OFFICERS AND COMMITTEE, 1976–77

Chairman of the Committee
T. S. Work*

Committee
G. B. Ansell
H. S. Bachelard
K. Burton, F.R.S.
N. G. Carr

Treasurer
D. F. Elliott

H. S. Bachelard
R. R. Porter, F.R.S.
B. E. Ryman

General Secretary
H. M. Keir

J. T. Dingle*†
C. A. Fawson
C. Green

Publications Secretary
R. M. C. Dawson

M. G. Harrington
J. N. Hawthorne
C. H. S. Hitchcock

Meetings Secretary
H. F. Bradford

J. J. Holbrook

*Ex Officio Member of Committee.
†Representative of Editorial Board of the Biochemical Journal.

Executive Secretary
A. I. P. Henton (7 Warwick Court, London WC1R 5DP)

The Biochemical Society exists to advance the science of biochemistry through meetings and publications. Several meetings a year are held, each at a different place; original papers are presented and special topics are discussed at symposia and colloquia.

Persons interested in biochemistry are eligible for election as Members. Details of further facilities accorded to Members, and forms of application for membership, are available from the Executive Secretary, The Biochemical Society, 7 Warwick Court, London WC1R 5DP [01-242 1076 (4 lines)].

The major publication of the Biochemical Society is the Biochemical Journal. Contributors (who need not be Members of the Biochemical Society) may be interested to know that the Journal places emphasis on prompt publication of both full-length papers (on average about 6 months after receipt) and rapid papers (on average 10–12 weeks after receipt).

The Journal makes no manuscript handling charges, no page charges and no charges for plates.

Reprints are available at modest cost at about the same time as publication, and, if an author is a Member of the Biochemical Society, 50 reprints are provided free of charge.

Second-class postage paid at New York, NY, U.S.A.
The Biochemical Journal is published and distributed by the Biochemical Society. It is published twice monthly, alternate issues being devoted to Molecular Aspects and to Cellular Aspects of biochemistry. It is planned that in 1977 eight volumes, each volume being made up of three issues, will be published according to the following schedule:

<table>
<thead>
<tr>
<th>Molecular Aspects</th>
<th>Cellular Aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1977</td>
<td>1977</td>
</tr>
<tr>
<td>1 Jan. 161 1</td>
<td>15 Jan. 162 1</td>
</tr>
<tr>
<td>1 Feb. 161 2</td>
<td>15 Feb. 162 2</td>
</tr>
<tr>
<td>1 Mar. 161 3*</td>
<td>15 Mar. 162 3*</td>
</tr>
<tr>
<td>1 Apr. 163 1</td>
<td>15 Apr. 164 1</td>
</tr>
<tr>
<td>1 May 163 2</td>
<td>15 May 164 2</td>
</tr>
<tr>
<td>1 June 163 3*</td>
<td>15 June 164 3*</td>
</tr>
<tr>
<td>1 July 165 1</td>
<td>15 July 166 1</td>
</tr>
<tr>
<td>1 Aug. 165 2</td>
<td>15 Aug. 166 2</td>
</tr>
<tr>
<td>1 Sept. 165 3*</td>
<td>15 Sept. 166 3*</td>
</tr>
<tr>
<td>1 Oct. 167 1</td>
<td>15 Oct. 168 1</td>
</tr>
<tr>
<td>1 Nov. 167 2</td>
<td>15 Nov. 168 2</td>
</tr>
<tr>
<td>1 Dec. 167 3*</td>
<td>15 Dec. 168 3*</td>
</tr>
</tbody>
</table>

* Completes volume, and includes Indexes.

Biochemical Society Transactions. This is now a separate publication (see below). Volume 5 will be published in 1977, in six parts.

Subscription Rates to the Biochemical Journal. For non-members of the Biochemical Society the subscription rates for 1977 are as follows.

- Zone A: U.S.A., Canada and Mexico, U.S. $320.00 (despatch by air freight) or sterling equivalent.
- Zone B: Japan, £154.00 (despatch by accelerated surface post).
- Zone C: U.K. and all remaining destinations, £140.00 (despatch by surface post).

Subscribers to the Biochemical Journal can subscribe to Biochemical Society Transactions on a joint subscription, saving £10.00 (U.S. $25.00). The joint subscription rates are: Zone A, U.S. $355.00; Zone B, £175.00; Zone C, £158.00. The methods of despatch of both publications are as shown above.

Terms are cash with order or against proforma invoice. Orders and subscriptions should be sent to the Biochemical Society Book Depot, P.O. Box 32, Commerce Way, Colchester CO2 8HP, Essex, or through your normal agent.

Claims regarding issues lost or damaged in transit should be addressed to the Biochemical Society at the address given in the preceding paragraph. Claims cannot be entertained if they are received later than three months after the date of posting, plus such time as would be expected for transit by post.

Back Numbers. Enquiries for volumes 1–19 of the Journal should be addressed to William Dawson & Sons Ltd., Back Issues Department, Cannon House, Park Farm Road, Folkestone, Kent. Quotations for available issues of subsequent volumes and parts of the Journal, and also of Transactions, may be obtained on application to The Biochemical Society Book Depot, P.O. Box 32, Commerce Way, Colchester CO2 8HP, Essex.

Microforms. The following versions are available.

(b) Microfiche (98-image): Volumes 102–160.

Details and prices are available on request from the Biochemical Society's Colchester office.

Advertisements. Applications for advertising space should be sent to the Advertising Department, The Biochemical Society, 7 Warwick Court, London WC1R 5DP [01-242 1076 (4 lines)]. Copy is required eight weeks before publication date. Rate cards are available on request.
INDEX OF AUTHORS

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
<th>Author</th>
<th>Pages</th>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agutter, P. S.</td>
<td>671</td>
<td>Goodman, M. N.</td>
<td>557</td>
<td>Parker, C. W.</td>
<td>473, 483</td>
</tr>
<tr>
<td>Ballard, F. J.</td>
<td>617, 627</td>
<td>Griffiths, D. E.</td>
<td>575</td>
<td>Percy-Robb, I. W.</td>
<td>659</td>
</tr>
<tr>
<td>Bost, P. E.</td>
<td>681</td>
<td>Harris, J. R.</td>
<td>671</td>
<td>Procyk, R.</td>
<td>501</td>
</tr>
<tr>
<td>Breuer, H.</td>
<td>545</td>
<td>Haueter, G.</td>
<td>545</td>
<td>Radik, J.</td>
<td>665</td>
</tr>
<tr>
<td>Brocklehurst, R.</td>
<td>591</td>
<td>Heath, D. F.</td>
<td>643, 653</td>
<td>Ramasarma, T.</td>
<td>493</td>
</tr>
<tr>
<td>Bronfman, M.</td>
<td>601</td>
<td>Hedekov, C. J.</td>
<td>569</td>
<td>Rao, G. S.</td>
<td>545</td>
</tr>
<tr>
<td>Cain, K.</td>
<td>575</td>
<td>Hers, H.-G.</td>
<td>601, 611</td>
<td>Rao, M. L.</td>
<td>545</td>
</tr>
<tr>
<td>Capito, K.</td>
<td>569</td>
<td>Hughes, J. V.</td>
<td>527</td>
<td>Rose, J. G.</td>
<td>643, 653</td>
</tr>
<tr>
<td>Chance, B.</td>
<td>509</td>
<td>Johnson, T. C.</td>
<td>527</td>
<td>Ruderman, N. B.</td>
<td>557</td>
</tr>
<tr>
<td>Ch'ih, J. J.</td>
<td>501</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cox, G. B.</td>
<td>665</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demain, A. L.</td>
<td>681</td>
<td>Koyama, H.</td>
<td>539</td>
<td>Seemark, R. F.</td>
<td>617, 627</td>
</tr>
<tr>
<td>Devlin, T. M.</td>
<td>501</td>
<td>Lane, M. D.</td>
<td>635</td>
<td>Snider, D. E., Jr.</td>
<td>473</td>
</tr>
<tr>
<td>Downie, J. A.</td>
<td>665</td>
<td>Lau, D.</td>
<td>557</td>
<td>Stevenson, I</td>
<td>671</td>
</tr>
<tr>
<td>Eddy, A. A.</td>
<td>591</td>
<td>Lloyd, D.</td>
<td>581</td>
<td>Strange, R. C.</td>
<td>659</td>
</tr>
<tr>
<td>Edwards, S. W.</td>
<td>581</td>
<td>Mackall, J. C.</td>
<td>635</td>
<td>Tomida, M.</td>
<td>539</td>
</tr>
<tr>
<td>Frayn, K. N.</td>
<td>643, 653</td>
<td>Maizels, E. Z.</td>
<td>557</td>
<td>Van den Berghe, G.</td>
<td>601, 611</td>
</tr>
<tr>
<td>Gardner, D.</td>
<td>591</td>
<td>Nimmo, I. A.</td>
<td>659</td>
<td>Vanneste, R.</td>
<td>601</td>
</tr>
<tr>
<td>George, R.</td>
<td>493</td>
<td>Ono, T.</td>
<td>539</td>
<td>Van Pottelsberghe, C.</td>
<td>611</td>
</tr>
<tr>
<td>Gibson, F.</td>
<td>665</td>
<td>Oshino, N.</td>
<td>509</td>
<td>Warnes, D. M.</td>
<td>617, 627</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wedner, H. J.</td>
<td>483</td>
</tr>
</tbody>
</table>
NOTES FOR CONTRIBUTORS

It is the policy of the Biochemical Journal to publish papers in English in all fields of biochemistry, provided that they make a sufficient contribution to biochemical knowledge. Papers may include new results obtained experimentally, descriptions of new experimental methods of biochemical importance, or new interpretations of existing results. Theoretical contributions will be considered equally with papers dealing with experimental work. All work presented should have as its aim the development of biochemical concepts rather than the mere recording of facts. Preliminary or inconclusive experiments should not generally be described.

Two types of paper are accepted by the editors.

Full-length papers. Papers submitted for publication should be sent, preferably in duplicate, together with an extra copy of the synopsis, to the Editorial Secretary, The Biochemical Journal, 7 Warwick Court, London WC1R 5DP. Typescripts should bear the name and address of the person to whom the proof of the paper is to be sent.

Papers submitted should be written concisely. Special attention is directed to the sections below concerning the preparation of the typescript. Typescripts that are not concise or do not conform to the conventions of the Biochemical Journal will be returned to the authors for revision. If a paper that has been returned to an author for revision is not resubmitted within one month, it will, on resubmission, be deemed to be a new paper and the date of receipt altered accordingly. A revised paper containing a significant amount of new material will also be redated.

Submission of a paper to the Editorial Board implies that it has been approved by all the named authors, that it reports unpublished work, that it is not under consideration for publication elsewhere, and that if accepted for the Biochemical Journal it will not be published elsewhere in the same form, either in English or in any other language, without the consent of the Editorial Board.

Papers should be headed by a concise but informative full title, by the names of the authors (preferably with one forename in full, with initials, for each author) and by the name and address of the establishment where the work was performed. Details of financial support appear in the acknowledgements at the end of the paper.

Before preparing papers authors should consult a current issue of the Journal to make themselves familiar with the general format, such as the use of cross-headings, lay-out of tables and citation of references. Papers should be in double-spaced typing throughout (including the references and legends of tables and figures) on sheets of uniform size with wide margins. The top copy should be submitted. Submission of a duplicate typescript in addition may avoid delay. It cannot be overemphasized that the need for revision of badly prepared typescripts inevitably leads to delays in publication.

Papers on specialized subjects should be presented so that they are intelligible to the ordinary reader of the Journal. Sufficient information must be included to permit repetition of the experimental work.

