

SUPPLEMENTARY ONLINE DATA

Different molecular bases underlie the mitochondrial respiratory activity in the homoeothermic spadices of *Symplocarpus renifolius* and the transiently thermogenic appendices of *Arum maculatum*

Yusuke KAKIZAKI*, Anthony L. MOORE† and Kikukatsu ITO±1

*The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan, †Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, U.K., and ‡Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan

SrNDA1	1	MGFSRIARSALRQSPGTNPASRIPSSNYMNQTASHCEGLPQSGSYFFSVRYITTNSTLKHLP-SVGTMDRLSFESRGI	77
SrNDA2	1	MGFSRIARSALRQSPGTNPASRIPSSNYMNQTASHCKGLPQSGSYFFSVRYITTNSTLKHLP-SVGTMDRLSFESRGI	77
AmNDA1	1	MGLSKIARSAWKTSLSADSVNRMLGSGHVIOTSVLLGDLLPSSARHHLLLARFVTTTGSTORHPPGFESRDCEDRGSRGI	80
		** * **** * * * * * * * * * * * * * * *	
SrNDA1	78	SVTPOROFPLAERVEEDPEVEVESRRLPGLGATKPGEKPRVVVLGTGWAGCRFLKGLDTKMYDVVCISPRNHMVFTPLLA	157
SrNDA2		SVTPOROFPLAERVEEDSEVEVESRSLRGLGATKPGEKPRVVVLGTGWAGCRFLKGLDTKRYDVVCISPRNHMVFTPLLA	
AmNDA1		SVTPHROSPLAOPVEEEPDVENDRROA-GLEATRPGEKPRVVVLGTGWAGCRFMKTLDTGVYDLVCISPRNHMVFTPLLA	
MIIIADAT	01	*** ** *** *** ** * * * * ** *********	133
		++ + + + + + + +	
SrNDA1	158	STCVGTLEFRSVAEPVSOIOAALGGAPNSYFYLASCMGIDTDKHEVYCEAVPG-AGLPNEPYGFTVAYDKLVIAAGAEPL	236
SrNDA2		STCVGTLEFRSVAEPVSOIOAALGGAPNSYFYLASCMGIDTDKHEVYCEAVPG-AGLPNEPYRFSVAYDKLVIAAGAEPL	
AmNDA1		STCVGTLEFRSVAEPVSRIOTALATAPNSYFYLASCNGIDVDRHEVYCEAVPSSVGLSTEPYKFKVAYDKLVIAAGADPL	
I IIIII TOTIL	100	********** ** ** * ** ******** ** ** **	200
SrNDA1	227	TFNIKGVKEHAFFLREVNHAQEIRKKLLLNLMLSENPGISEEEKNRLLHCVVIGGGPTGVEFSGELSDFIMRDVRQRYSH	216
SrNDA2		TFNIKGVKEHAFFLREVNHAOEIRKKLLLNLMLSENPGISEEEKKRLLHCVVIGGGPTGVEFSGELSDFIMRDVRORYSH	
AmNDA1		TFNIKGVKEHAFFLREVNHAOEIRKKLLINLMLSDNPGVSEEEKSRLLHCVVIGGGPTGVEFSGELSDFITRDVRORYSH	
MILLIANT	240	**************************************	313
		+- + + + + - +	
SrNDA1	317	VKDYVRVTLIEANEILSSFDVSLROYATNHLOKSGVRLVRGVVKEVLPKKIILNDGTDVPYGLLVWSTGVGASGFIKSLN	396
SrNDA2		VKDYVRVTLIEANEILSSFDVGLROYATNHLOKSGVRLVRGVVKEVLPRKIILNDGTEVPYGLLVWSTGVGASGFIKSLN	
AmNDA1		VKDYVRVTLIEANEILSSFDVSLROYATNHLTKSGVRLVRGVVKEVMPKKILLSDGTEVPYGLLVWSTGVGPSGFTKSID	
THILITETTE	520	***********************	555
		+ + +	
SrNDA1	397	LPKSPGGRIGIDEWMRVPSVEDVFALGDCAGFLEOTGRPVLPALAOVAEREGKYLAELFVKIGKODGGRAFSAKDASLGD	476
SrNDA2	397	LPKSPGGRIGIDEWLRVPSVEDVFALGDCAGFLEOTGRPVLPALAOVAEREGKYLAELFVKIGKODGGRAFSAKDASLGD	476
AmNDA1		LPKSPGGRIGIDEWLRVPSVDDVFALGDCAGFLOETGKPVLPALAOVAEROGKYLADLLNRIGKONGGKAFASRGIDLRD	
		********** **** ****** ** ******* ** **	
SrNDA1	477	PFVYKHFGSMASVGGYKALVDLRQSKDAKGLTMAGFVSWFVWRSAYLTRVVSWRNRFYVATNWATTLVFGRDNSRIG	553
SrNDA1	477	PFVYKHFGSMASVGGYKALVDLRQSTDAKGPTLAGFGSWFIWRSAYLTRVVSWRNRFYVAANWATTLVFGRDNSRIG	553
AmNDA1	480	PFVYRHLGSMASVGRYKALVDLRQSKDAKGLAMAGFVSWFIWRSAYLTRVVSWRNRFYVAVNWATTLVFGRDNSRIG	556

