An Arabidopsis thaliana arabinogalactan-protein (AGP31) and several cationic AGP fragments catalyse the boron bridging of rhamnogalacturonan-II

Dayan Sanhueza, Rifat Ara Begum, Cécile Albenne, Elisabeth Jamet, and Stephen C. Fry

Supplementary file

Contents

Figure S1. Sequences of selected arabidopsis arabinogalactan-proteins
Figure S2. Method for approximately quantifying silver-stained bands in Photoshop
Figure S3. Quantification of silver-stained RG-II bands after polyacrylamide gel electrophoresis
Figure S4. Effect of boron concentration on the polyhistidine-enhanced dimerisation of RG-II
Figure S5. Comparison of various cationic chaperones for catalysis of RG-II dimerisation
Figure S6. Deglycosylated and intact gum arabic as potential RG-II chaperones
Table S1. Variation in isoelectric point prediction between different online services

```
AGP17 pI 5.7, 13.55 kDa
MTRNILLTVTLICIVFITVGG
QSPATAPIHSPSTSPHKPKPTSPAISPAAPTPESTEAPAKTPVEAPVEAPPSPTPASTPQISPPAPSP
```

AGP18 pI 7.6, 15.69 kDa
MDRNFLLTVTLICIVVAGVGG
QSPISSPTKSPTTPSAPTTSPTKSPAVTSPTTAPAKTPTASASSPVESPKSPAPVSESSPPPTPVPES
SPPVPAPMVSSPVSSPPVPAPVADSPPAPVAAPVADVPAPAPSKKKTTKKSKKHQAPAPAPELLGP
SPPVPAPMVSSPVSSPPVPAPVADSPPAPVAA
AASTRVLRNVAVGAVATAWAVLVMAF

AGP19 pI 9.2, 16.58 kDa
MESNSIIWSLLLASALISSFSVNA

Figure S1. Sequences of selected arabidopsis arabinogalactan-proteins.
Mature proteins after cleavage of proposed signal peptide and insertion of proposed GPI (glycosylphosphatidylinositol) anchor. Isoelectric point predictions (by IPC 2.0) and molecular mass are after removal of the N-terminal signal peptide, and without glycosylation. Underlined, bold stretches are the peptides tested in the present work. Italic stretches are proposed to be removed in the mature proteins. $\mathrm{N}=$ putative Asn N-glycosylation site. Colour code:

PP	single proline double proline triple proline		serine \& threonine aspartic acid glutamic acid		histidine lysine arginine

Figure S2. Method for approximately quantifying silver-stained bands in Photoshop.
As an example, this diagram shows part of Fig. 7a, indicating how the bands in the $50 \mu \mathrm{~g} / \mathrm{ml}$ AGP19p1 lane were semi-quantifed. In Adobe Photoshop 5.5, the scan was converted to greyscale, then a standard rectangle was placed on each RG-II band, and the histogram facility was applied, giving a mean luminosity (which is expressed by the soflware per unit area; in this case, 217.41 and 158.02 for the monomer and dimer, respectively). The rectangle always had the same area for every RG-II band on a given gel, and was always large enough to accommodate the whole band. Each reading thus gave the mean luminosity of the RG-II band plus an area of background gel. To correct for the background, we also placed a rectangle on the mid-point between each pair of RG-II bands and recorded this mean luminosity reading (226.38 in this case). In some cases, the background rectangle was smaller than the rectangle used for the RG-II bands, as illustrated here, so that no RG-II tail was included. The mean luminosity is not affected by this difference in area. The mean luminosity value returned for pure white and black zones of an image are 255.0 and 0.0 respectively. Each RG-II band's mean luminosity was subtracted from its nearest background, and the result (Δ luminosity) was used as a measure of the mass of RG-II in the band. For each gel, a separate conversion factor was determined. As shown in Fig. S3, mass was approximately proporional to the Δ luminosity value. A given mass of dimer gives a much higher value than the same mass of monomer on the same gel, so separate conversion factors were used for monomers and dimers on each gel.

Figure S3. Quantification of silver-stained RG-II bands after polyacrylamide gel electrophoresis.
Various loadings of monomeric rhamnogalacturonan-II, purified from arabidopsis cell-suspension cultures [9], were analysed by PAGE and silver-stained. In Photoshop, the image was converted to greyscale and the mean luminosity within a standard rectangle was measured and corrected for the nearest-neighbour background area of the gel (see Fig. S2).

Figure S4. Effect of boron concentration on the polyhistidine-enhanced dimerisation of RG-II.
Reaction mixtures contained $50 \mu \mathrm{~g} / \mathrm{ml}$ monomeric $\mathrm{RG}-\mathrm{II}(20 \mu \mathrm{M})$ with $0-1024 \mu \mathrm{M}$ boric acid and 50 mM acetate ($\mathrm{Na}^{+}, \mathrm{pH} 4.8$), without (a) or with (b) polyhistidine. $\mathrm{Cl}^{-}(50 \mu \mathrm{~g} / \mathrm{ml} ; 2.8 \mu \mathrm{M})$. Atter 4 h at $20^{\circ} \mathrm{C}, 0.8 \mu \mathrm{~g}$ of the RG-II was analysed by PAGE followed by silver staining. (c) Quantification of the extent of dimerisation.
a