Rapid Papers. Typescripts should be submitted in duplicate, written in English, and conform strictly to the form of the Journal as far as spelling and abbreviations are concerned. Each rapid paper should be provided with a short synopsis (normally not exceeding 50 words). Such papers should not exceed 2400 words in length inclusive of the title, references etc. Authors may include insertions (preferably not more than two) such as tables, figures or schemes; in these cases authors must assess what proportion of a page these insertions will occupy and reduce the number of text words accordingly at the rate of 700 words per full page of the Journal. Authors are advised that the preparation of tables and especially figures is liable to cause an increase in publication time. In no circumstances whatsoever can a complete rapid paper occupy more than four pages of the Journal. Papers should be complete in themselves: (1) the methods used in experimental work must be adequately described or sufficient reference given to allow repetition of the work; (2) sufficient indication of the results of experimental work must be included to justify the claims made. Rapid papers should be addressed to the Editorial Secretary, The Biochemical Journal, 7 Warwick Court, London WC1R 5DP.
Index of Authors

ABDEL-LATIF, A. A., AKHTAR, R. A. & HAWTHORNE, J. N. Acetylcholine increases the breakdown of triphosphoinositol of rabbit iris muscle prelabelled with 32P-phosphate 61–73

AGUTTER, P. S., HARRIS, J. R. & STEVENSON, J. Ribonucleic acid stimulation of mammalian liver nuclear-envelope nucleoside triphosphatase. A possible enzymic marker for the nuclear envelope 671–679

AIRHART, J. see VIDRICH, A. 257–266

AKHTAR, M. see PENNING, T. M. 157–170

AKHTAR, R. A. see ABDEL-LATIF, A. A. 61–73

ANTONJ, J. F. see also COHEN, P. 435–444

AUDHYA, T. K. see GIBSON, K. D. 217–233

BADDILEY, J. see HECKELS, J. E. 359–365

BAGGIOLINI, M. see MURPHY, G. 195–197

BALASINGHAM, N. see SLACK, C. R. 289–296

BALLARD, F. J. see WARNES, D. M. 617–626, 627–634

BANIK, N. L. & SMITH, M. E. Protein determinants of myelination in different regions of developing rat central nervous system 247–255

BEAVIS, A. D. see MCGIVAN, J. D. 147–156

BEE, E. see BURT, V. T. 297–302

BONNER, W. D., Jr. see RICH, P. R. 205–208

BOST, P. E. & DEMAIN, A. L. Studies on the cell-free biogenesis of β-lactam antibiotics 681–687

BOULANGE, A. see PÉQUIIGNOT-PLANCHE, É. 461–463

BRADFORD, N. M. see MCGIVAN, J. D. 147–156

BRETZ, U. see MURPHY, G. 195–197

BREUER, H. see RAO, G. S. 545–556

BRIGGS, S. see SMITH, S. B. 453–455

BREDLEY, D. N. see SHORT, V. J. 445–450; STURTON, R. G. 25–32

BRO, B. see SCHOUBROE, I. 303–307

BROCKLEHURST, R., GARDNER, D. & EDDY, A. A. The absorption of protons with α-methyl glucoside and α-thioethyl glucoside by the yeast N.C.Y.C. 240. Evidence against the phosphorylation hypothesis 591–599

BRONFMAN, M. see VAN DEN BERGHE, G. 601–609

BRUNO, M. K. see VIDRICH, A. 257–266

BURT, V. T., BEE, E. & PENNOCK, J. F. The formation of menaquinone-4 (vitamin K) and its oxide in some marine invertebrates 297–302

CAMERON, B. D. see BRÜSEWITZ, G. 99–107

CAPITO, K. & HEDSKOV, C. J. Effects of glucose, glucose metabolites and calcium ions on adenylate cyclase activity in homogenates of mouse pancreatic islets 569–573

CHANSE, B. see OSHINO, N. 509–525

CHASEAUD, L. F. see BRÜSEWITZ, G. 99–107

COHEN, P. see also ANTONJ, J. F. 423–433; YEAMAN, S. J. 411–421

COIA, A. A. see LEADER, D. P. 199–200

COOKE, B. A. see JANSEN, F. H. A. 341–346

COX, G. B. see GIBSON, F. 665–670

DALESSANDRO, G. & NORTHCOTE, D. H. Changes in enzymic activities of nucleoside diphosphate sugar interconversions during differentiation of cambium to xylem in sycamore and poplar 267–279

DAWSON, R. M. C. & HEMINGTON, N. A phosphodiesterase in rat kidney cortex that hydrolyses glycerylphosphorylino-ositol 241–245

DE BOER, W., DE VRIES, J., MULDER, E. & VAN DER MOLEN, H. J. Comparative study of nuclear binding sites for oestradiol in rat testicular and uterine tissue. Determination of low amounts of specific binding sites by an [H]αestradiol-exchange method 331–339

DE GASQUET, P. see PÉQUIIGNOT-PLANCHE, É. 461–463

DEMAIN, A. L. see BOST, P. E. 681–687

DE MATTEIS, F. & GINNIS, A. H. Inhibition of haem synthesis caused by cobalt in rat liver. Evidence for two different sites of action 213–216

DEVLIN, T. M. see CH’IH, J. J. 501–507

DE VRIES, J. see DE BOER, W. 331–339

DILS, R. see SHORT, V. J. 445–450

DIXON, G. H. see YEAMAN, S. J. 411–421

DONALDSON, L. J. see TAKYI, E. E. K. 87–97

DOWNIE, J. A. see GIBSON, F. 665–670

DUFF, D. A. see SNELL, K. 399–403

EDDY, A. A. see BROCKLEHURST, R. 591–599

EDWARDS, S. W. & LLOYD, D. Mitochondrial adenose triphosphatase of the fission yeast, Schizosaccharomyces pombe 972h$. Changes in activity and oligomycin- sensitivity during the cell cycle of catabolite-repressed and -de-repressed cells 39–46
INDEX OF AUTHORS

EDWARDS, S. W. see also LLOYD, D. 581–590
ELLORY, J. C. see YOUNG, J. D. 33–38
FERGUSON, S. J., HARRIS, D. A. & RADD, G. K. The adenosine triphosphatase-inhibitor content of bovine heart submitochondrial particles. Influence of the inhibitor on adenosine triphosphate-dependent reactions 351–357
FINEAN, J. B. see LOW, M. G. 235–240
FRAYN, K. N. see HEATH, D. F. 643–650, 653–657
FREEDLAND, R. A. see SMITH, S. B. 453–455
FUJIIWARA, T. see HAYAKAWA, S. 387–397
FULLER, D. J. M. see TAKYI, E. E. K. 87–97
GARDNER, D. see BROCKLEHURST, R. 591–599
GAUTVYK, K. M., WALAAS, E. & WALAAS, O. Effect of thyroliberin on the concentration of adenosine 3':5'-phosphate and on the activity of adenosine 3':5'-phosphate-dependent protein kinase in prolactin-producing cells in culture 379–386
GEORGE, R. & RAMASARMA, T. Nature of the stimulation of biogenesis of cholesterol in the liver by noradrenaline 493–499
GIBBS, A. H. see De MATTEIS, F. 213–216
GIIDDENS, R. A. see HENDERSON, P. J. F. 309–320
GIIRARD, J. see FERRE, P. 209–212
GOLDSPINK, D. F. & GOLDSPINK, G. Age-related changes in protein turnover and ribonucleic acid of the diaphragm muscle of normal and dystrophic hamsters 191–194
GOLDSPINK, G. see GOLDSPINK, D. F. 191–194
GOODMAN, M. N. see MAIZELS, E. Z. 557–568
GÖRLER, K. see BRÜSEWITZ, G. 99–107
GRANKVIST, K., LERNMARK, Å. & TÅLJEDAL, I.-B. Alloxaño cytotoxicity in vitro. Microscope photometric analyses of Trypan Blue uptake by pancreatic islet cells in suspension 19–24
GRIFFITHS, D. E. see CAIN, K. 575–580
HADDOCK, B. A. see LAGARDE, A. E. 183–187
HARRIS, D. A. see FERGUSON, S. J. 351–357
HARRIS, J. R. see AGUTTER, P. S. 671–679
HAUER, G. see RAO, G. S. 545–556
HAWKINS, D. R. see BRÜSEWITZ, G. 99–107
HAWTHORNE, J. N. see ABDEL-LATIF, A. A. 61–73
HAYAKAWA, S. & FUJIWARA, T. Microbiological degradation of bile acids. Further degradation of a cholic acid metabolite containing the hexahydroindane nucleus by Corynebacterium equi 387–397
HEATH, D. F., FRAYN, K. N. & ROSE, J. G. Rates of glucose utilization and glucogenesis in rats in the basal state induced by halothane anaesthesia 643–650
HEATH, D. F. & ROSE, J. G. A comparison of a chromatographic and an ion-exchange method of determining the specific radioactiveities of blood glucose labelled with 3H and 14C 650–651
HECKELS, J. E., LAMBERT, P. A. & BADDILEY, J. Binding of magnesium ions to cell walls of Bacillus subtilis W23 containing teichoic acid or teichuronic acid 359–365
HEDESKOV, C. J. see CAPITO, K. 569–573
HEDMINGTON, N. see DAWSON, R. M. C. 241–245
HENDERSON, P. J. F., GIIDDENS, R. A. & JONES-MORTIMER, M. C. Transport of galactose, glucose and their molecular analogues by Escherichia coli K12 309–320
HOROWITZ, C. see CELANO, P. 469–472
HUE, L. see VAN DE WERVE, G. 135–142
HUGHES, J. V. & JOHNSON, T. C. The effects of hyperphenylalaninaemia on the concentrations of aminocyl-transfer ribonucleic acid in vivo. A mechanism for the inhibition of neural protein synthesis by phenylalanine 527–537
IDAHL, L.-Å., LERNMARK, Å., SEHLIN, J. & TÅLJEDAL, I.-B. Alloxaño cytotoxicity in vitro. Inhibition of rubidium ion pumping in pancreatic β-cells 9–18
JOHNSON, T. C. see HUGHES, J. V. 527–537
JONES-MORTIMER, M. C. see HENDERSON, P. J. F. 309–320
JUMAWAN, J. see CELANO, P. 469–472
KHAIRALLAH, E. A. see VIDRICH, A. 275–266
KOH, H. see BRÜSEWITZ, G. 99–107
KOLDOVSKY, O. see CELANO, P. 469–472
KOYAMA, H. see Tomida, M. 539–543
KRUPA, M. see SOMLO, M. 51–59
LAGARDE, A. E. & HADDOK, B. A. Proton uptake linked to the 3-deoxy-2-gluco-d-glucuronic-transport system of Escherichia coli 183–187
LAMBERT, P. A. see HECKELS, J. E. 359–365
LANE, M. D. see MACKALL, J. C. 635–642
LAU, D. see MAIZELS, E. Z. 557–568
LAU, H. see CELANO, P. 469–472
LEADER, D. P. & COIA, A. A. The phosphorylation of an acidic protein of the large ribosomal subunit of Krebs II ascites cells 199–200
LERNMARK, Å. see GRANKVIST, K. 19–24; IDAHL, L.-Å. 9–18

1977

Stalmans, W. see Van der Werve, G. 143–146.

Stevenson, I. see Agutter, P. S. 671–679.

Strange, R. C., Nimmo, I. A. & Percy-Robb, I. W. Binding of bile acids by 100000g supernatants from rat liver 659–664.

Sturton, R. G. & Brindley, D. N. Factors controlling the activities of phosphatidate phosphohydrolase and phosphatidate cytidylyltransferase. The effects of chlorpromazine, demethylimipramine, cinchocaine, norfenfluramine, mepyramine and magnesium ions 25–32.

Tak}, E. E. K., Fuller, D. J. M., Donaldson, L. J. & Thomas, G. H. Deoxyribonucleic acid and polyamine synthesis in rat ventral prostate. Effects of age of the intact rat and androgen stimulation of the castrated rat with testosterone, 5α-dihydrotestosterone and 5α-androstane-3β,17β-diol 87–97.

Taylor, L. see Polgar, P. 1–8.

Teng, C. S. see Teng, C. T. 123–134.

Teng, C. T. & Teng, C. S. Studies on sex-organ development. The hormonal regulation of steroidogenesis and adenosine 3′:5′-cyclic monophosphate in embryonic-chick ovary 123–134.

Tomida, M., Koyama, H. & Ono, T. Effects of adenosine 3′:5′-cyclic monophosphate and serum on synthesis of hyaluronic acid in confluent rat fibroblasts 539–543.

Tonnu, N. T. see Pégougnot-Planché, É. 461–463.

van der Molen, H. J. see de Boer, W. 331–933.

Van der Werve, G., Hue, L. & Hers, H.-G. Hormonal and ionic control of the glycogenolytic cascade in rat liver 135–142.

Vanneste, R. see Van den Berghe, G. 601–609.

van Pottelsberghe, C. see Van den Berghe, G. 611–616.

Walaas, E. see Gautvik, K. M. 379–386.

Walaas, O. see Gautvik, K. M. 379–386.

Wasserman, G. F. see Bernard, E. A. 465–467.

Watson, D. C. see Yeaman, S. J. 411–421.

Williams, J. P. G. see McAnulty, P. A. 109–121.

Yeaman, S. J. see also Antoniw, J. F. 423–433.