Figure S1 Deduced amino acid sequences of SrNDA1, SrNDA2 and AmNDA1

Sequence alignments of SrNDA1, SrNDA2 and AmNDA1 were generated by GENETYX version 6.1. Underlined regions are mitochondrial targeting sequences predicted by Mitoprot. Asterisks indicate conserved amino acid residues among the three NDA sequences. Both the + and - signs under the alignments represent putative positions for two dinucleotide-fold fingerprints. Consistency of the respective positions in terms of these motifs is denoted by the different symbols: +, consistent; -, inconsistent.

¹ To whom correspondence should be addressed (email kikuito@iwate-u.ac.jp).

```
1 MRFTGASSTIY----QAVRRNSAFSKLLVVFAVGSGGLVVYADANPNHGLITEQSEVSAKKKVVVLGTGWAGTSFLKNLD
SrNDB1
          1 MRFTGASSTIY----QAVRRNSAFSKLLVVFAVGSGGLVVYADAKPNHSLITEQSEVPAKKKVVVLGTGWAGTSFLKNMD
          AmNDB1
         77 SSLYDVQVVSPRNYFAFTPLLPSVTCGTVDARSVVEPIRKIIKKKGGEIKFWEAECYNIDPGNKKVHCRSNIGTNLEGNG 156
SrNDB1
         77 SSLYDVQVVSPRNYFAFTPLLPSVTCGTVDARSVVEPIRKIIKKKGGEIRFWEAECYNVDPVNKKVHCRSNIGTNLEGNG 156
SrNDB2
AmNDB1
         78 SSLYDVHVVSPRNYFAFTPLLPSVTCGTVDARSIVEPVRNIIRKKGGGVKFWEADCCKIDPTTKKVYCRSNVGTNLEGNG 157
SrNDB1
        157 EFVVEYDYLVVTLGAKANTFNTPGVVEHCHFLKEVEDALRIRRSVMDCFERASLPNLTDEERKTNLHFIIVGGGPTGVEF 236
         157 EFVVEYDYLVVALGAKANTFNTPGVVEHCHFLKEVEDALRIRRSVMDCFERASLPNLTDEERKTNLHFIIVGGGPTGVEF 236
AmNDB1
        158 EFVVDYDYLVVAIGARANTFNTPGVTENCHFLKEVEDAQRIRRSVIDCFERASLPTLSDEERKKNLHFVIVGGGPTGVEF 237
        237 AAELHDFVSEDIAKLYPRVRDLVKISVIEAGEHILTMFDKRITAFAEEKFKRDGIDVKTGYRVVKVSDKEIIMTGKATGE 316
SrNDB1
SrNDB2
        237 AAELHDFVSEDIAKLYPRVRDLVKISVIEAGEHILTMFDKRITAFAEEKFKREGIDVKTGYRVVKVSDKDIIMTGKATGE 316
AmNDB1
        238 AAELHDFVNEDLSKLYPKVQELVKISVIEAGEHILTMFDKRITEFAEGKFQREGIDVKTGYKVVKVSDKSISMVSKEAGE 317
        317 TAVPYGMAVWSTGIGTRPVILDFMKQIGQVDRRVLATDEWLRVRGCDGVYALGDCATISQRKVMDDISAIFKVADKDNSG 396
SrNDB1
        317 IAIPYGMAVWSTGIGTRPVILDFMKQIGQADRRVLATDEWLRVRGCDGVYALGDCATISQRKVMDDISAIFKVADKDNSG 396
        318 IDVPYGMAVWSTGIGTRPVILDFMKQIGQGDRRVLATDEWLRVRGCDGVYALGDCATITQRRVMDDISSIFRVADKDNSG 397
AmNDB1
        397 TLTVKEIQDVLGDICERYPQVELYLKSKQMEDFVDLLEDSKGNAKKESIELDIEQFKKALAHVDFQVKNLPATAQVAAQQ 476
SrNDB1
        397 TLTVKEIQDVLGDICERYPQVELYLKSKQMEDFVDLLEDSKGNAKKESIELDIEQFKKALAHVDFQVKNLPATAQVAAQQ 476
SrNDB2
AmNDB1
        398 TLTVKEINDVLGDICERYPQVELYLKSKQMKSLVDLLKESEGNAKKETMELNIEQFKKALENVDSQVKNLPATAQVASQQ 477
SrNDB1
        477 GYYLARCFNVMKNVEENPEGPLRMRESGRHRFRPFRYKHLGQFAPLGGEQTAAQLPGDWISIGYGSQWLWYSVYASKQVS 556
        477 GYYLARCFNVMKNVEENPEGPLRMRESGRHRFRPFRYKHLGQFAPLGGEQTAAQLPGDWISIGYGSQWLWYSVYASKQVS 556
SrNDB2
AmNDB1
        478 GAYLARCFNLLQNIDVNPEGPIRIRESGRHRFRPFRYRHLGQFAPLGGEQTAAQLPGDWISIGYGSQWLWYSVYASKQVS 557
SrNDB1
        557 WRTRLSVVSDWTRRFIFGRDSSCI
                                                                                           580
SrNDB2
        557 WRTRLSVVSDWTRRFIFGRDSSCI
                                                                                           580
AmNDB1
        558 WRTRVAVVSNWTRRFIFGRDSSSL
                                                                                           581
```

