That's the MSE Super Speed 65 MkII preparative ultracentrifuge. The MkI was a fine centrifuge but the MkII is even better. Operation is simpler—look at that ergonomically designed control panel—there is new infra-red temperature control plus an improved vacuum system. The MkII uses the same rotors as the MkI (including zonal) and retains such valued features as overspeed protection, automatic oil recirculation and safety interlocking systems. A catalogue is available, may we send you one?

Measuring & Scientific Equipment Ltd.
26-28 Buckingham Gate, London SW1. Telephone 01-634 7373
New labelled substrates
specially prepared, tested and packaged for enzyme assays

Precise product yield can be calculated because the substrates are supplied at accurately measured specific activities.
Assay sensitivities are safeguarded by meticulous control of purity including measurement of typical blank values.
Preparation of reagent is simplified by supplying packs containing individual test quantities, each with accurately measured total activity.
Radiation decomposition problems are minimised by choice of low specific activity material.

Adenosine-8-C14-5'-triphosphate, sodium salt
S-Adenosyl-L-methionine (methyl-C14)
L-Arginine (guanido-C14) monohydrochloride
L-Asparagine-C14(U)
L-Citrulline (carbamyl-C14)
D-Glucose-1-C14
Sodium bicarbonate-C14

Full information available on request.
Which Liquid Scintillator?
the choice is yours...

... from the world’s most extensive range of solutions. If you have a very special requirement not covered in the table below, our highly skilled research team, with over twenty years of experience in the field, would welcome the challenge.

<table>
<thead>
<tr>
<th>SCINTILLATOR</th>
<th>RELATIVE LIGHT OUTPUT (CTB 100)</th>
<th>BETA H / C AVGS</th>
<th>INTERNAL COUNTING</th>
<th>SCINTILATES</th>
<th>GAMMA RAY SENSITIVITY</th>
<th>FAST NEUTRON SENSITIVITY</th>
<th>THERMAL NEUTRON SENSITIVITY</th>
<th>RUSSELL-SAFMAN DISCRIMINATION</th>
<th>LARGE VOLUME FLASHERS</th>
<th>HIGH FRACTION ON ACQUISITION</th>
<th>NON-LINEARITY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE 211</td>
<td>78</td>
<td>2.6</td>
<td>1.248</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>37</td>
<td>Large tanks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 213</td>
<td>78</td>
<td>3.7</td>
<td>1.213</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>many</td>
<td>Internal Counting: excellent P.S.D. properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 216</td>
<td>78</td>
<td>1.171</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Premium scintillator for internal counting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 218</td>
<td>70</td>
<td>3.9</td>
<td>1.28</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>162, 216</td>
<td>Excellent P.S.D. properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 218A</td>
<td>60</td>
<td>1.37</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Large tanks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 220</td>
<td>65</td>
<td>3.8</td>
<td>1.669</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>179</td>
<td>For aqueous samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 221</td>
<td>55</td>
<td>1.669</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>196 etc.</td>
<td>GEL scintillator for insoluble samples and suspensions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 223</td>
<td>58</td>
<td>7.1</td>
<td>1.678</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>28</td>
<td>Docolin based</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 224</td>
<td>80</td>
<td>2.7</td>
<td>1.330</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>203, 217</td>
<td>Inexpensive; high light output and transmission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 226</td>
<td>20</td>
<td>3.3</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>(F) 56, 184</td>
<td></td>
<td>Inexpensive to neutrons; negligible H content</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 228</td>
<td>45</td>
<td>2.00</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>(H)</td>
<td>High hydrogen content</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 230</td>
<td>60</td>
<td>3.0</td>
<td>0.984</td>
<td>x</td>
<td>x</td>
<td>(H) 5</td>
<td></td>
<td></td>
<td></td>
<td>Deterated benzene base</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 231</td>
<td>58</td>
<td>2.8</td>
<td>0.984</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Benzene base (used with NE 226 or NE 230)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 233</td>
<td>74</td>
<td>1.118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Internal counting, low cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 240</td>
<td>67</td>
<td>1.760</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>196</td>
<td>Accepts more water than NE 220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 250</td>
<td>50</td>
<td>1.760</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>For aqueous samples; low cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 311</td>
<td>65</td>
<td>3.8</td>
<td>1.701</td>
<td>x</td>
<td>x</td>
<td>B 76</td>
<td></td>
<td></td>
<td></td>
<td>Neutron detection: natural boron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 311A</td>
<td>65</td>
<td>3.7</td>
<td>1.701</td>
<td>x</td>
<td>x</td>
<td>10B 190</td>
<td></td>
<td></td>
<td></td>
<td>Neutron detection: 10B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 313</td>
<td>62</td>
<td>4.0</td>
<td>1.220</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Neutron detection: natural boron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 316</td>
<td>35</td>
<td>4.0</td>
<td>1.411</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Neutron spectrometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 321</td>
<td>57</td>
<td>15.7</td>
<td>1.568</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>10B 155</td>
<td></td>
<td></td>
<td>Neutron detection: Jackson and Thomas type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 323</td>
<td>60</td>
<td>3.8</td>
<td>1.377</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>8, 191</td>
<td></td>
<td></td>
<td>Neutron spectrometry</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For Table of Physical Constants, see 1970 Catalogue, page 4
* i.e. Perspex, Lucite or Plexiglas.
10/D ratio
Complete details of the comprehensive range of organic and inorganic scintillators, semiconductor detectors and allied electronic equipment, International Series units and systems, automatic sample changers and medical and biological systems available on request.