Young, J. D. & Ellory, J. C. Substrate specificity of amino acid transport in sheep erythrocytes 33–38.
INDEX OF SUBJECTS

Vol. 162

INDEX

Abies grandis, see Fir
Acer pseudoplatanus, see Sycamore
Acetocetate, effects of, on the metabolism of glucose in rat skeletal muscle (Maizels, E. Z., Ruderman, N. B., Goodman, M. N. & Lau, D.) 557–558
Acetylcholine, stimulation by, of the breakdown of triphosphoinositide in rabbit iris smooth muscle (Abdel-Latif, A. A., Akhtar, R. A. & Hawthorne, J. N.) 61–73
Acetyl-coenzyme A carboxylase, changes in the activity of, in rat mammary gland associated with the onset of lactation (Mackall, J. C. & Lane, M. D.) 635–642
Adenine nucleotides, kinetic properties of cytosol 5'-nucleotidase and their relationship to the conversion of, into urate in rat liver with particular reference to stimulation of the process by the administration of fructose (Van den Bergh, G., van Pottelsbergh, C. & Hers, H.-G.) 611–616
Adenosine 3':5'-cyclic monophosphate, effects of calf serum and, on the biosynthesis of hyalurionate in confluent cultures of rat fibroblasts (Tomida, M., Koyama, H. & Ono, T.) 539–543
Adenosine 3':5'-cyclic monophosphate, effects of thymol on the concentration of, and the activity of adenosine 3':5'-cyclic monophosphate-dependent protein kinase in cultured rat prolactin-producing pituitary gland tumour cells (Gautvik, K. M., Walaas, E. & Walaas, O.) 379–386
Adenosine 3':5'-cyclic monophosphate, hormonal regulation of the production of steroids and, in chick-embryo ovary (Teng, C. T. & Teng, C. S.) 123–134
Adenosine triphosphatase inhibitor, concentrations of, in ox heart submitochondrial particles and its influence on adenosine triphosphate-dependent reactions (Ferguson, S. J., Harris, D. A. & Radda, G. K.) 351–357
Adenosine triphosphatase, magnesium ion-dependent, stimulation by ribonucleic acid of the activity of, of rat and pig liver nuclear envelopes (Agutter, P. S., Harris, J. R. & Stevenson, I.) 671–679
Adenosine triphosphatase, magnesium ion-stimulated, partial diploids of Escherichia coli carrying normal and mutant alleles affecting, and oxidative phosphorylation (Gibson, F., Cox, G. B., Downie, J. A. & Radik, J.) 665–670
Adenosine triphosphatase, mitochondrial, Schizosaccharomyces pombe 972h-, changes in the activity and oligomycin-sensitivity of, during the cell cycle of catabolite-repressed and -depressed cells (Edwards, S. W. & Lloyd, D.) 39–46
Adenosine triphosphatase, oligomycin-resistant, mitochondrial, Saccharomyces cerevisiae, effects of mutational alteration of, on cell growth, mitochondrial oxidative phosphorylation and respiratory translocation of protons (Somlo, M., Reid, R. A. & Krupa, M.) 51–59
Adenosine triphosphatase, oligomycin-sensitive, identification of, as the site of action of triarylkinin in yeast mitochondria (Cain, K. & Griffiths, D. E.) 575–580
Adenosine triphosphatase, oligomycin-sensitive, mitochondrial, Schizosaccharomyces pombe 972h-, changes in the inhibitor sensitivities of, during the cell cycle (Lloyd, D. & Edwards, S. W.) 581–590
Adenosine triphosphate, concentrations of adenosine triphosphatase inhibitor in ox heart submitochondrial particles and its influence on reactions dependent on (Ferguson, S. J., Harris, D. A. & Radda, G. K.) 351–357
Adenosine triphosphate, kinetic properties of adenylyl deaminase and their relationship to the depletion of, in mouse liver after the administration of fructose (Van den Bergh, G., Bronfman, M., Vanneste, R. & Hers, H.-G.) 601–609
Adenylyl cyclase, activity and characterization of, in human lymphocyte nuclei (Wedner, H. J. & Parker, C. W.) 483–491
Adenylyl cyclase, effects of glucose and its metabolites and of calcium ions on the activity of, in homogenates of mouse islets of Langerhans (Capito, K. & Hedeskov, C. J.) 569–573
Adenylyl cyclases, activity and characterization of, in non-nuclear subcellular fractions of human lymphocytes (Snider, D. E., Jr. & Parker, C. W.) 473–482
Adenylyl deaminase, kinetic properties of, and their relationship to the depletion of adenosine triphosphate in mouse liver after the administration of fructose (Van den Bergh, G., Bronfman, M., Vanneste, R. & Hers, H.-G.) 601–609
Adipose tissue, white, rat, activity of clearing-factor lipase in, at the onset of postnatal development (Péquignot-Planché, É., de Gasquet, P., Boulangé, A. & Tonnu, N. T.) 461–463
Age, effects of, on the biosynthesis of deoxyribonucleic acid and polyamines in rat ventral prostate gland (Takyl, E. E. K., Fuller, D. J. M., Donaldson, L. J. & Thomas, G. H.) 87–97
Alanine, release of, in rat diaphragm muscle in vitro (Snell, K. & Duff, D. A.) 399–403
Alanine, substrate specificity of the transport of, and other amino acids in sheep erythrocytes (Young, J. D. & Ellory, J. C.) 33–38
Alloxan, effects of, on the uptake of Trypan Blue by isolated mouse islets of Langherans (Grankvist, K., Lernmark, Å. & Täljedal, I.-B.) 19–24
Alloxan, inhibition by, of the uptake of rubidium ions by isolated mouse islets of Langerhans (Idahl, L.-Å., Lernmark, Å., Sehlin, J. & Täljedal, I.-B.) 9–18
Amino acid sequences, determination of, at the sites of glycogen phosphorylase kinase that are phosphorylated by rabbit skeletal-muscle adenosine 3':5'-cyclic monophosphate-dependent protein kinase (Yeaman, S. J., Cohen, P., Watson, D. C. & Dixon, G. H.) 411–421
Amino acids, free, liver, rat, influence of diurnal changes in the concentrations of, on the composition of the precursor pool charging transfer ribonucleic acid (Vidrich, A., Airhart, J., Bruno, M. K. & Khairallah, E. A.) 257–266
Amino acids, substrate specificity of the transport of, in sheep erythrocytes (Young, J. D. & Ellory, J. C.) 33–38
Amino-oxyacetate, re-evaluation of, as an inhibitor of glycogen synthesis and the biosynthesis of urea by isolated rat hepatocytes (Smith, S. B., Briggs, S., Triebwasser, K. C. & Freedland, R. A.) 453–455

693
INDEX OF SUBJECTS

Aminoacyl-transfer ribonucleic acids, effects of hyperphenylalaninemia on the concentrations of, and the biosynthesis of protein in mouse brain in vivo (Hughes, J. V. & Johnson, T. C.) 527–537

4-Aminobutyrate aminotransferase, brain, ox, intramitochondrial localization of (Schousboe, I., Bro, B. & Schousboe, A.) 303–307

Aminopyrine, properties of the release of oxidized glutathione observed during reduction of organic hydroperoxides, oxidation of some substances and demethylation of, in perfused rat liver and their implications for the physiological function of catalase (Oshino, N. & Chance, B.) 509–525

Androgens, effects of the administration of, on the biosynthesis of deoxyribonucleic acid and polyamines in the ventral prostate gland of the castrated rat (Takyi, E. E. K., Fuller, D. J. M., Donaldson, L. J. & Thomas, G. H.) 87–97

Ascites cells, Krebs II, phosphorylation of an acidic ribosomal protein of the large ribosomal subunit of (Leader, D. P. & Cola, A. A.) 199–200

Asterias rubens, see Starfish

Bacillus subtilis W23, binding of magnesium ions to cell walls of, containing teichoic acid or teichuronic acid (Heckels, J. E., Lambert, P. A. & Baddiley, J.) 359–365

Bean, mung (Phaseolus aureus), effects of baphtohenanthroline, baphtophenanthrolinesulphonate and 2-thienyltrifluoroacetone on mitochondrion and submitochondrial particles from (Rich, P. R., Moore, A. L. & Bonner, W. D., Jr.) 205–208

Bile acids, further degradation by Corynebacterium equi of a metabolite of, containing the hexahydroindane nucleus (Hayakawa, S. & Fujiwara, T.) 387–397

Birth, activation of the enzymes involved in gluconogenesis in sheep liver at, and association of the process with oxygenation of the blood (Warnes, D. M., Seamark, R. F. & Ballard, F. J.) 627–634

Blood, comparison of a chromatographic method and an ion-exchange method for the determination of the specific radioactivities of 3H- and 14C-labelled glucose in (Heath, D. F. & Rose, J. G.) 650–651

Blood, rat, newborn, sucking, effects of inhibition of gluconogenesis on the concentrations of glucose and other metabolites in, and liver (Ferre, P., Pegorier, J.-P. & Girard, J.) 209–212

Blood, sheep, activation of the enzymes involved in gluconogenesis in liver at birth and association of the process with oxygenation of (Warnes, D. M., Seamark, R. F. & Ballard, F. J.) 627–634

Brain, mouse, effects of hyperphenylalaninemia on the concentrations of aminoacyl-transfer ribonucleic acids and the biosynthesis of protein in, in vivo (Hughes, J. V. & Johnson, T. C.) 527–537

Brain, ox, intramitochondrial localization of 4-aminobutyrate aminotransferase in (Schousboe, I., Bro, B. & Schousboe, A.) 303–307

Brain, rat, developing, changes in the concentrations of protein determinants of myelination in different regions of, and spinal cord (Banik, N. L. & Smith, M. E.) 247–255

2-Bromo-2-chloro-1,1,1-trifluoroethane (halothane), inhibition by, of lipogenesis in isolated rat liver cells (Mapes, J. P.) 47–50

Calcium ions, effects of glucose and its metabolites and of, on the activity of adenylate cyclase in homogenates of mouse islets of Langerhans (Capito, K. & Hedeskov, C. J.) 569–573

Calcium ions, involvement of, in changes in the membrane of Lettuce cells mediated by Sendai virus (Micklem, K. J. & Pasternak, C. A.) 405–410

Calcium ions, regulation by hormones and, and other ions on the activities of enzymes involved in glycogenolysis in isolated rat liver cells (van de Werve, G., Hue, L. & Hers, H.-G.) 135–142

Cambium, changes in the activities of enzymes catalysing interconversions of nucleoside diphosphate sugars during differentiation of, to xylem in pine and fir (Dalessandro, G. & Northcote, D. H.) 281–288

Cambium, changes in the activities of enzymes catalysing interconversions of nucleoside diphosphate sugars during differentiation of, to xylem in sycamore and poplar (Dalessandro, G. & Northcote, D. H.) 267–279

Carcinus maenas, see Crab

Cartilage, chick-embryo, effect of beta-D-xylosides on the biosynthesis of chondroitin sulphate in, in the absence of inhibitors of the biosynthesis of protein (Gibson, K. D., Segen, B. J. & Audhya, T. K.) 217–233

Cartilage, chick-embryo, rabbit, and human, activity of ornithine decarboxylase and concentrations of polyamines in (Conroy, P. D., Simms, D. M. & Pointon, J. J.) 347–350

Castation, effects of the administration of steroids, ovariectomy and, on the activities of testosterone glucuronotransferase and oestrone glucuronotransferase in rat liver (Rao, G. S., Haueter, G., Rao, M. L. & Breuer, H.) 545–556

Catabolite repression, changes in the activity and oligomycin-sensitivity of mitochondrial adenosine triphosphatase during the cell cycle of Schizosaccharomyces pombe 972h− cells after and de-repression (Edwards, S. W. & Lloyd, D.) 39–46

Catalase, properties of the release of oxidized glutathione observed during reduction of organic hydroperoxides, demethylation of aminopyrine and oxidation of some substances in perfused rat liver and their implications for the physiological function of (Oshino, N. & Chance, B.) 509–525

Cell cycle, changes in the activity and oligomycin-sensitivity of mitochondrial adenosine triphosphatase during, of catabolite-repressed and -de-repressed cells of Schizosaccharomyces pombe 972h− (Edwards, S. W. & Lloyd, D.) 39–46

Cell division, effects of prostaglandins on the uptake of substrates and on, in human diploid W138 fibroblasts (Polgar, P. & Taylor, L.) 1–8

Cell growth, effects of mutational alteration of mitochondrial oligomycin-resistant adenosine triphosphatase on mitochondrial oxidative phosphorylation, respiratory translocation of protons and, in Saccharomyces cerevisiae (Somlo, M., Reid, R. A. & Krupa, M.) 51–59

