlich ascites-tumour cells (Charlton, R. R. & Wenner, C. E.) 537–544

Testis, rooster, maturing, changes in the structure of chromatin during spermatogenesis in, as demonstrated by the initiation pattern of the biosynthesis of ribonucleic acid in vitro (Mezquita, C. & Teng, C. S.) 203–210

Testosterone, regulation by, of the biosynthesis of major proteins in rat ventral prostate gland (Parker, M. G., Scrace, G. T. & Mainwaring, W. I. P.) 115–121

Thionein, cadmium-, induction of the biosynthesis of, in isolated rat liver cells (Hidalgo, H. A., Koppa, V. & Bryan, S. E.) 219–225

Thromboxane B₂, transformation of arachidonate into prostaglandin E₂, 6-oxoprostaglandin F₁, and, by sheep lung microsomal fraction (Tai, H.-H., Yuan, B. & Wu, A. T.) 441–444

Thymidine, application of isotope-dilution analysis to measurement of the incorporation of, into deoxyribonucleic acid by cultured Chinese-hamster ovary cells (Scott, F. W. & Forsdyke, D. R.) 545–549

Transfer ribonucleic acid, see Ribonucleic acid, transfer

Triacylglycerols, comparison of the metabolism of, and other components of chylomicrons and chylomicron remnants by perfused rat liver (Gardner, R. S. & Mayes, P. A.) 47–55

Triacylglycerols, influence of fat-cell size and site of adipose tissue on the formation of, in these tissues in lean and obese animals (Jamdar, S. C.) 153–160

Tricarboxylic acid cycle, effects of pent-4-enoate on the concentrations of intermediates of, in isolated perfused rat heart (Hiltunen, J. K.) 241–247

Triglycerides, see Triacylglycerols

Tumour cells, ascites, Ehrlich, role of respiratory substrates, inorganic phosphate and temperature in the transport of calcium ions by (Charlton, R. R. & Wenner, C. E.) 537–544

unc alleles, mutant, two (uncA401 and uncD409), genetic complementation between, affecting the F₁ portion of Escherichia coli K12 magnesium ion-stimulated adenosine triphosphatase (Cox, G. B., Downie, J. A., Gibson, F. & Radik, J.) 593–598

Urea, roles of the transport of anions and the competition for energy in the interrelationships between the control of the formation of glucose and, in isolated rat hepatocytes (Wojtczak, A. B., Walajtys-Rode, E. I. & Geelen, M. J. H.) 379–385

Uterus, rat, immature, stimulation by oestriol of the biosynthesis of ribonucleic acids in (Knowler, J. T.) 181–183

Vitamin B₁₂, shortening of the cell cycle and reappearance of pools of deoxyribonucleoside triphosphates during unbalanced growth of Euglena gracilis induced by (Goetz, G. H. & Carell, E. F.) 631–636

Vitamin C, see Ascorbate

Vitamin D, relationship between transport of calcium ions stimulated by, and calcium ion-binding protein in chicken small intestine (Spencer, R., Charman, M., Wilson, P. W. & Lawson, D. E. M.) 93–101

Vitamin D₃, see Cholecalciferol

Yeast (Saccharomyces cerevisiae), lability of the products of the biosynthesis of protein in mitochondria of (Bakalkin, G. Y., Kalnov, S. L., Galkin, A. V., Zubatov, A. S. & Luzikov, V. N.) 569–576

Zea mays, see Maize

Vol. 170