

Supplementary Figure S1. Genomic context of $\operatorname{AtICS} 1$ and $\operatorname{AtICS} 2$ genes and putative AtICS2 promoter methylation sites. A. The two regions of chromosome 1 that contain the genes AtICS1 (AT1G74710) and ATICS2 (AT1g18870) are shown, indicated by shading. B. Whole genome bisulphite sequencing data (Lister et al., 2008) was inspected for regions of DNA methylation in the ATICS2 promoter. The upper track shows cytosine residues methylated (mC) in DNA from wild-type (Col-0) at either $\mathrm{CpG}, \mathrm{CpHpG}$ or CpHpH contexts (where $\mathrm{H}=\mathrm{A}$ or C or T , but not G). The next track shows the sequencing information for a mutant unable to establish DNA methylation ($d d c=d r m 1 d r m 2 c m t 3$). This triple mutant has lesions in two DOMAINS REARRANGED METHYLASE (DRM) genes, which condition RNA-directed DNA methylation, and CYTOSINE METHYLTRANSFERASE (CMT), which methylates at CpHpG contexts. The third track shows DNA methylation in a triple mutant unable to demethylate ($\mathrm{rdd}=$ ros 1 dml 2 dml 3) with lesions in two DEMETER-LIKE (DML) genes and one REPRESSOR OF SILENCING (ROS) gene, which are 5-mC DNA glycosylases. The lowest three tracks represent small RNA (smRNA) sequencing information obtained from wild type Col-0 and $d d c$ and $r d d$ mutants. Colouring of smRNA reads represent the length of the smRNA: 21-mers in blue, 23-mers in orange, 24-mers in red and smRNAs mapping to multiple locations are shown faded. The top of the map shows TAIR 7 gene models, including likely locations of transposable elements (TEs). The region -1500 to -1200, which was included in the construction of ICS promoterGUS reporter constructs, did not contain any additional features of interest. Panel B was produced using AnnoJ Beta v1.1 (http://www.annoj.org) and the Arabidopsis epigenome map data previously described by Lister and colleagues (2008).

NonInoculated

ICS2::GUS

MockInoculated

TMVInfected

CMVInfected

B
ICS2::GUS
Line 10b

Supplementary Figure S2. Expression of AtICS promoter- $\boldsymbol{\beta}$-glucuronidase reporter gene constructs in planta. A. Infection of transgenic Arabidopsis plants habouring AtICS1::GUS fusions with cucumber mosaic virus (CMV) stimulates β-glucuronidase (GUS) activity throughout leaf tissue (indicated by blue staining). Neither mock-inoculation nor infection with tobacco mosaic virus (TMV) cause any increase in GUS activity beyond the basal levels (most apparent in vascular tissues). In contrast, GUS activity in plants harbouring an AtICS2::GUS transgene is unaffected by CMV infection. Inspection of GUS activity in unstressed leaves and plants of two AtICS2: $\because G U S$-transgenic lines, 10b (B) and 10c (C), indicates that AtICS2 promoter activity is most apparent in the vasculature with expression evident in the vicinity of hydathodes (arrowed). GUS activity was detected by vacuum infiltration of plants/tissues with 5-bromo-4-chloro-3-indolyl- β-D-glucuronic acid, overnight incubation at $37^{\circ} \mathrm{C}$, and destaining in $70 \% \mathrm{v} / \mathrm{v}$ ethanol [12,28].

SP/Q9S7H8/ICS1_ARATH		
SP	Q9S7H8	ICS1_ARATH
SP	Q9M9V6	ICS2_ARATH
TR	Q9x918	Q9X9I8_YEREN
SP	P9WFx1	MBTI_MYCTU
SP	P38051	MENF_ECOLI
SP	POAEJ2	ENTC_ECOLI
SP	P00897	TRPE_SERMA

Supplementary Figure S3 Structure-based alignment of amino acid sequences of AtICSs with other chorismate-utilising enzymes. Sequence alignment was performed using CLUSTAL W (Thompson et al., 1994) and aligned to the modeled ICS1 structure using ESPript (Gouet et al., 1999). Alpha (a) and eta ($\mathrm{h}, 3_{10}$) helices are indicated by coils, beta (b) sheets with arrows and turns with a T . The approximate location of the chorismate binding domain is shown by a continuous black line (Wildermuth et al., 2001). ICS1_ARATH, Arabidopsis thaliana isochorismate synthase 1, ICS2_ARATH, A. thaliana isochorismate synthase2; Q9X9I8_YEREN, Yersinia enterocolitica salicylate synthase; MBTI_MYCTU, M. tuberculosis salicylate synthase; MENF_ECOLI, Escherichia coli menaquinone-specific isochorismate synthase; ENTC_ECOLI, E. coli enterobactin-specific isochorismate synthase; TRPE_SERMA, Serratia marcescens anthranilate synthase.

Figure S4. Expression of His ${ }_{6}$-AtICS1 and His6-AtICS2 fusion proteins in E. coli and their purification by nickel nitrilo tri-acetic acid (Ni-NTA) affinity chromatography and gel filtration. SDS polyacrylamide gel electrophoresis (SDSPAGE) of cell lysates of E. coli transformed with vectors harbouring inserts encoding $\mathrm{His}_{6}-\mathrm{AtICS} 1$ (A) and His6-ICS2 (B) fusion proteins. In A and B lysates from cells incubated or not incubated with isopropyl β-D-thiogalactopyranoside (IPTG) to induce fusion protein expression are indicated by + or - , respectively. In A and B, lane numbers 3-5 show, respectively, polypeptides present in an IPTG-induced cell lysate and after centrifugal fractionation into its soluble and insoluble components. Lanes 7 in A and B are loaded with polypeptides present in the soluble fraction of the cell lysates that were not bound by an Ni-NTA affinity chromatography column (Flowthru') and subsequent lanes were loaded with proteins eluted by washing the column with a gradient of $20-500 \mathrm{mM}$ imidazole. The positions of the predicted 60 kDa bands predicted for AtICS1 (A) and AtICS2 (B) are indicted with arrows. Affinity chromatography fractions containing the predicted 60 kDa ICS bands were pooled (indicated by Total) and further purified by gel filtration (C, D). Gel filtration
fractions containing the predicted 60 kDa band for AtICS1 (C) and AtICS2 (D) were identified. These bands are indicated with arrows labelled I. These fractions also contained lower mass polypeptides (arrows labelled II) that may have been contaminants or breakdown products of the ICS polypeptides. Western immunoblot analysis of the gel filtration fractions using anti-His ${ }_{6}$ antibodies confirmed that the 60 kDa bands indicated by I were the authentic His_{6}-AtICS1 (E) and His6-AtICS2 (F) fusion proteins. Polypeptide bands in SDS-PAGE gels A-D were visualized by staining with Coomassie Brilliant Blue R-250. Binding of anti-His ${ }_{6}$ in the western blots E and F was detected using a secondary antibody tagged with horseradish peroxidase and visualized on X-ray film after application of a chemiluminescent substrate. Lanes M were loaded with pre-stained protein markers and marker sizes in kDa are indicated to the left of each panel.

Supplementary Figure S5 Effect of $\mathbf{p H}$ on recombinant AtICS1 and AtICS2. Activity was measured with coupled online fluorimetric assays. Buffers used to maintain different pH values are detailed in Materials \& Methods.