1977
INDEX OF SUBJECTS

Cell wall, changes in the activities of enzymes catalysing interconversions of nucleoside diphosphate sugars involved in the biosynthesis of polysaccharides of, during differentiation of cambium to xylem in pine and fir (Dalessandro, G. & Northcote, D. H.) 281–288

Cell wall, changes in the activities of enzymes catalysing interconversions of nucleoside diphosphate sugars involved in the biosynthesis of polysaccharides of, during differentiation of cambium to xylem in sycamore and poplar (Dalessandro, G. & Northcote, D. H.) 267–279

Cell walls, Bacillus subtilis W23, binding of magnesium ions to, containing teichoic acid or teichuronic acid (Heckels, J. E., Lambert, P. A. & Baddiley, J.) 359–365

Cells, ascites, Krebs II, phosphorylation of an acidic ribosomal protein of the large ribosomal subunit of (Leader, D. P. & Coia, A. A.) 199–200

Cells, Lettree, surface components involved in changes in the membrane of, mediated by Sendai virus (Micklem, K. J. & Pasternak, C. A.) 405–410

Cells, tumour, pituitary-gland, prolactin-producing, rat, cultured, effects of thyroliberin on the concentration of adenosine 3′:5′-cyclic monophosphate and the activity of adenosine 3′:5′-cyclic monophosphate-dependent protein kinase in (Gautvik, K. M., Walaas, E. & Walaas, O.) 379–386

Central nervous system, see Nervous system, central

Cephalosporin, biosynthesis of penicillins and, by cell-free preparations from Cephalosporium acremonium (Bost, P. E. & Demain, A. L.) 681–687

Cephalosporium acremonium, biosynthesis of β-lactam antibiotics by cell-free preparations from (Bost, P. E. & Demain, A. L.) 681–687

Chentenceoxycholic acid, binding of, and other bile acids by rat liver cytosol preparations (Strange, R. C., Nimmo, I. A. & Percy-Robb, I. W.) 659–664

Chick embryo, activity of ornithine decarboxylase and concentrations of polyamines in cartilage from, and other sources (Conroy, P. D., Simms, D. M. & Pointon, J. J.) 347–350

Chick embryo, effect of β-D-xylosides on the biosynthesis of chondroitin sulphate in cartilage from, in the absence of inhibitors of the biosynthesis of protein (Gibbons, K. D., Segen, B. J. & Audhya, T. K.) 217–233

Chick embryo, hormonal regulation of the production of steroids and adenosine 3′:5′-cyclic monophosphate in ovary from (Teng, C. T. & Teng, C. S.) 123–134

Chlorophyll, reaction-centre (pigment P700), evidence for multiple components in electron-paramagnetic-resonance signal 1 obtained at low temperature during measurement of the oxidation-reduction potential of, in Photosystem 1 of spinach chloroplasts (Evans, M. C. W., Sihra, C. K. & Slabas, A. R.) 75–85

Chloroplasts, spinach, evidence for multiple components in electron-paramagnetic-resonance signal 1 obtained at low temperature during measurement of the oxidation-reduction potential of the reaction-centre chlorophyll (pigment P700) in Photosystem 1 of (Evans, M. C. W., Sihra, C. K. & Slabas, A. R.) 75–85

Chloroplasts, spinach-leaf, evidence that the activity of long-chain fatty acyl-coenzyme A synthetase of, is concentrated in the envelope (Roughan, P. G. & Slack, C. R.) 457–459

Cholesterol, measurement of absolute rates of the biosynthesis of, in isolated rat liver cells (Gibbons, G. F. & Pullinger, C. R.) 321–330

Cholesterol, nature of the stimulation by noradrenaline of the biosynthesis of, in rat liver (George, R. & Rama-sarma, T.) 493–499

Cholesteryl esters, chylomicron, effects of anti-microtubular agents and cycloheximide on the metabolism of, by isolated rat hepatocytes (Nilsso, Å.) 367–377

Cholic acid, binding of, and other bile acids by rat liver cytosol preparations (Strange, R. C., Nimmo, I. A. & Percy-Robb, I. W.) 659–664

Cholic acid, further degradation by Corynebacterium equi of a metabolite of, containing the hexahydroindane nucleus (Hayakawa, S. & Fujwara, T.) 387–397

Chondroitin sulphate, effect of β-D-xylosides on the biosynthesis of, in chick-embryo cartilage in the absence of inhibitors of the biosynthesis of protein (Gibson, K. D., Segan, B. J. & Audhya, T. K.) 217–233

Choriodonadotropin, human, stimulation by, of the production of steroids and adenosine 3′:5′-cyclic monophosphate in chick-embryo ovary (Teng, C. T. & Teng, C. S.) 123–134

Chylomicrons, effects of anti-microtubular agents and cycloheximide on the metabolism of cholesteryl esters of, by isolated rat hepatocytes (Nilsso, Å.) 367–377

Clearing-factor lipase, see Lipase, clearing-factor

Cobalt ions, evidence for two different sites of action during the inhibition by, of the biosynthesis of haem in rat liver (De Matteis, F. & Gibbs, A. H.) 213–216

Colchicine, effects of cycloheximide, vinblastine and, on the metabolism of chylomicron cholesteryl esters by isolated rat hepatocytes (Nilsso, Å.) 367–377

Collagenase, localization of, as a component of the specific granules of human neutrophil leucocytes (Murphy, G., Reynolds, J. J., Bretz, U. & Baggioini, M.) 195–197

Cortisone, induction of the activity of sucrase in foetal rat jejunum by administration of 3,3′,5-triiodothyronine or, to the mother (Celano, P., Jumawan, J., Horowitz, C., Lau, H. & Koldovskv, O.) 469–472

Corynebacterium equi, further degradation by, of a cholic acid metabolite containing the hexahydroindane nucleus (Hayakawa, S. & Fujwara, T.) 387–397

Crab (Carcinus maenas), biosynthesis of mequinaquine-4 and 2,3-epoxy mequinaquine-4 from mandioine in, and other marine invertebrates (Burt, V. T., Bee, E. E. & Pennock, J. F.) 297–302

Cyclic adenosine 3′:5′-monophosphate, see Adenosine 3′:5′-cyclic monophosphate

Cycloheximide, effects of anti-microtubular agents and, on the metabolism of chylomicron cholesteryl esters by isolated rat hepatocytes (Nilsso, Å.) 367–377

Cycloheximide, inhibition and subsequent stimulation of the biosynthesis of plasma proteins in rat liver in vivo after the administration of (Ch'ih, J. J., Proczyk, R. & Devlin, T. M.) 501–507

Cytosol preparations, liver, rat, binding of bile acids by (Strange, R. C., Nimmo, I. A. & Percy-Robb, I. W.) 659–664

Vol. 162
2-Deoxy-d-glucose, effects of prostaglandins on the uptake of, and other substrates and on cell division in human diploid W138 fibroblasts (Polgar, P. & Taylor, L.) 1–8

3-Deoxy-2-oxo-d-glucurate, uptake of protons linked to the transport system for (Lagarde, A. E. & Haddock, B. A.) 183–187

Escherichia coli K12, uptake of protons linked to the transport system for 3-deoxy-2-oxo-d-glucurate of (Lagarde, A. E. & Haddock, B. A.) 183–187

Escherichia coli, partial diploids of, carrying normal and mutant alleles affecting oxidative phosphorylation (Gibson, F., Cox, G. B., Downie, J. A. & Radik, J.) 665–670

Esstradiol, see Oestradiol

Estrone, see Oestrone

Fatty acids, changes in the activity of acetyl-coenzyme A carboxylase and their relevance to the biosynthesis of, in rat mammary gland during the onset of lactation (Mackall, J. C. & Lane, M. D.) 635–642

Fatty acids, co-ordinate changes in the activities of enzymes involved in the biosynthesis, activation and esterification of, in rabbit mammary gland during pregnancy and lactation (Short, V. J., Brindley, D. N. & Dils, R.) 445–450

Fatty acid (long-chain)-coenzyme A synthetase, chloroplast, spinach-leaf, evidence that the activity of, is concentrated in the envelope (Roughan, P. G. & Slack, C. R.) 457–459

Fibrinogen, inhibition and subsequent stimulation of the biosynthesis of, and other plasma proteins in rat liver in vivo after the administration of cycloheximide (Chill, J. J., Procyr, R. & Devlin, T. M.) 501–507

Fibroblasts, CH-23, hamster, turnover of lysosomal β-D-glucuronidase in (Warburton, M. J. & Wynn, C. H.) 201–203

Fibroblasts, rat, effects of adenosine 3':5'-cyclic monophosphate and calf serum on the biosynthesis of hyaluronic acid in confluent cultures of (Tomida, M., Koyama, H. & Ono, T.) 539–543

Fibroblasts, W138, diploid, human, effects of prostaglandins on the uptake of substrates and on cell division in (Polgar, P. & Taylor, L.) 1–8

Fir (Abies grandis), changes in the activities of enzymes catalysing interconversions of nucleoside diphosphate sugars during differentiation of cambium to xylem in pine (Pinus silvestris) and (Dalessandro, G. & Northcote, D. H.) 281–288

Fructose, kinetic properties of adenylate deaminase and their relationship to the depletion of adenosine triphosphate in mouse liver after the administration of (Van den Berge, G., Bronfman, M., Vanneste, R. & Hers, H.-G.) 601–609

Fructose, kinetic properties of cytosol 5'-nucleotidase and their relationship to the conversion of adenosine nucleotides into urate in rat liver with particular reference to stimulation of the process by the administration of (Van den Berge, G., van Pottelsberge, C. & Hers, H.-G.) 611–616

Fructose, metabolism of lactate, glucose and, in vivo in chronically cannulated foetuses and in suckling lambs (Warnes, D. M., Seamark, R. F. & Ballard, F. J.) 617–626

INDEX OF SUBJECTS

Gamma rays, see γ-Radiation
Glucagon, regulation by insulin and, and by ions of the activities of enzymes involved in glucogenolysis in isolated rat liver cells (van de Werve, G., Hue, L. & Hers, H.-G.) 135–142
Glucogenecosis, activation of the enzymes involved in, in sheep liver at birth and association of the process with oxygenation of the blood (Warnes, D. M., Seamark, R. F. & Ballard, F. J.) 627–634
Glucogenecosis, effects of inhibition of, on the concentrations of glucose and other metabolites in liver and blood of newborn sucking rats (Ferre, P., Pegorier, J.-P. & Girard, J.) 209–212
Glucogenecosis in vivo in chronically cannulated foetuses and in suckling lambs (Warnes, D. M., Seamark, R. F. & Ballard, F. J.) 617–626
Glucogenecosis, rates of, and utilization of glucose in rats in the basal state induced by halothane anaesthesia (Heath, D. F., Frayn, K. N. & Rose, J. G.) 643–650
Glucogenecosis, re-evaluation of amino-oxyacetate as an inhibitor of the biosynthesis of urea and, by isolated rat hepatocytes (Smith, S. B., Briggs, S., Tribewasser, K. C. & Freedland, R. A.) 453–455
Glucogenecosis, relationship between, and the release of alanine by rat diaphragm muscle in vitro (Snell, K. & Duff, D. A.) 399–403
Glucose, effects of calcium ions and of, and its metabolites on the activity of adenylyl cyclase in homogenates of mouse islets of Langerhans (Capito, K. & Hedeskov, C. J.) 569–573
Glucose, effects of inhibition of glucogenecosis on the concentrations of, and other metabolites in liver and blood of newborn sucking rats (Ferre, P., Pegorier, J.-P. & Girard, J.) 209–212
Glucose, 3H- and 14C-labelled, comparison of a chromatographic method and an ion-exchange method for the determination of the specific radioactivities of, in blood (Heath, D. F. & Rose, J. G.) 650–651
Glucose, turnover of, in rats in the basal state induced by halothane anaesthesia (Heath, D. F., Frayn, K. N. & Rose, J. G.) 643–650
β-D-Glucuronidase, lysosomal, CH-23-fibroblast, hamster, turnover of (Warburton, M. J. & Wynn, C. H.) 201–203
Glutathione, oxidized, properties of the release of, observed during reduction of organic hydroperoxides, demethylation of aminopyrine and oxidation of some substances in perfused rat liver and their implications for the physiological function of catalase (Oshino, N. & Chance, B.) 509–525
Glycerolipids, metabolism of the acyl and glycerol moieties of, in developing maize leaves (Slack, C. R., Roughan, P. G. & Balasingham, N.) 289–296
Glycerophosphorylino-sitol, hydrolysis of, by a rat kidney-cortex phosphodiesterase (Dawson, R. M. C. & Hemington, N.) 241–245
Glycocolic acid, binding of, and other bile acids by rat liver cytosol preparations (Strange, R. C., Nimmo, I. A. & Percy-Robb, I. W.) 659–664
Glycogen phosphorylase, effects of insulin on the activities of, and other enzymes involved in glucogenecosis and of glycogen synthase in the liver of anaesthetized rabbits (van de Werve, G., Stalmans, W. & Hers, H.-G.) 143–146
Glycogen phosphorylase kinase, determination of the amino acid sequences at the sites of, that are phosphorylated by rabbit skeletal-muscle adenosine 3'-5'-cyclic monophosphate-dependent protein kinase (Yeaman, S. J., Cohen, P., Watson, D. C. & Dixon, G. H.) 411–421
Glycogen phosphorylase, regulation by hormones and ions of the activities of, and other enzymes involved in glucogenolysis in isolated rat liver cells (van de Werve, G., Hue, L. & Hers, H.-G.) 135–142
Glycogen synthase, effects of insulin on the activities of enzymes involved in glucogenolysis and of, in the liver of anaesthetized rabbits (van de Werve, G., Stalmans, W. & Hers, H.-G.) 143–146
Glycogenolysis, effects of insulin on the activities of enzymes involved in, and of glycogen synthase in the liver of anaesthetized rabbits (van de Werve, G., Stalmans, W. & Hers, H.-G.) 143–146
Glycogenolysis, regulation by hormones and ions of the activities of enzymes involved in, in isolated rat liver cells (van de Werve, G., Hue, L. & Hers, H.-G.) 135–142
Gonadotropin, chorio-, human, stimulation by, of the production of steroids and adenosine 3'-5'-cyclic monophosphate in chick-embryo ovary (Teng, C. T. & Teng, C. S.) 123–134
Haem, evidence for two different sites of action during the inhibition by cobalt ions of the biosynthesis of, in rat liver (De Matteis, F. & Gibbs, A. H.) 213–216
Halothane (2-bromo-2-chloro-1,1,1-trifluoroethane), inhibition by, of lipogenesis in isolated rat liver cells (Mapes, J. P.) 47–50
Halothane, turnover of glucose in rats in the basal state induced by anaesthesia due to the administration of (Heath, D. F., Frayn, K. N. & Rose, J. G.) 643–650
Halothane, turnover of glucose in the post-absorptive rat and the effects of anaesthesia due to the administration of (Heath, D. F., Frayn, K. N. & Rose, J. G.) 653–657
Heart, ox, concentrations of adenosine triphosphatase inhibitor in submitochondrial particles from, and its influence on adenosine triphosphate-dependent reactions (Ferguson, S. J., Harris, D. A. & Radda, G. K.) 351–357
Hepatocytes, rat, isolated, effects of anti-microtubular agents and cycloheximide on the metabolism of chylomicron cholesterol esters by (Nilsson, Å.) 367–377