Figure S5. Comparison of various cationic chaperones for catalysis of RG-II dimerisation.
Reaction mixtures contained $80 \mu \mathrm{~g} / \mathrm{ml}$ monomeric $\mathrm{RG}-I I$ with 0 or 1.2 mM boric acid and 50 mM acetate $\left(\mathrm{Na}^{+}, \mathrm{pH} 4.8\right)$ plus a chaperone: $0.5 \mathrm{mM} \mathrm{Pb}{ }^{2+}$ or 50 $\mu \mathrm{g} / \mathrm{ml}{ }^{*}$ polyhistidine, AGP17p, AGP18p, AGP19p1 or AGP19p2. Controls lacked anychaperone. After 16 h at $20^{\circ} \mathrm{C}, 0.8 \mu \mathrm{~g}$ of the RG-II was analysed by PAGE followed by silver staining. (a) Stained gel, (b) quantification of the $\%$ dimerisation. Markers were:M1, $1.2 \mu \mathrm{~g}$ monomeric RG-IIt $+1.2 \mu \mathrm{~g}$ dimeric RG-II; M2, $0.8 \mu \mathrm{~g}$ monomeric RG-II $+0.8 \mu \mathrm{~g}$ dimeric RG-II.
*The $50 \mu \mathrm{~g} / \mathrm{ml}$ peptide solutions represent $2.7 \mu \mathrm{M}$ poly-His, $39 \mu \mathrm{M}$ AGP17p, $34 \mu \mathrm{M}$ AGP18p, $28 \mu \mathrm{M}$ AGP19p1 and $20 \mu \mathrm{M}$ AGP19p2.

Figure S6. Deglycosylated andintact gum arabic as potential RG-II chaperones.
Reaction mixtures contained $100 \mu \mathrm{~g} / \mathrm{ml}$ RG-IImonomer ($\approx 20 \mu \mathrm{M}$), 1.2 mM boric acid, $0-1000 \mu \mathrm{~g} / \mathrm{ml}$ of (a)gum arabic (GA) or (b) the protein core of deglycosylated gum arabic (GAPr), and 50 mM acetate $\left(\mathrm{Na}^{+}\right)$buffer, pH 4.8 . Controls lacked boric acid or $\mathrm{RG}-I I$, or contained $0.5 \mathrm{mM} \mathrm{Pb}^{2+}$ or $50 \mu \mathrm{~g} / \mathrm{ml}$ polyhistidine (PH) as alternative chaperones. After 16 h at $20^{\circ} \mathrm{C}, 0.8 \mu \mathrm{~g}$ of the RG-II was analysed by PAGE followed by silver staining. The right-hand lanes (marked 1000^{*}) contained $1000 \mu \mathrm{~g} / \mathrm{ml}$ GAor GAPr plus $50 \mu \mathrm{~g} / \mathrm{ml}$ polyhistidine. The bands in (a) are quantified in Fig. 3a.

Table S1. Variation in isoelectric point prediction between different online services*

Name	Sequence ${ }^{1}$	$\begin{gathered} \mathrm{pl} \\ \text { (Expasy)2} \end{gathered}$	pl (Bachem) 3	$\begin{gathered} \text { pl (ProtPi) } \\ (\text { ProMoST) } \end{gathered}$	pl (ProtPi) (Native) ${ }^{5}$	$\begin{gathered} \mathrm{pl}(\mathrm{IPC} \\ 2.0)^{6} \end{gathered}$
Histidine	H	6.74	7.90	6.59	6.59	7.24
His_{6}	HHHHHH	7.21	8.19	7.26	7.48	7.34
Polyhistidine	нн нннHH HH	8.10	8.94	8.16	8.64	7.77
AGP17p	KHKKKTKKHK	10.78	11.52	10.71	11.20	8.18
AGP18p	KHKKTTKKSKKH	10.78	11.52	10.61	11.23	8.21
AGP19p1	KHKRKHKHKRHHH	12.04	12.56	12.51	12.53	8.84
AGP19p2	ASASKHKRKHKHKRHHHASAS	12.04	12.56	12.51	12.54	8.84
AGP31p	YHHGHHHPHPPHHHHPHPHPHPHP	7.44	8.32	7.32	7.75	7.96
AGP31	EEVNHKTQTPSLAPAPAPYHHGHHPHPPHHHPHPHPHPHPPAKSPVKPPV $K A P V K_{P} P T K P P V K P P V Y P P T K A P V K P P T K P P V K P P V Y P P T K A P V K P P T K P P V$ K KPPVSPPAKPPVKPPVYPPTKAPVKPPVSPPTKPPVTPPVYPPKIKNRSLVAV RGTVYCKSCKYAAFNTLLGAKPIEGATVKLVCKSKKNITAETTTDKNGYFLL LAPKTVTNFGFRGCRVYLVKSKDYKCSKVSKLFGGDVGAELKPEKKLGKSTV VVNKLVYGLFNVGPFAFNPSCPK	10.19	10.66	10.00	10.64	9.14

*Calculated after in-silico removal of the putative N-terminal signal sequence but without proline hydroxylation and glycosylation.
${ }^{1}$ Amino acid residues with cationic and anionic side-chains are highlighted in shades of blue and red respectively.
${ }^{2}$ Isoelectric point estimated by 'Compute pl/Mw tool' (https://web.expasy.org/compute_pil).
${ }^{3}$ Isoelectric point estimated by 'Bachem Peptide Calculator’ (https://www.bachem.com/knowledge-center/peptide-calculator).
${ }^{4}$ Isoelectric point estimated by Prot pi (with 'ProMoST' data source for pK a values) (https://www.bachem.com/knowledge-center/peptide-calculator/).
${ }^{5}$ Isoelectric point estimated by Prot pi (with 'native' data source for $p \mathrm{~K}_{\mathrm{a}}$ values) (https://www.bachem.com/knowledge-center/peptide-calculator/).
${ }^{6}$ Isoelectric point estimated by IPC 2.0 (peptide if $\mathrm{DP}<60$, protein if $\mathrm{DP}>60$) (www.ipc2-isoelectric-point.org).