NUCLEAR ENTERPRISES LIMITED
Associate Companies:
Nuclear Enterprises GmbH, Neherstrasse 1, 8 Munich 80. Telephone: 44-37-35. Telex: 529938
Nuclear Enterprises Inc., 935 Terminal Way, San Carlos, California 94070 Telephone: 41-593 1455

(vi)
R. A. LEWIN and D. M. LOUNSBERY. Isolation, Cultivation and Characterization of Flexibacteria.

M. MANDEL and R. A. LEWIN. Deoxyribonucleic Acid Base Composition of Flexibacteria.

E. W. FAGER. Recurrent Group Analysis in the Classification of Flexibacteria.

R. A. LEWIN. A Classification of Flexibacteria.

R. R. COLWELL. Numerical Taxonomy of the Flexibacteria.

R. BABOOLAL. Cell Wall Analysis of Oral Filamentous Bacteria.

J. A. FUERST and A. C. HAYWARD. Surface Appendages Similar to Fimbriae (Pili) on Pseudomonas Species.

J. A. FUERST and A. C. HAYWARD. The Sheathed Flagellum of Pseudomonas stizolobii.

D. G. BRYAN-JONES and R. WHITTENBURY. Haematin-dependent Oxidative Phosphorylation in Streptococcus faecalis.

A. MANGAN. Interactions between some Aural Aspergillus Species and Bacteria.

T. M. JOYS and B. A. D. STOKER. Recombination in Hf, the Gene Determining the Flagellar Antigen-1 of Salmonella typhimurium; Mapping of Hf and fla Mutations.

S. HILL and J. R. POSTGATE. Failure of Putative Nitrogen-fixing Bacteria to Fix Nitrogen.

L. O. WHITE. A Note on the Production of Simulacra of Certain Genera of Actinomycetales by Streptomyces Grown on Different Culture Media.

45s. net ($7.50) Annual subscription £25 net ($87.50) for fifteen issues
CLINICAL SCIENCE

EDITORIAL BOARD

For the Medical Research Society
J. M. LEDINGHAM, Chairman
J. E. COTES, W. I. CRANSTON, A. M. DAWSON,
C. J. DICKINSON, J. S. ROBSON, S. J. G. SEMPLE

For the Biochemical Society
T. FREEMAN, Deputy Chairman
BARBARA E. CLAYTON, R. HOFFENBERG, R. G. HUNTSMAN,
W. H. TAYLOR, G. R. WEBSTER, L. G. WHITBY

VOL. 37, NO. 3

December, 1969

The interrelationships of calcium and sodium excretions. By M. R. Wills, J. R. Gill, Jr. and F. C. Bartter.
Post-prandial plasma-free amino acids in adult coeliac disease after oral gluten and albumin. By A. F. Douglas and C. C. Booth.
Proximal tubular acidification in man. By R. Ardaillou and J. P. Fillastre.
The effects of inhibition of carbonic anhydrase with dichlorphenamide on ventilatory control at rest and on exercise in normal subjects. By A. Chiera, T. B. Stretton, A. A. E. Massoud and J. B. L. Howell.

The disappearance of labelled human growth hormone from the forearm circulation in normal and diabetic subjects. By Barbara J. Boucher, W. J. H. Butterfield and Margaret J. Whichelow.
Hypoxic pulmonary vasoconstriction in unanaesthetized with constant arterial PO2 and pH. By O. G. Thelemius and Carol Debenza.
Rheological evidence for the existence of dissociated macromolecular complexes in rheumatoid synovial fluid. By J. Fergnou, J. A. Boyle and G. Nuki.
The effect of age, sex and exercise on the secretion of growth hormone. By J. M. Buckler.
The responses to exercise in boys aged 9-15 years. By Sneh Gadhoke and N. L. Jones.
Role of various causes of arterial desaturation in liver cirrhosis. By A. Chiera, G. Capielli, L. Balbi and L. Chiodussi.
The enterohepatic circulation of urea nitrogen. By E. A. Jones, R. A. Smallwood, Anne Craigie and V. M. Rosenblat.
Abnormalities of fibrin stabilization in liver and kidney disease: a comparison of two different methods. By W. D. Walks and M. S. Losowsky.
The influence of dietary sodium and potassium intake on the genesis of fruseinamide-induced alkalosis. By Ch. van Ypersele de Strihou and J. Morales-Barria.