Hepatocytes, rat, isolated, inhibition by halothane of lipogenesis in (Mapes, J. P.) 47–50

Hepatocytes, rat, isolated, measurement of absolute rates of the biosynthesis of cholesterol in (Gibbons, G. F. & Pullinger, C. R.) 321–330

Hepatocytes, rat, isolated, re-evaluation of aminooxyacetate as an inhibitor of glucogenogenesis and the biosynthesis of urea by (Smith, S. B., Briggs, S., Triebwasser, K. C. & Freedland, R. A.) 453–455

Hepatocytes, rat, isolated, regulation by hormones and ions of the activities of enzymes involved in glucogenolysis in (van de Werve, G., Hue, L. & Hers, H.-G.) 135–142

Hexahydroindane nucleus, further degradation by Corynebacterium equi of a cholic acid metabolite containing (Hayakawa, S. & Fujiwara, T.) 387–397

Histones, control of the phosphorylation of, of rat thymus gland nuclei and the effects of γ-irradiation (Fönnagy, A., Ord, M. G. & Stocken, L. A.) 171–181

Hyaluronate, effects of adenosine 3′:5′-cyclic monophosphate and calf serum on the biosynthesis of, in confluent cultures of rat fibroblasts (Tomida, M., Koyama, H. & Ono, T.) 539–543

Hydrogen ions, absorption of, with α-methyl glucoside and α-thioethyl glucoside by Saccharomyces cerevisiae N.C.Y.C. 240 (Brocklehurst, R., Gardner, D. & Eddy, A. A.) 591–599

Hydrogen ions, effects of mutational alteration of mitochondrial oligomycin-resistant adenosine triphosphatase on cell growth, mitochondrial oxidative phosphorylation and respiratory translocation of, in Saccharomyces cerevisiae (Somlo, M., Reid, R. A. & Krupa, M.) 51–59

Hydrogen ions, uptake of, linked to the transport system for 3-deoxy-2-oxo-α-glucuronate of Escherichia coli K12 (Lagarde, A. E. & Haddock, B. A.) 183–187

Hydroperoxides, organic, properties of the release of oxidized glutathione observed during demethylation of aminopyrine, oxidation of some substances and reduction of, in perfused rat liver and their implications for the physiological function of catalase (Oshino, N. & Chance, B.) 509–525

Hyperphenylalaninemia, effects of, on the concentrations of aminooxyl-transfer ribonucleic acids and the biosynthesis of protein in mouse brain in vivo (Hughes, J. V. & Johnson, T. C.) 527–537

Insulin, effects of, on the activities of enzymes involved in glucogenolysis and of glycogen synthase in the liver of anaesthetized rabbits (van de Werve, G., Stalmans, W. & Hers, H.-G.) 143–146

Insulin, regulation by glucagon and, by ions of the activities of enzymes involved in glucogenolysis in isolated rat liver cells (van de Werve, G., Hue, L. & Hers, H.-G.) 135–142

Insulin, sensitivity towards, of the turnover of glucose in rats in the basal state induced by halothane anaesthesia (Heath, D. F., Frayn, K. N. & Rose, J. G.) 643–650

Insulin, sensitivity towards, of the turnover of glucose in the post-absorptive rat and the effects of halothane anaesthesia (Heath, D. F., Frayn, K. N. & Rose, J. G.) 653–657

Intestine, small, rat, foetal, induction of the activity of sucrase in, by administration of cortisone or 3,3′,5′-tri-iodothyronine to the mother (Celano, P., Junawan, J., Horowitz, C., Lau, H. & Koldovsky, O.) 469–472

Ions, regulation by hormones and, of the activities of enzymes involved in glucogenolysis in isolated rat liver cells (van de Werve, G., Hue, L. & Hers, H.-G.) 135–142

Iris, rabbit, stimulation by acetylcholine of the breakdown of triphosphoinositide in smooth muscle of (Abdel-Latif, A. A., Akhtar, R. A. & Hawthorne, J. N.) 61–73

Islets of Langerhans, pancreas, mouse, effects of glucose and its metabolites and of calcium ions on the activity of adenylate cyclase in homogenates of (Capito, K. & Hedeskov, C. J.) 569–573

Islets of Langerhans, pancreatic, mouse, isolated, effects of all-ofan on the uptake of Trypan Blue by (Grankvist, K., Lernmark, Å. & Täljedal, I.-B.) 19–24

Islets of Langerhans, pancreatic, mouse, isolated, inhibition by alloxa of the uptake of rubidium ions by (Idahl, L.-Å., Lernmark, Å., Sehlin, J. & Täljedal, I.-B.) 9–18

L-Isoleucine, effects of prostat glandins on the uptake of, and other substrates and on cell division in human diploid fibroblasts (Polgar, P. & Taylor, L.) 1–8

Jejunum, rat, foetal, induction of the activity of sucrase in, by administration of cortisone or 3,3′,5′-tri-iodothyronine to the mother (Celano, P., Junawan, J., Horowitz, C., Lau, H. & Koldovsky, O.) 469–472

Kidney cortex, rat, hydrolysis of glycerylphosphorylino- sitol by a phosphodiesterase from (Dawson, R. M. C. & Hemington, N.) 241–245

Krebs II ascites cells, phosphorylation of an acidic ribosomal protein of the large ribosomal subunit of (Leader, D. P. & Coia, A. A.) 199–200

β-Lactam antibiotics, biosynthesis of, by cell-free preparations from Cephalosporium acremonium (Bost, P. E. & Demain, A. L.) 681–687

Lactate, activation of the enzymes involved in glucogenogenesis from, in sheep liver at birth and association of the process with oxygenation of the blood (Warnes, D. M., Seamark, R. F. & Ballard, F. J.) 627–634

Lactate, metabolism of glucose, fructose and, in vivo in chronically cannulated foetuses and in suckling lambs (Warnes, D. M., Seamark, R. F. & Ballard, F. J.) 617–626

Lactation, changes in the activity of acetyl-coenzyme A carboxylase in rat mammary gland associated with the onset of (Mackall, J. C. & Lane, M. D.) 635–642

Lactation, co-ordinate changes in the activities of enzymes involved in the biosynthesis, activation and esterification of fatty acids in rabbit mammary gland during pregnancy and (Short, V. J., Brindley, D. N. & Dils, R.) 445–450

INDEX OF SUBJECTS
INDEX OF SUBJECTS

Leaves, maize, developing, metabolism of the acyl and glycerol moieties of glycerolipids in (Slack, C. R., Roughan, P. G. & Balasingham, N.) 289-296
Leaves, spinach, evidence that the activity of long-chain fatty acyl-coenzyme A synthetase from, is concentrated in the envelope (Roughan, P. G. & Slack, C. R.) 457-459
Lecithin, see Phosphatidylcholine

Lettuce cells, surface components involved in changes in the membrane of, mediated by Sendai virus (Micklem, K. J. & Pasternak, C. A.) 405-410
Leucocytes, neutrophil, human, localization of collagenase as a component of the specific granules of (Murphy, G., Reynolds, J. J., Bretz, U. & Baggiolini, M.) 195-197

Lipase, clearing-factor, activity of, in rat white adipose tissue at the onset of postnatal development (Péguignon-Planche, É., de Gasquet, P., Boulangé, A. & Tonnu, N. T.) 461-463
Lipogenesis, changes in the activity of acetyl-coenzyme A carboxylase and their relevance to, in rat mammary gland during the onset of lactation (Mackail, J. C. & Lane, M. D.) 635-642
Lipogenesis, inhibition by halothane of, in isolated rat liver cells (Mapes, J. P.) 47-50
Lipoprotein lipase, see Lipase, clearing-factor
Lithocholic acid, binding of, and other bile acids by rat liver cytosol preparations (Strange, R. C., Nimmo, I. A. & Percy-Robb, I. W.) 659-664
Liver cells, rat, isolated, effects of anti-microtubular agents and cycloheximide on the metabolism of chylomicron cholesterol esters by (Nilsson, Å.) 367-377
Liver cells, rat, isolated inhibition by halothane of lipogenesis in (Mapes, J. P.) 47-50
Liver cells, rat, isolated, measurement of absolute rates of the biosynthesis of cholesterol in (Gibbons, G. F. & Pullinger, C. R.) 321-330
Liver cells, rat, isolated, re-evaluation of amino-oxyacetate as an inhibitor of gluconeogenesis and the biosynthesis of urea by (Smith, S. B., Briggs, S., Triebwasser, K. C. & Freedland, R. A.) 453-455
Liver cells, rat, isolated, regulation by hormones and ions of the activities of enzymes involved in glycogenolysis in (van de Werve, G., Hue, L. & Hers, H.-G.) 135-142
Liver, mouse, kinetic properties of adenylate deaminase and their relationship to the depletion of adenosine triphosphate in, after the administration of fructose (Van den Berge, G., Bronman, M., Vanneste, R. & Hers, H.-G.) 601-609
Liver, rabbit, effects of insulin on the activities of enzymes involved in glycogenolysis and of glycogen synthase in, of anaesthetized animals (van de Werve, G., Stalmans, W. & Hers, H.-G.) 143-146
Liver, rat and pig, stimulation by ribonucleic acid of the activity of nucleoside triphosphatase of nuclear envelopes from (Agutter, P. S., Harris, J. R. & Stevenson, I.) 671-679
Liver, rat, binding of bile acids by cytosol preparations from (Strange, R. C., Nimmo, I. A. & Percy-Robb, I. W.) 659-664
Liver, rat, effects of amphiphilic cationic drugs and magnesium ions on the activities of phosphatidate phosphohydrolase and phosphatidate cytidylyltransferase in the microsomal membrane fraction of (Sturton, R. G. & Brindley, D. N.) 25-32
Liver, rat, evidence for two different sites of action during the inhibition by cobalt ions of the biosynthesis of haem in (De Matteis, F. & Gibbs, A. H.) 213-216
Liver, rat, factors influencing the activity of ornithine aminotransferase in mitochondria isolated from (Mühlethaler, M., Haueter, G., Haueter, G., Mennicke, W. H.) 99-107
Liver, rat, nature of the stimulation by noradrenaline of the biosynthesis of cholesterol in (George, R. & Ramasarma, T.) 493-499
Liver, rat, newborn, suckling, effects of inhibition of gluconeogenesis on the concentrations of glucose and other metabolites in, and blood (Ferre, P., Pegotier, J.-P. & Girard, J.) 209-212
Liver, rat, perfused, properties of the release of oxidized glutathione observed during reduction of organic hydroperoxides, demethylation of aminopyrine and oxidation of some substances in, and their implications for the physiological function of catalase (Oshino, N. & Chance, B.) 509-525
Liver, rat, properties of oestrone glucurononyltransferase and testosterone glucurononyltransferase of, and the effects of ovariotomy, castration and administration of steroids on their activities (Rao, G. S., Haueter, G., Rao, M. L. & Breuer, H.) 545-556
Liver, rat, young, changes in the concentrations of polyamines and in the activities of their biosynthetic decarboxylases in, and other tissues during recovery from undernutrition (McAnulty, P. A. & Williams, J. P. G.) 109-121
Liver, sheep, activation of the enzymes involved in gluconeogenesis in, at birth and association of the process with oxygenation of the blood (Warnes, D. M., Seamark, R. F. & Ballard, F. J.) 627-634
Liver, Xenopus laevis, biosynthesis, assembly and secretion of vitellogenin by (Penning, T. M., Merry, A. H., Munday, K. A. & Akhtar, M.) 157-170
Luteinizing hormone, see Lutropin