Figure S2 Deduced amino acid sequences of SrNDB1, SrNDB2 and AmNDB1

Sequence alignments of SrNDB1, SrNDB2 and AmNDB1 shown in the same manner as described in Figure S1. In addition, # under the alignments indicates the putative positions for a Ca²⁺ -binding EF-hand motif.

Figure S3 Immunological identification of AOX in *S. renifolius* mitochondria following 1D BN-PAGE under a range of experimental conditions

(A) *S. renifolius* mitochondria, which had experienced two freeze—thaw cycles, were solubilized using four different concentrations of digitonin, namely 1, 2.5, 5 and 10 g/g of protein, and were then resolved on to a 1D BN-PAGE gel. AOX was immunologically detected as shown in Figure 4(A) of the main text. The numbers above each lane indicate the digitonin concentrations. The molecular masses of standard proteins are indicated to the right-hand side of the image in kDa. The third lane from the left end is identical to the SR lane in Figure 4(A) of the main text. (B) Freshly-prepared *S. renifolius* mitochondria which had undergone no freeze—thaw cycles were solubilized using 5 g digitonin/g of protein, and were then run on a 1D BN-PAGE gel. AOX was immunologically detected as shown in Figure 4(A) of the main text. The right image as a comparison, AOX was detected in mitochondria that had undergone two freeze—thaw cycles, which is identical to the SR lane in Figure 4(A) of the main text. The molecular masses of the standard proteins are shown between the two images in kDa. FP, freshly-prepared mitochondria; FT, mitochondria that had undergone two freeze—thaw cycles.

Figure S4 Immunological identification of AOX in mitochondria from non-transformed S. pombe and its transformant expressing AmAOX1e

Mitochondria that had undergone two freeze—thaw cycles were solubilized by digitonin and were subjected to Western blotting after either 1D BN-PAGE or 2D BN/SDS/PAGE. (A) The proteins were stained by Coomassie Brilliant Blue after 1D BN-PAGE to show their appropriate loading and separation. (B) Immunological detection of AOX after 1D BN-PAGE. Numbers above each lane represent digitonin concentrations in g/g of protein. (C) Immunological detection of AOX in mitochondria from the non-transformed yeast after 2D BN/SDS-PAGE. The mitochondria were solubilized using 5 g of digitonin/g of protein. The result is presented as in Figure 4(B) of the main text. (D) Immunological detection of AOX in mitochondria from the transformant after 2D BN/SDS/PAGE. The results were shown in the same manner as in (C).