Subscription Rate: £5 ($17.50) per volume of 3 parts; £10 ($35.00) per year.
Orders may be placed with your bookseller, or sent direct to the publishers.

BLACKWELL SCIENTIFIC PUBLICATIONS LTD
5 ALFRED STREET, OXFORD, ENGLAND

(viii)
Vol. 350 No. 11 November 1969

The degradation of bile pigments with chronic acid and chrome
by W. Rüdiger

Interactions between oestrogens and catecholamines, II: The effect of oestrogens on the degradation and methylation of adrenaline in the mouse under in-vivo conditions
by R. Knuppen, M. Hölker, D. Tilmann and H. Breuer

The formation of complexes by pyrimidine derivatives, XIV: Formation constants of some copper (II) complexes with pyrimidine and pyridine
by H. Reinert and R. Weiss

The formation of complexes by pyrimidine derivatives, XIII: Potentiometric and optical studies on copper complexes of adenosine, deoxyadenosine, uridine and deoxyguanosine
by H. Reinert and R. Weiss.

Model reactions for enzymatic catalysis, III: A model glutamate-pyruvate transaminase
by U. Geibert and B. V. Kerekjarto

Fractionation of horse spleen ferritin. Relationship of Fe/N-ratio to some physico-chemical properties
by H. Hauser

Non-enzymatic binding of aminoacyl-tRNA and peptidyltransferase reaction in an in-vitro system with poly-U linked rat liver ribosomes
by G. Kramer and F. Klink

Analytical isoelectric focusing of human serum lipoproteins
by G. Kostner, W. Albert and A. Holasek

N-Acetyltransferase and serotonin metabolism in man and other species, I
by W. Schloot, F.-J. Tioes, H. Blasenker and H. W. Godeke

Structure of the dimeric insulin B-chain in the disulphide form
by P. Röschlau and H. Zahn

Intramolecular nucleophilic catalysis on the hydrolysis of citryl-CoA
by W. Buckel and H. Egerer

Characteristics of the reaction between diptheria toxin, pyridine coenzymes and the GTP-splitting transfer factor Fl
by K. Klippstech, R. Steenbeek and F. Klink

Monolayer studies with synthetic saturated, mono- and polysaturated mixed 1,2-diglycerides, 1,2-diacyl-phosphatidylethanolamines and phosphatidylcholines at the air-water-interface
by W. Stoffel and H.-D. Pruss

Further studies upon the cytostatic effects of thymine analogs of 2-aminothiolone
by H. Guggiemi, B. Athen, D. Kummer, S. Sieber, P. Warnecke and O. C. Straub

Determination of the biological value of dietary proteins, XIV: The question of the essential nature of arginine and histidine
by E. Kofrányi, F. Jekat, K. Brand, K. Hackenberg and B. Hites

Determination of the biological value of dietary proteins, XIV: The admixture of beef and gelatine
by E. Kofrányi and F. Jekat

Break-down of purine nucleotides in ischemic brain and muscle tissues of rabbits
by R. F. Matthaeus and E. W. Busch

The inhibition of acetylcholinesterase and cholinesterase by pyridinium oximes
by R. Zech

Synthesis of an insulin A-chain by the Merrifield method using the S-ethylmercapto group as a protecting group
by U. Weber

Structure and activity of insulin, VI: Synthesis of highly modified A-chains using the S-ethylmercapto group as a protecting group

The use of synthetic substrates for the determination of mammalian collagenases: Is collagenolytic activity present in mitochondria?
by H.-G. Heidrich, D. Prokopová and K. Hančio

Studies on the degradation of collagen by rat organs. Differentiation and characterisation of proline peptide cleaving enzymes
by H. Kirschke and H. Hanson

Studies on the occurrence and kinetics of tripeptideases in rat kidney
by H. Kirschke, J. Lasch and H. Hanson

Studies on the biosynthesis of cyclotides, XXIII: A soluble enzyme from pea seedlings methylating myo-inositol to D-bornesitol
by I. Wagner, H. Hofmann and O. Hoffmann-Osthoff