Vol. 162

Lymphocytes, human, activity and characterization of adenylate cyclases in non-nuclear subcellular fractions of (Snider, D. E., Jr. & Parker, C. W.) 473–482

Lymphocytes, human, activity and characterization of adenylate cyclase in nuclei from (Wedner, H. J. & Parker, C. W.) 483–491

Lysine, substrate specificity of the transport of, and other amino acids in sheep erythrocytes (Young, J. D. & Ellory, J. C.) 33–38

Lysosomes, CH-23-fibroblast, hamster, turnover of β-D-glucuronidase of (Warburton, M. J. & Wynn, C. H.) 201–203

Magnesium ions, binding of, to Bacillus subtilis W23 cell walls containing teichoic acid or teichuronic acid (Heckels, J. E., Lambert, P. A. & Baddiley, J.) 359–365

Magnesium ions, effects of amphiphilic cationic drugs and, on the activities of phosphatidate phosphohydrolase and phosphatidate cytidylyltransferase in rat liver microsomal membrane fraction (Sturton, R. G. & Brindley, D. N.) 25–32

Maize (Zea mays) leaves, developing, metabolism of the acyl and glycerol moieties of glycerolipids in (Slack, C. R., Roughan, P. G. & Balasingham, N.) 289–296

Mammary gland, rabbit, co-ordinate changes in the activities of enzymes involved in the biosynthesis, activation and esterification of fatty acids in, during pregnancy and lactation (Short, V. J., Brindley, D. N. & Dils, R.) 445–450

Mammary gland, rat, changes in the activity of acetylcoenzyme A carboxylase in, associated with the onset of lactation (Mackall, J. C. & Lane, M. D.) 635–642

Membrane, Lettre-cell, surface components involved in changes in, mediated by Sendai virus (Micklem, K. J. & Pasternak, C. A.) 405–410

Membrane, plasma, lymphocyte, human, activity and characterization of adenylate cyclases in, and other non-nuclear subcellular fractions (Snider, D. E., Jr. & Parker, C. W.) 473–482

Membranes, erythrocyte, sheep, ox and pig, modification of, by purified Staphylococcus aureus phosphatidylinositol-specific phospholipase C (Low, M. G. & Finean, J. B.) 235–240

Membranes, microsomal, liver, rat, effects of amphiphilic cationic drugs and magnesium ions on the activities of phosphatidate phosphohydrolase and phosphatidate cytidylyltransferase in (Sturton, R. G. & Brindley, D. N.) 25–32

Menadione, biosynthesis of menaquinone-4 and 2,3-epoxymenaquinone-4 from, in some marine invertebrates (Burt, V. T., Bee, E. & Pennock, J. F.) 297–302

Menaquinone-4, biosynthesis of, and 2,3-epoxymenaquinone-4 from menadione in some marine invertebrates (Burt, V. T., Bee, E. & Pennock, J. F.) 297–302

Mercapturic acid derivative, identification of, as a metabolite of benzyI thiocyanate and its cystine conjugate in the urine of the rat and the dog (Brüsewitz, G., Cameron, B. D., Chasseaud, L. F., Görlé, K., Hawkins, D. R., Koch, H. & Mennicke, W. H.) 99–107

α-Methyl glucoside, absorption of protons with α-thioethyl glucoside and, by Saccharomyces cerevisiae N.C.Y.C. 240 (Broeklehurst, R., Gardner, D. & Eddy, A. A.) 591–599

Microsomal fraction, liver, rat, effects of amphiphilic cationic drugs and magnesium ions on the activities of phosphatidate phosphohydrolase and phosphatidate cytidylyltransferase in membranes of (Sturton, R. G. & Brindley, D. N.) 25–32

Mitochondria, brain, ox, intramitochondrial localization of 4-amino butyrate aminotransferase in (Schousboe, I., Bro, B. & Schousboe, A.) 303–307

Mitochondria, heart, ox, concentrations of adenosine triphosphatase inhibitor in submitochondrial particles from, and its influence on adenosine triphosphate-dependent reactions (Ferguson, S. J., Harris, D. A. & Radda, G. K.) 351–357

Mitochondria, liver, rat, isolated, factors influencing the activity of ornithine aminotransferase in (McGivan, J. D., Bradford, N. M. & Beavis, A. D.) 147–156

Mitochondria, mung-bean, effects of bathophenanthroline, bathophenanthrolinesulphonate and 2-thenoyl-trifluoroacetone on, and submitochondrial particles (Rich, P. R., Moore, A. L. & Bonner, W. D., Jr.) 205–208

Mitochondria, Saccharomyces cerevisiae, effects of mutational alteration of oligomycin-resistant adenosine triphosphatase of, on cell growth, mitochondrial oxidative phosphorylation and respiratory translocation of protons (Somlo, M., Reid, R. A. & Krupa, M.) 51–59

Mitochondria, Schizosaccharomyces pombe 972h+, changes in the activity and oligomycin-sensitivity of adenosine triphosphatase of, during the cell cycle of catabolite-repressed and -de-repressed cells (Edwards, S. W. & Lloyd, D.) 39–46

Mitochondria, Schizosaccharomyces pombe 972h+, changes in the inhibitor sensitivities of oligomycin-sensitive adenosine triphosphatase of, during the cell cycle (Lloyd, D. & Edwards, S. W.) 581–590

Mitochondria, yeast, localization of the site of action of trialkyltin in (Cain, K. & Griffiths, D. E.) 575–580

Monogalactosyl diacylglycerol, identification of phosphatidylcholine as the donor of the diacylglycerol moiety in the biosynthesis of, in developing maize leaves (Slack, C. R., Roughan, P. G. & Balasingham, N.) 289–296

Mung bean, see Bean, mung

Muscle, diaphragm, hamster, age-related changes in the turnover of protein and the concentration of ribonucleic acid in, of normal and dystrophic animals (Goldspink, D. F. & Goldspink, G.) 191–194

Muscle, diaphragm, rat, release of alanine by, in vitro (Snell, K. & Duff, D. A.) 399–403

INDEX OF SUBJECTS

1977
INDEX OF SUBJECTS

Muscle, skeletal, rat, young, changes in the concentrations of polyamines and in the activities of their biosynthetic decarboxylases in, and other tissues during recovery from undernutrition (McAnulty, P. A. & Williams, J. P. G.) 109–121

Muscle, smooth, iris, rabbit, stimulation by acetylcholine of the breakdown of triphosphoinositide in (Abdel-Latif, A. A., Akhtar, R. A. & Hawthorne, J. N.) 61–73

Muscular dystrophy, age-related changes in the turnover of protein and the concentration of ribonucleic acid in diaphragm muscle from normal hamsters and from hamsters with (Goldspink, D. F. & Goldspink, G.) 191–194

Myelination, changes in the concentrations of protein determinants of, in different regions of developing rat central nervous system (Banik, N. L. & Smith, M. E.) 247–255

Nervous system, central, rat, developing, changes in the concentrations of protein determinants of myelination in different regions of (Banik, N. L. & Smith, M. E.) 247–255

Nicotinamide-adenine dinucleotide phosphate, effect of metabolic conditions influencing the redox state of, on the rate of release of oxidized glutathione in perfused rat liver (Oshino, N. & Chance, B.) 509–525

Noradrenaline, nature of the stimulation by, of the biosynthesis of cholesterol in rat liver (George, R. & Ramasarma, T.) 493–499

Nuclear envelopes, liver, rat and pig, stimulation by ribonucleic acid of the activity of nucleoside triphosphatase of (Agutter, P. S., Harris, J. R. & Stevenson, I.) 671–679

Nuclei, lymphocyte, human, activity and characterization of adenylate cyclase in (Wedner, H. J. & Parker, C. W.) 483–491

Nuclei, testis and uterus, rat, comparison of the binding sites for oestradiol-17β in (de Boer, W., de Vries, J., Mulder, E. & van der Molen, H. J.) 331–339

Nucleoside diphosphate sugars, changes in the activities of enzymes catalysing interconversions of, during differentiation of cambium to xylem in pine and fir (Dalessandro, G. & Northcote, D. H.) 281–288

Nucleoside diphosphate sugars, changes in the activities of enzymes catalysing interconversions of, during differentiation of cambium to xylem in sycamore and poplar (Dalessandro, G. & Northcote, D. H.) 267–279

Nucleoside triphosphatase, stimulation by ribonucleic acid of the activity of, of rat and pig liver nuclear envelopes (Agutter, P. S., Harris, J. R. & Stevenson, I.) 671–679

5'-Nucleotidase, cytosol, kinetic properties of, and their relationship to the conversion of adenine nucleotides into urate in rat liver with particular reference to stimulation of the process by the administration of fructose (Van den Berghe, G., van Potelsbergh, C. & Hers, H.-G.) 611–616

Oestradiol-17β, comparison of the nuclear binding sites for, in rat testis and uterus (de Boer, W., de Vries, J., Mulder, E. & van der Molen, H. J.) 331–339

Oestradiol-17β, hormonal regulation of the production of adenosine 3':5'-cyclic monophosphate, testosterone and, in chick-embryo ovary (Teng, C. T. & Teng, C. S.) 123–134

Oestrone glucuronyltransferase, liver, rat, properties of, and testosterone glucuronyltransferase and the effects of ovariectomy, castration and administration of steroids on their activities (Rao, G. S., Haueter, G., Rao, M. L. & Breuer, H.) 545–556

Ornithine aminotransferase, factors influencing the activity of, in isolated rat liver mitochondria (McGivan, J. D., Bradford, N. M. & Beavis, A. D.) 147–156

Ovariectomy, effects of the administration of steroids, castration and, on the activities of oestrone glucuronyltransferase and testosterone glucuronyltransferase in rat liver (Rao, G. S., Haueter, G., Rao, M. L. & Breuer, H.) 545–556

**Ovary, chick-embryo, hormonal regulation of the production of steroids and adenosine 3':5'-cyclic monophosphate in (Teng, C. T. & Teng, C. S.) 123–134

Oxidation–reduction potential, evidence for multiple components in electron-paramagnetic-resonance signal I obtained at low temperature during measurement of, of the reaction-centre chlorophyll (pigment P700) in Photosystem I of spinach chloroplasts (Evans, M. C. W., Sihra, C. K. & Slabas, A. R.) 75–85

Oxidative phosphorylation, see Phosphorylation, oxidative

**Pancreas, mouse, effects of alloxan on the uptake of Trypan Blue by islets of Langerhans isolated from (Grankvist, K., Lernmark, Å. & Tålljedal, I.-B.) 19–24

Pancreas, mouse, effects of glucose and its metabolites and of calcium ions on the activity of adenylate cyclase in homogenates of islets of Langerhans from (Capito, K. & Hedeskov, C. J.) 569–573

**Pancreas, mouse, inhibition by alloxan of the uptake of rubidium ions by islets of Langerhans isolated from (Idahl, L.-Å., Lernmark, Å., Sehlin, J. & Tålljedal, I.-B.) 9–18