Table S1 DNA sequences of the primers used for RT-PCR and real-time PCR

run 			
Name	Sequence $(5' \rightarrow 3')$		
NDAF1	AACCACATGGTNTTCAC		
NDAF2	CAYGCTCAAGAAATAAGGAA		
NDAF3	ATCTTCCTCCGCGAGGT		
NDAR1	ACAGTWGCCATGCTTCC		
NDAR2	CTTTCTGCAACCTGAGC		
NDAR3	ACCTGTTCCTCCAGCTCAC		
NDBF1	AAGGAAGTAGAGGATGCTCA		
NDBF2	ACTGGWGTGGARTTTGC		
NDBF3	CTGCWGAGCTTCATGAYT		
NDBF4	CATGTTTGACAARAGAATYAC		
NDBR1	GCRACCTGAGCTGTTGC		
NDBR2	ACTTGYTTGCTKGCATA		
NDBR3	CCTCCCARTGGAGCAAA		
NDBR4	ATRTCTTCCATGACTTTGCG		
EF1aF1	ACATTGTGGTCATTGGCCA		
EF1aR1	ACCAGTTGGGTCCTTCTT		
SrNDAF1	GTGAAGGATTACGTACGAGTTACCC		
SrNDAF2	GATTACACAAGTGTTCGGCGTC		
SrNDAR1	GGGTAACTCGTACGTAATCCTTCAC		
SrNDAR2	CGTACAACAACTCATCAAGACACC		
SrNDBF1	GGTATGGCTGTCTGGTCTACTGG		
SrNDBF2	GTGATGGTGTGTATGCACTTGG		
SrNDBF3	ATCTCCATTTCTGCTGTGGTTC		
SrNDBR1	CCAAGTGCATACACACCATCAC		
SrNDBR2	CCAGTAGACCAGACAGCCATACC		
SrNDBR3	CAAGCATTCTGCAATTAGCAGC		
AmNDAF1	GTAAAGGATTACGTTCGCGTGAC		
AmNDAF2	GAACAAAGCGAGAAATTGACCTC		
AmNDAF3	TGCGTTCTAGTGCCCTCCTC		
AmNDAR1	GTCACGCGAACGTAATCCTTTAC		
AmNDAR2	TTCCACACATCTGCAGTCTCC		
AmNDAR3	TGTAACTAGTATCTGGTAGGTTTCTGC		
AmNDBF1	GAATGGCTGTCTGGTCTACTGG		
AmNDBF2	AGAATCTCTAGAGGGAACGCTTGG		
AmNDBR1	CCAAGTGCATAAACCCCATCAC		
AmNDBR2	ACCTGGGATTTTCGGTGATG		
AmSrEF1aF1	CGTCAAGTTTGCCGAGATCC		
AmSrEF1aR1	GCTCAGCCTTCAGCTTGTCAAG		
AmSrEF1aR2	CTCTTGTTCATCTCAGCAGCTTC		
SrEF1aF1	ACATGGGGCTCTTCAGCA		
SrEF1aR1	CCACTCATTATAACTAGTCAACATGCG		
AmEF1aF1	ACGGCCAATCTCTGGATC		
AmEF1aR1	GGAACGGTGGACAAGGAG		
rtNDAF1	GACTGTGCAGGTTTTCT		
rtNDAR1	TAGAACCTGTTCCTCCAGC		
rtNDBF1	CATATTTTGACCATGTTTGA		
rtNDBR1	CAGTAGACCAGACAGCCAT		
rtEF1aF1	AGCATTGTGGTCATTGG		
rtEF1aR1	CTCTTGTTCATCTCAGCAG		

Received 12 December 2011/13 April 2012; accepted 19 April 2012 Published as BJ Immediate Publication 19 April 2012, doi:10.1042/BJ20111978