SUPPLEMENTARY ONLINE DATA

Nitric oxide-dependent CYP2B degradation is potentiated by a cytokine-regulated pathway and utilizes the immunoproteasome subunit LMP2

Haiyan SUN*†1, Choon-myung LEE*1, Shweta TRIPATHI*, Kyung-Bo KIM‡ and Edward T. MORGAN*2

*Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, U.S.A., †Department of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Xili Lake, Shenzhen, Guangdong 518055, China, and ‡Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, 789 S. Limestone, Lexington, KY 40536, U.S.A.

Figure S1 Control experiments

(A) Lack of effect of L-NAME or L-arginine (L-Arg) on CYP2B expression. Hepatocytes (3 days old) were pretreated with 1 mM PB, which was present for the rest of the experiment. After 2 days of PB induction, the cells were treated with IL-1 (5 ng/ml), L-NAME (100 mM) or L-arginine (1 mM). The cells were harvested after a further 24 h of incubation and CYP2B expression was assessed by Western blotting. (B) Lack of inhibition of the constitutive proteasome by UK-101. Hepatocytes were treated with IL-1 (5 ng/ml) for 24 h in the presence or absence of the indicated proteasome inhibitors MG132, bortezomib, IPSI or UK-101 (10 mM). a, significantly different from control; b, significantly different from IL-1-treated cells, *P < 0.05, one-way ANOVA and Tukey's test.

Received 16 May 2012; accepted 22 May 2012
Published as BJ Immediate Publication 22 May 2012, doi:10.1042/BJ20120820

† These authors contributed equally to this work.
‡ To whom correspondence should be addressed (etmorga@emory.edu).

© 2012 The Author(s)
The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.