Parturition, see Birth

Penicillins, biosynthesis of cephalosporins and, by cell-free preparations from Cephalosporium acremonium (Bost, P. E. & Demain, A. L.) 681–687

Phaseolus aureus, see Bean, mung

Phenylalanine, effects of the acute administration of, on the concentrations of aminoacyl-transfer ribonucleic acids and the biosynthesis of protein in mouse brain in vivo (Hughes, J. V. & Johnson, T. C.) 527–537

Phosphatidate cytidylyltransferase, effects of amphiphilic cationic drugs and magnesium ions on the activities of phosphatidate phosphohydrolase and, in rat liver microsomal membrane fraction (Sturton, R. G. & Brindley, D. N.) 25–32

Vol. 162
Phosphatidate phosphohydrolase, effects of amphiphilic cationic drugs and magnesium ions on the activities of phosphatidate cytidylyltransferase and, in rat liver microsomal membrane fraction (Sturton, R. G. & Brindley, D. N.) 25-32

Phosphatidylcholine, identification of, as the donor of the diacylglycerol moiety in the biosynthesis of monogalactosyl diacylglycerol in developing maize leaves (Slack, C. R., Roughan, P. G. & Balasingham, N.) 289-296

Phosphodiesterase, kidney-cortex, rat, hydrolysis of glycerylphosphorylinositol by (Dawson, R. M. C. & Hemming, N.) 241-245

Phosphoenolpyruvate kinase, role of, in the release of alanine by rat diaphragm muscle in vitro (Snell, K. & Duff, D. A.) 399-403

Phospholipase C, phosphatidylinositol-specific, Staphylococcus aureus, modification of sheep, ox and pig erythrocyte membranes by (Low, M. G. & Finean, J. B.) 235-240

Phospholipids, effects of amphiphilic cationic drugs and magnesium ions on the biosynthesis of triacylglycerols and, in rat liver microsomal membrane fraction (Sturton, R. G. & Brindley, D. N.) 25-32

Phosphorylase, see Glycogen phosphorylase

Phosphorylation, oxidative, mitochondrial, effects of mutational alteration of mitochondrial oligomycin-resistant adenine triphosphatase on cell growth, respiratory translocation of protons and, in Saccharomyces cerevisiae (Somlo, M., Reid, R. A. & Krupa, M.) 51-59

Phosphorylation, oxidative, partial diploids of Escherichia coli carrying normal and mutant alleles affecting (Gibson, F., Cox, G. B., Downie, J. A. & Radik, J.) 665-670

Photosystem I, evidence for multiple components in electron-paramagnetic-resonance signal 1 obtained at low temperature during measurement of the oxygen-reduction potential of the reaction-centre chlorophyll (pigment P700) in, of spinach chloroplasts (Evans, M. C. W., Sihra, C. K. & Slabas, A. R.) 75-85

Photosynthesis, magnesium-limited, effect of, on the activities of adenylate cyclases in non-nuclear subcellular fractions of human lymphocytes (Snider, D. E., Jr. & Parker, C. W.) 473-482

Pigment P700 (reaction-centre chlorophyll), evidence for multiple components in electron-paramagnetic-resonance signal 1 obtained at low temperature during measurement of the oxidation-reduction potential of, in Photosystem I of spinach chloroplasts (Evans, M. C. W., Sihra, C. K. & Slabas, A. R.) 75-85

Pine (Pinus silvestris), changes in the activities of enzymes catalysing interconversions of nucleoside diphosphate sugars during differentiation of cambium to xylem in fir (Abies grandis) and (Dalessandro, G. & Northcote, D. H.) 281-288

Pinus silvestris, see Pine

Pituitary-gland tumour cells, prolactin-producing, rat, cultured, effects of thyrotropin on the concentration of adenosine 3'5'-cyclic monophosphate and the activity of adenylate kinase in (Gautvik, K. M., Walaa, E. & Walaa, O.) 379-386

Plasma membrane, see Membrane, plasma

Plasma proteins, see Proteins, plasma

Polymamines, changes in the concentrations of, and in the activities of their biosynthetic carboxylases in various tissues of the young rat during recovery from undernutrition (McAnulty, P. A. & Williams, J. P. G.) 109-121

Polymamines, effects of age in the intact animal and of administration of androgens to the castrated animal on the biosynthesis of deoxyribonucleic acid and, in rat ventral prostate gland (Takyi, E. E. K., Fuller, D. J. M., Donaldson, L. J. & Thomas, G. H.) 87-97

Poly saccharides, cell-wall, changes in the activities of enzymes catalysing interconversions of nucleoside diphosphate sugars involved in the biosynthesis of, during differentiation of cambium to xylem in pine and fir (Dalessandro, G. & Northcote, D. H.) 281-288

Poly saccharides, cell-wall, changes in the activities of enzymes catalysing interconversions of nucleoside diphosphate sugars involved in the biosynthesis of, during differentiation of cambium to xylem in sycamore and poplar (Dalessandro, G. & Northcote, D. H.) 267-279

Poplar (Populus robusta), changes in the activities of enzymes catalysing interconversions of nucleoside diphosphate sugars during differentiation of cambium to xylem in sycamore (Acer pseudoplatanus) and (Dalessandro, G. & Northcote, D. H.) 267-279

Populus robusta, see Poplar

Pregnancy, co-ordinate changes in the activities of enzymes involved in the biosynthesis, activation and esterification of fatty acids in rabbit mammary gland during, and lactation (Short, V. J., Brindley, D. N. & Dils, R.) 445-450

Prolactin, effects of thyrotropin on the concentration of adenosine 3':5'-cyclic monophosphate and the activity of adenosine 3':5'-cyclic monophosphate-dependent protein kinase in cultured rat pituitary-gland tumour cells producing (Gautvik, K. M., Walaa, E. & Walaa, O.) 379-386

Prostaglandin E1, effect of, on the activity of adenylate cyclases in non-nuclear subcellular fractions of human lymphocytes (Snider, D. E., Jr. & Parker, C. W.) 473-482

Prostaglandins, effects of, on the uptake of substrates and on cell division in human diploid W138 fibroblasts (Polgar, P. & Taylor, L.) 1-8

Prostate gland, ventral, rat, effects of age in the intact animal and of administration of androgens to the castrated animal on the biosynthesis of deoxyribonucleic acid and polyamines in (Takyi, E. E. K., Fuller, D. J. M., Donaldson, L. J. & Thomas, G. H.) 87-97

Protein, age-related changes in the concentration of ribonucleic acid and the turnover of, in diaphragm muscle from normal and dystrophic hamsters (Goldspink, D. F. & Goldspink, G.) 191-194

Protein, effect of 5-O-xylosides on the biosynthesis of chondroitin sulphate in chick-embryo cartilage in the absence of inhibitors of the biosynthesis of (Gibson, K. D., Segen, B. J. & Audhya, T. K.) 217-233

1977
Protein, egg-yolk (vitellogenin), biosynthesis, assembly and secretion of, by Xenopus laevis liver (Penning, T. M., Merry, A. H., Munday, K. A. & Akhtar, M.) 157–170

Protein, influence of diurnal changes in the concentrations of rat live free amino acids on the composition of the precursor pool charging transfer ribonucleic acid for the biosynthesis of (Vidrich, A., Airhart, J., Bruno, M. K. & Khairallah, E. A.) 257–266

Protein kinase, adenosine 3':5'-cyclic monophosphate-dependent, effects of thyroliberin on the concentration of adenosine 3':5'-cyclic monophosphate and the activity of, in cultured rat prolactin-producing pituitary-gland tumour cells (Gautvik, K. M., Walaas, E. & Walaas, O.) 379–386

Protein kinase, adenosine 3':5'-cyclic monophosphate-dependent, skeletal-muscle, rabbit, substrate specificity of (Yeaman, S. J., Cohen, P., Watson, D. C. & Dixon, G. H.) 411–421

Protein kinases, changes in the activities of, in rat testis during neonatal and postnatal development (Bernard, E. A. & Wasserman, G. F.) 465–467

Protein, ribosomal, acidic, phosphorylation of, of the large ribosomal subunit of Krebs II ascites cells (Leader, D. P. & Coia, A. A.) 199–200

Proteins, changes in the concentrations of, that are determinants of myelination in different regions of developing rat central nervous system (Banik, N. L. & Smith, M. E.) 247–255

Proteins, plasma, inhibition and subsequent stimulation of the biosynthesis of, in rat liver in vivo after the administration of cycloheximide (Ch'ih, J. J., Procyk, R. & Devlin, T. M.) 501–507

Protons, uptake of, with α-methyl glucoside and α-thiobutyrylglucoside by Saccharomyces cerevisiae N.C.Y.C. 240 (Brocklehurst, R., Gardner, D. & Eddy, A. A.) 591–599

Protons, effects of mutual alteration of mitochondrial oligomycin-resistant adenosine triphosphatase on cell growth, mitochondrial oxidative phosphorylation and respiratory translocation of protons in (Somlo, M., Reid, R. A. & Krupa, M.) 51–59

Schizosaccharomyces pombe 972h+, changes in the activity and oligomycin-sensitivity of mitochondrial adenosine triphosphatase during the cell cycle of catabolite-repressed and -derepressed cells of (Edwards, S. W. & Lloyd, D.) 39–46

Schizosaccharomyces pombe 972h-, changes in the inhibitor sensitivities of mitochondrial oligomycin-sensitive adenosine triphosphatase of, during the cell cycle (Lloyd, D. & Edwards, S. W.) 581–590

Sendai virus, surface components involved in changes in the membrane of Lettuce cells mediated by (Micklem, K. J. & Pasternak, C. A.) 405–410

Serum, calf, effects of adenosine 3':5'-cyclic monophosphate and, on the biosynthesis of hyaluronate in confluent cultures of rat fibroblasts (Tomida, M., Koyama, H. & Ono, T.) 539–543

Serum factors, human, stimulation by, of the biosynthesis of chondroitin sulphate in chick-embryo cartilage (Gibson, K. D., Segen, B. J. & Audhya, T. K.) 217–233

Skeletal muscle, see Muscle, skeletal

Small intestine, see Intestine, small

Smooth muscle, see Muscle, smooth

South African clawed toad (Xenopus laevis), biosynthesis, assembly and secretion of vitellogenin by the liver of (Penning, T. M., Merry, A. H., Munday, K. A. & Akhtar, M.) 157–170

Red blood cells, see Erythrocytes

Ribonucleic acid, age-related changes in the turnover of protein and the concentration of, in diaphragm muscle from normal and dystrophic hamsters (Goldspink, D. F. & Goldspink, G.) 191–194

Ribonucleic acid, stimulation by, of the activity of nucleoside triphosphatase of rat and pig liver nuclear envelopes (Agutter, P. S., Harris, J. R. & Stevenson, I.) 671–679

Ribonucleic acid, transfer, influence of diurnal changes in the concentrations of rat liver free amino acids on the composition of the precursor pool charging (Vidrich, A., Airhart, J., Bruno, M. K. & Khairallah, E. A.) 257–266

Ribonucleic acids, transfer, aminosyn-, effects of hyperphenylalaninaemia on the concentrations of, and the biosynthesis of protein in mouse brain in vivo (Hughes, J. V. & Johnson, T. C.) 527–537

Ribosomal protein, acidic, phosphorylation of, of the large ribosomal subunit of Krebs II ascites cells (Leader, D. P. & Coia, A. A.) 199–200

Ribosomal subunit, large, phosphorylation of an acidic ribosomal protein of, of Krebs II ascites cells (Leader, D. P. & Coia, A. A.) 199–200

Rubidium ions, inhibition by alloxan of the uptake of, by isolated mouse islets of Langerhans (Idahl, L.-Å., Lernmark, Å., Sehlin, J. & Täljedal, I.-B.) 9–18

Saccharomyces cerevisiae N.C.Y.C. 240, absorption of protons with α-methyl glucoside and α-thiobutyrylglucoside by (Brocklehurst, R., Gardner, D. & Eddy, A. A.) 591–599

Saccharomyces cerevisiae, effects of mutational alteration of mitochondrial oligomycin-resistant adenosine triphosphatase on cell growth, mitochondrial oxidative phosphorylation and respiratory translocation of protons in (Somlo, M., Reid, R. A. & Krupa, M.) 51–59

γ-Radiation, effects of, on the phosphorylation of histones of rat thymus-gland nuclei (Fónagy, A., Ord, M. G. & Stocken, L. A.) 171–181

Vol. 162
Spermidine, activity of ornithine decarboxylase and concentrations of spermine and, in chick-embryo, rabbit, rat and human cartilage (Conroy, P. D., Simms, D. M. & Pointon, J. J.) 347-350