Studies on the biosynthesis of cyclotides, XXIV: A soluble enzyme from Vinc a rosea methylating myo-inositol to L-bornesitol
by H. Hofmann, I. Wagner and O. Hoffmann-Osthoff

Inhibition of tumor growth by nucleoside cyclic 3',5'-monophosphates
by D. Gerick and P. Chandra

The purification of deoxyribonuclease II
by R. Nüse and H. Venner

Short Communications

Pyridine nucleotides in Acetabularia mediterranea before and after removal of the nucleus
by H. Bannwarth, G. Sierb and H.-G. Schweiger

Intrageneric duplication of the peptide chains of haemoglobin: Studies on haemoglobin (erythrocrurincales) of insects (Chironomus th. th., Diptera)
by G. Braunzitter, G. Buse and S. Braig

Structure and activity of insulin, VII: Shortened synthetic B-chains
by G. Weitzen, K. Eisele, H. Zollner and U. Weber
We Don’t Have To Beat The Big Drum

ELLMAN’S REAGENT

Sells On Its MERITS!

Ellman’s reagent—5,5′-dithiobis (2-nitrobenzoic acid) was designed by Dr. George L. Ellman as a specific reagent for thiol-groups. It has proved eminently successful as shown by the numerous papers describing its use since the original publication (1). Obviously we can only report the more important new developments in its use. A modification permitting determination of disulfide groups in proteins has been mentioned before (2). Since then a procedure for estimating disulfide and sulfhydryl compounds in trichloroacetic acid extracts of human blood and plasma has been reported (3). An interesting procedure for estimating disulfides depends on their reduction to monothiols with excess of reducing agents such as diithioerythritol, dithiothreitol, etc., the binding of excess diethyl reducing agent with sodium arsenite in a complex which blocks the thiol-groups, and the estimation of liberated monothiol-groups with Ellman’s reagent (4).

Another problem of considerable importance is to distinguish between protein-bound thiol-groups and those of thiols of low molecular weight. A procedure for this was developed soon after the original reagent (5), but this has now been refined and used for the investigation of the sulfhydryl groups of brain (6). The method depends on the fact that essentially only non-protein thiol-groups react in phosphate buffer, pH 6.8, with 0.167 mM Ellman’s reagent, while all thiol-groups react in phosphate buffer, pH 7.6, with 1.67 mM reagent. Bovine serum albumin was used for preparing the standard conditions for assaying thiol-groups, but the authors consider that bovine serum albumin might not be an adequate model for all proteins (6). Mixed disulfides between protein thiol-groups and thiols of low molecular weight are believed to be implicated in the radiation protection of cells (7). Numerous investigations now describe the use of Ellman’s reagent for detecting steric modifications of proteins and enzymes by denaturing agents which render originally masked thiol-groups accessible to the reagent. Thus native ferredoxin does not react with Ellman’s reagent, but in 4M guanidine hydrochloride 14 thiol-groups are detected (8). The gradual unmasking of thiol-groups in pancreatic α-amylase towards the reagent makes this an interesting story (9). Complete protection of thiol-groups in lactate dehydrogenase by forming the mixed disulfide with Ellman’s reagent with full recovery of activity after 24 h. storage at pH 7.2 is briefly mentioned as unpublished work (10). Activation of dihydrofolate reductase by Ellman’s reagent has also been reported (11).

The use of comparatively new 2,2′-dithiodipyridine (ALDRITHIOL-2) and 4,4′-dithiodipyridine (ALDRITHIOL-4) is also spreading rapidly (12). ALDRITHIOL-2 has been used in the determination of glutathione and of triphosphopyridine nucleotide (13, 14), while ALDRITHIOL-4 was used to estimate the thiol-groups of various thyroglobulins (15).

REFERENCES

(1) G. L. Ellman, Arch. Biochem. Biophys. 82, 70 (1959).
(13) D. R. Grasseti and J. F. Murray, Jr., Analyst. Biochem. 21, 427 (1967).

I4,304-9 Aldrithiol-2 (2,2′-Dithiodipyridine) 5g. $6.50 25g. $27.50
I4,305-7 Aldrithiol-4 (4,4′-Dithiodipyridine) 5g. 9.75 25g. 39.50
D21,820-0 Ellman’s Reagent 5,5′-Dithiobis-(2-nitrobenzoic acid) 10g. $17.00

Write for our latest catalog

IN THE U.S.A.

Aldrich Chemical Company, Inc.
2371 NORTH 30TH STREET,
MILWAUKEE, WISCONSIN 53210

IN GREAT BRITAIN

Ralph N. Emanuel Ltd.
264 Water Road, Alperton, Middlesex
Tel: 01-998 4414

Printed in Great Britain by
Spottiswoode, Ballantine & Co. Ltd., London and Colchester