Spermidine, changes in the concentrations of, and other polyamines and in the activities of their biosynthetic decarboxylases in various tissues of the young rat during recovery from undernutrition (McAnulty, P. A. & Williams, J. P. G.) 109-121

Spermidine, effects of age in the intact animal and of administration of androgens to the castrated animal on the biosynthesis of deoxyribonucleic acid, spermine and, in rat ventral prostate gland (Taky, E. E. K., Fuller, D. J. M., Donaldson, L. J. & Thomas, G. H.) 87-97

Spermine, changes in the concentrations of, and other polyamines and in the activities of their biosynthetic decarboxylases in various tissues of the young rat during recovery from undernutrition (McAnulty, P. A. & Williams, J. P. G.) 109-121

Spermine, effects of age in the intact animal and of administration of androgens to the castrated animal on the biosynthesis of deoxyribonucleic acid, spermidine and, in rat ventral prostate gland (Taky, E. E. K., Fuller, D. J. M., Donaldson, L. J. & Thomas, G. H.) 87-97

Spinacea oleracea, see Spinach

Spinach (Spinacia oleracea), evidence for multiple components in electron-paramagnetic-resonance signal 1 obtained at low temperature during measurement of the oxidation-reduction potential of the reaction-centre chlorophyll (pigment P700) in Photosystem I of chloroplasts from (Evans, M. C. W., Sihra, C. K. & Slabas, A. R.) 75-85

Spinach (Spinacea oleracea) leaves, evidence that the activity of long-chain fatty acyl-coenzyme A synthetase of chloroplasts from, is concentrated in the envelope (Roughan, P. G. & Slack, C. R.) 457-459

Spinal cord, rat, developing, changes in the concentrations of protein determinants of myelination in different regions of, and brain (Banik, N. L. & Smith, M. E.) 247-255

Spleen, rat, young, changes in the concentrations of polyamines and in the activities of their biosynthetic decarboxylases in, and other tissues during recovery from undernutrition (McAnulty, P. A. & Williams, J. P. G.) 109-121

Staphylococcus aureus, modification of sheep, ox and pig erythrocyte membranes by phosphatidylinositol-specific phospholipase C purified from (Low, M. G. & Finean, J. B.) 235-240

Starfish (Asterias rubens), biosynthesis of menaquinone-4 and 2,3-epoxymenaquinone-4 from menadione in, and other marine invertebrates (Burt, V. T., Bee, E. & Pennock, J. F.) 297-302

Steroids, androgenic, effects of the administration of, on the biosynthesis of deoxyribonucleic acid and polyamines in the ventral prostate gland of the castrated rat (Taky, E. E. K., Fuller, D. J. M., Donaldson, L. J. & Thomas, G. H.) 87-97

Steroids, effects of ovariectomy, castration and the administration of, on the activities of oestrone glucuronyltransferase and testosterone glucuronyltransferase in rat liver (Rao, G. S., Haueter, G., Rao, M. L. & Breuer, H.) 545-556

Steroids, hormonal regulation of the production of adenosine 3':5'-cyclic monophosphate and, in chick-embryo ovary (Teng, C. T. & Teng, C. S.) 123-134

Sterols, nature of the stimulation by noradrenaline of the biosynthesis of, in rat liver (George, R. & Ramasarma, T.) 493-499

Submitochondrial particles, heart, ox, concentrations of adenosine triphosphatase inhibitor in, and its influence on adenosine triphosphatase-dependent reactions (Ferguson, S. J., Harris, D. A. & Radda, G. K.) 351-357

Submitochondrial particles, mung-bean, effects of bathophenanthrolinesulphonate and 2-thionyltrifluoroacetone on, and mitochondria (Rich, P. R., Moore, A. L. & Bonner, W. D., Jr.) 205-208

Succinate, effects of bathophenanthrolinesulphonate and 2-thionyltrifluoroacetone on the oxidation of, by mung-bean mitochondria and submitochondrial particles (Rich, P. R., Moore, A. L. & Bonner, W. D., Jr.) 205-208

Sucrase, induction of the activity of, in foetal rat jejunum by administration of cortisol or 3,3',5-triiodothyronine to the mother (Celano, P., Jumawan, J., Horowitz, C., Lau, H. & Koldovsky, O.) 469-472

Supernatant fraction, see Cytosol

Sycamore (Acer pseudoplatanus), changes in the activities of enzymes catalysing interconversions of nucleoside diphosphate sugars during differentiation of cambium to xylem in poplar (Populus robusta) and (Dalessandro, G. & Northcote, D. H.) 267-279

Teichoic acid, binding of magnesium ions to Bacillus subtilis W23 cell walls containing teichuronic acid or (Heckels, J. E., Lambert, P. A. & Baddiley, J.) 359-365

Teichuronic acid, binding of magnesium ions to Bacillus subtilis W23 cells walls containing teichoic acid or (Heckels, J. E., Lambert, P. A. & Baddiley, J.) 359-365

Testis, rat, changes in the activities of protein kinases in, during neonatal and postnatal development (Bernard, E. A. & Wasserman, G. F.) 465-467

Testis, rat, comparison of the nuclear binding sites for oestradiol-17β in, and uterus (de Boer, W., de Vries, J., Mulder, E. & van der Molen, H. J.) 331-339

Testosterone, effects of the administration of, and other androgens on the biosynthesis of deoxyribonucleic acid and polyamines in the ventral prostate gland of the castrated rat (Taky, E. E. K., Fuller, D. J. M., Donaldson, L. J. & Thomas, G. H.) 87-97

Testosterone glucuronyltransferase, liver, rat, properties of, and oestrone glucuronyltransferase and the effects of ovariectomy, castration and administration of steroids on their activities (Rao, G. S., Haueter, G., Rao, M. L. & Breuer, H.) 545-556

1977
INDEX OF SUBJECTS

Testosterone, hormonal regulation of the production of adenosine 3':5'- cyclic monophosphate, oestradiol-17β and, in chick-embryo ovary (Teng, C. T. & Teng, C. S.) 123–134

α-Thiophenyl glucoside, absorption of protons with α-methyl glucoside and, by Saccharomyces cerevisiae N.C.Y.C. 240 (Brocklehurst, R., Gardner, D. & Eddy, A. A.) 591–599

Thymidine, effects of prostaglandins on the uptake of, and other substrates and on cell division in human diploid W138 fibroblasts (Polgar, P. & Taylor, L.) 1–8

Thymus gland, rat, control of the phosphorylation of histones of nuclei from, and the effects of γ-irradiation (Főnay, A., Ord, M. G. & Stocken, L. A.) 171–181

Thyroliberin, effects of, on the concentration of adenosine 3':5'- cyclic monophosphate and the activity of adenosine 3':5'- cyclic monophosphate-dependent protein kinase in cultured rat prolactin-producing pituitary-gland tumour cells (Gautvik, K. M., Walaas, E. & Walaas, O.) 379–386

Thyrotropin-releasing factor, see Thyroliberin

Transfer ribonucleic acid, see Ribonucleic acid, transfer

Triacylglycerols, effects of amphiphilic cationic drugs and magnesium ions on the biosynthesis of phospholipids and, in rat liver microsomal membrane fraction (Sturton, R. G. & Brindley, D. N.) 25–32

Tryalkyltin, changes in the sensitivities of mitochondrial oligomycin-sensitive adenosine triphosphatase towards, and other inhibitors during the cell cycle of Schizosaccharomyces pombe 972h- (Lloyd, D. & Edwards, S. W.) 581–590

Tryalkyltin, localization of the site of action of, in yeast mitochondria (Cain, K. & Griffiths, D. E.) 575–580

Triglycerides, see Triacylglycerols

3',5'-Tri-iodothyronine, induction of the activity of sucrose in foetal rat jejunum by administration of cortisone or, to the mother (Celano, P., Jamwan, J., Horowitz, C., Lau, H. & Koldovsky, O.) 469–472

3',5'-Tri-iodothyronine, immobilization by, of the biosynthesis of chondroitin sulphate in chick-embryo cartilage (Gibson, K. D., Segen, B. J. & Audhya, T. K.) 217–233

Triphosphoinositide, stimulation by acetylcholine of the breakdown of, in rabbit iris smooth muscle (Adbel-Latif, A. A., Akhtar, R. A. & Hawthorne, J. N.) 61–73

Trypan Blue, effects of alloxan on the uptake of, by isolated mouse islets of Langerhans (Grankvist, K., Lernmark, Å. & Täljedal, I.-B.) 19–24

Tumour cells, ascerts, Krebs II, phosphorylation of an acidic ribosomal protein of the large ribosomal subunit of (Leader, D. P. & Cola, A. A.) 199–200

Tumour cells, pituitary-gland, prolactin-producing, rat, cultured, effects of thyroliberin on the concentration of adenosine 3':5'- cyclic monophosphate and the activity of adenosine 3':5'- cyclic monophosphate-dependent protein kinase in (Gautvik, K. M., Walaas, E. & Walaas, O.) 379–386

Urate, kinetic properties of cytosol 5'-nucleotidase and their relationship to the conversion of adenosine nucleotides into, in rat liver with particular reference to stimulation of the process by the administration of fructose (Van den Berge, G., van Pottelsberge, C. & Hers, H.-G.) 611–616

Urea, re-evaluation of amino-xyacetate as an inhibitor of gluconogenes and the biosynthesis of, by isolated rat hepatocytes (Smith, S. B., Briggs, S., Triebwasser, K. C. & Freedland, R. A.) 453–455

Uridine, effects of prostaglandins on the uptake of, and other substrates and on cell division in human diploid W138 fibroblasts (Polgar, P. & Taylor, L.) 1–8

Uterus, rat, comparison of the nuclear binding sites for oestradiol-17β in, and testis (de Boer, W., de Vries, J., Mulder, E. & van der Molen, H. J.) 331–339

Vinblasticine, effects of cycloheximide, colchicine and, on the metabolism of chylomicron cholesterol esters by isolated rat hepatocytes (Nilsson, Å.) 367–377

Virus, Sendai, see Sendai virus

Vitamin K, see Menaquinone

Vitellogenin, biosynthesis, assembly and secretion of, by Xenopus laevis liver (Penning, T. M., Merry, A. H., Munday, K. A. & Akhtar, M.) 157–170

Wall, cell, see Cell wall

Xenopus laevis, biosynthesis, assembly and secretion of vitellogenin by the liver of (Penning, T. M., Merry, A. H., Munday, K. A. & Akhtar, M.) 157–170

Xylem, changes in the activities of enzymes catalysing interconversions of nucleoside diphosphate sugars during differentiation of cambium to, in pine and fir (Dalessandro, G. & Northcote, D. H.) 281–288

Xylem, changes in the activities of enzymes catalysing interconversions of nucleoside diphosphate sugars during differentiation of cambium to, in yacca and poplar (Dalessandro, G. & Northcote, D. H.) 267–279

β-D-Xylosides, effect of, on the biosynthesis of chondroitin sulphate in chick-embryo cartilage in the absence of inhibitors of the biosynthesis of protein (Gibson, K. D., Segen, B. J. & Audhya, T. K.) 217–233

Yeast, localization of the site of action of trialkyltin in mitochondria from (Cain, K. & Griffiths, D. E.) 575–580

Yeast (Saccharomyces cerevisiae N.C.Y.C. 240), absorption of protons with α-methyl glucoside and α-thiethyl glucoside by (Brocklehurst, R., Gardner, D. & Eddy, A. A.) 591–599

Yeast (Saccharomyces cerevisiae), effects of mutational alteration of mitochondrial oligomycin-resistant adenosine triphosphatase on cell growth, mitochondrial oxidative phosphorylation and respiratory translocation of protons in (Somlo, M., Reid, R. A. & Krupa, M.) 51–59

Vol. 162

Undernutrition, changes in the concentrations of polyamines and in the activities of their biosynthetic decarboxylases in various tissues of the young rat during recovery from (McAnulty, P. A. & Williams, J. P. G.) 109–121
Yeast (*Schizosaccharomyces pombe* 972h⁻), changes in the activity and oligomycin-sensitivity of mitochondrial adenosine triphosphatase during the cell cycle of catabolite-repressed and -de-repressed cells of (Edwards, S. W. & Lloyd, D.) 39–46

Yeast (*Schizosaccharomyces pombe* 972h⁻), changes in the inhibitor sensitivities of mitochondrial oligomycin-sensitive adenosine triphosphatase of, during the cell cycle (Lloyd, D. & Edwards, S. W.) 581–590

Zea mays, see Maize